1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
|
// Copyright 2019 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "gtest/gtest.h"
#include "absl/strings/numbers.h"
#include "absl/strings/str_format.h"
#include "absl/strings/str_join.h"
#include "absl/strings/str_split.h"
#include "test/syscalls/linux/unix_domain_socket_test_util.h"
#include "test/util/file_descriptor.h"
#include "test/util/fs_util.h"
#include "test/util/test_util.h"
namespace gvisor {
namespace testing {
namespace {
using absl::StrCat;
using absl::StreamFormat;
using absl::StrFormat;
constexpr char kProcNetUnixHeader[] =
"Num RefCount Protocol Flags Type St Inode Path";
// Possible values of the "st" field in a /proc/net/unix entry. Source: Linux
// kernel, include/uapi/linux/net.h.
enum {
SS_FREE = 0, // Not allocated
SS_UNCONNECTED, // Unconnected to any socket
SS_CONNECTING, // In process of connecting
SS_CONNECTED, // Connected to socket
SS_DISCONNECTING // In process of disconnecting
};
// UnixEntry represents a single entry from /proc/net/unix.
struct UnixEntry {
uintptr_t addr;
uint64_t refs;
uint64_t protocol;
uint64_t flags;
uint64_t type;
uint64_t state;
uint64_t inode;
std::string path;
};
// Abstract socket paths can have either trailing null bytes or '@'s as padding
// at the end, depending on the linux version. This function strips any such
// padding.
void StripAbstractPathPadding(std::string* s) {
const char pad_char = s->back();
if (pad_char != '\0' && pad_char != '@') {
return;
}
const auto last_pos = s->find_last_not_of(pad_char);
if (last_pos != std::string::npos) {
s->resize(last_pos + 1);
}
}
// Precondition: addr must be a unix socket address (i.e. sockaddr_un) and
// addr->sun_path must be null-terminated. This is always the case if addr comes
// from Linux:
//
// Per man unix(7):
//
// "When the address of a pathname socket is returned (by [getsockname(2)]), its
// length is
//
// offsetof(struct sockaddr_un, sun_path) + strlen(sun_path) + 1
//
// and sun_path contains the null-terminated pathname."
std::string ExtractPath(const struct sockaddr* addr) {
const char* path =
reinterpret_cast<const struct sockaddr_un*>(addr)->sun_path;
// Note: sockaddr_un.sun_path is an embedded character array of length
// UNIX_PATH_MAX, so we can always safely dereference the first 2 bytes below.
//
// We also rely on the path being null-terminated.
if (path[0] == 0) {
std::string abstract_path = StrCat("@", &path[1]);
StripAbstractPathPadding(&abstract_path);
return abstract_path;
}
return std::string(path);
}
// Returns a parsed representation of /proc/net/unix entries.
PosixErrorOr<std::vector<UnixEntry>> ProcNetUnixEntries() {
std::string content;
RETURN_IF_ERRNO(GetContents("/proc/net/unix", &content));
bool skipped_header = false;
std::vector<UnixEntry> entries;
std::vector<std::string> lines = absl::StrSplit(content, '\n');
std::cerr << "<contents of /proc/net/unix>" << std::endl;
for (const std::string& line : lines) {
// Emit the proc entry to the test output to provide context for the test
// results.
std::cerr << line << std::endl;
if (!skipped_header) {
EXPECT_EQ(line, kProcNetUnixHeader);
skipped_header = true;
continue;
}
if (line.empty()) {
continue;
}
// Parse a single entry from /proc/net/unix.
//
// Sample file:
//
// clang-format off
//
// Num RefCount Protocol Flags Type St Inode Path"
// ffffa130e7041c00: 00000002 00000000 00010000 0001 01 1299413685 /tmp/control_server/13293772586877554487
// ffffa14f547dc400: 00000002 00000000 00010000 0001 01 3793 @remote_coredump
//
// clang-format on
//
// Note that from the second entry, the inode number can be padded using
// spaces, so we need to handle it separately during parsing. See
// net/unix/af_unix.c:unix_seq_show() for how these entries are produced. In
// particular, only the inode field is padded with spaces.
UnixEntry entry;
// Process the first 6 fields, up to but not including "Inode".
std::vector<std::string> fields =
absl::StrSplit(line, absl::MaxSplits(' ', 6));
if (fields.size() < 7) {
return PosixError(EINVAL, StrFormat("Invalid entry: '%s'\n", line));
}
// AtoiBase can't handle the ':' in the "Num" field, so strip it out.
std::vector<std::string> addr = absl::StrSplit(fields[0], ':');
ASSIGN_OR_RETURN_ERRNO(entry.addr, AtoiBase(addr[0], 16));
ASSIGN_OR_RETURN_ERRNO(entry.refs, AtoiBase(fields[1], 16));
ASSIGN_OR_RETURN_ERRNO(entry.protocol, AtoiBase(fields[2], 16));
ASSIGN_OR_RETURN_ERRNO(entry.flags, AtoiBase(fields[3], 16));
ASSIGN_OR_RETURN_ERRNO(entry.type, AtoiBase(fields[4], 16));
ASSIGN_OR_RETURN_ERRNO(entry.state, AtoiBase(fields[5], 16));
absl::string_view rest = absl::StripAsciiWhitespace(fields[6]);
fields = absl::StrSplit(rest, absl::MaxSplits(' ', 1));
if (fields.empty()) {
return PosixError(
EINVAL, StrFormat("Invalid entry, missing 'Inode': '%s'\n", line));
}
ASSIGN_OR_RETURN_ERRNO(entry.inode, AtoiBase(fields[0], 10));
entry.path = "";
if (fields.size() > 1) {
entry.path = fields[1];
StripAbstractPathPadding(&entry.path);
}
entries.push_back(entry);
}
std::cerr << "<end of /proc/net/unix>" << std::endl;
return entries;
}
// Finds the first entry in 'entries' for which 'predicate' returns true.
// Returns true on match, and sets 'match' to point to the matching entry.
bool FindBy(std::vector<UnixEntry> entries, UnixEntry* match,
std::function<bool(const UnixEntry&)> predicate) {
for (int i = 0; i < entries.size(); ++i) {
if (predicate(entries[i])) {
*match = entries[i];
return true;
}
}
return false;
}
bool FindByPath(std::vector<UnixEntry> entries, UnixEntry* match,
const std::string& path) {
return FindBy(entries, match,
[path](const UnixEntry& e) { return e.path == path; });
}
TEST(ProcNetUnix, Exists) {
const std::string content =
ASSERT_NO_ERRNO_AND_VALUE(GetContents("/proc/net/unix"));
const std::string header_line = StrCat(kProcNetUnixHeader, "\n");
if (IsRunningOnGvisor()) {
// Should be just the header since we don't have any unix domain sockets
// yet.
EXPECT_EQ(content, header_line);
} else {
// However, on a general linux machine, we could have abitrary sockets on
// the system, so just check the header.
EXPECT_THAT(content, ::testing::StartsWith(header_line));
}
}
TEST(ProcNetUnix, FilesystemBindAcceptConnect) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(
FilesystemBoundUnixDomainSocketPair(SOCK_STREAM).Create());
std::string path1 = ExtractPath(sockets->first_addr());
std::string path2 = ExtractPath(sockets->second_addr());
std::cerr << StreamFormat("Server socket address (path1): %s\n", path1);
std::cerr << StreamFormat("Client socket address (path2): %s\n", path2);
std::vector<UnixEntry> entries =
ASSERT_NO_ERRNO_AND_VALUE(ProcNetUnixEntries());
if (IsRunningOnGvisor()) {
EXPECT_EQ(entries.size(), 2);
}
// The server-side socket's path is listed in the socket entry...
UnixEntry s1;
EXPECT_TRUE(FindByPath(entries, &s1, path1));
// ... but the client-side socket's path is not.
UnixEntry s2;
EXPECT_FALSE(FindByPath(entries, &s2, path2));
}
TEST(ProcNetUnix, AbstractBindAcceptConnect) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(
AbstractBoundUnixDomainSocketPair(SOCK_STREAM).Create());
std::string path1 = ExtractPath(sockets->first_addr());
std::string path2 = ExtractPath(sockets->second_addr());
std::cerr << StreamFormat("Server socket address (path1): '%s'\n", path1);
std::cerr << StreamFormat("Client socket address (path2): '%s'\n", path2);
std::vector<UnixEntry> entries =
ASSERT_NO_ERRNO_AND_VALUE(ProcNetUnixEntries());
if (IsRunningOnGvisor()) {
EXPECT_EQ(entries.size(), 2);
}
// The server-side socket's path is listed in the socket entry...
UnixEntry s1;
EXPECT_TRUE(FindByPath(entries, &s1, path1));
// ... but the client-side socket's path is not.
UnixEntry s2;
EXPECT_FALSE(FindByPath(entries, &s2, path2));
}
TEST(ProcNetUnix, SocketPair) {
// Under gvisor, ensure a socketpair() syscall creates exactly 2 new
// entries. We have no way to verify this under Linux, as we have no control
// over socket creation on a general Linux machine.
SKIP_IF(!IsRunningOnGvisor());
std::vector<UnixEntry> entries =
ASSERT_NO_ERRNO_AND_VALUE(ProcNetUnixEntries());
ASSERT_EQ(entries.size(), 0);
auto sockets =
ASSERT_NO_ERRNO_AND_VALUE(UnixDomainSocketPair(SOCK_STREAM).Create());
entries = ASSERT_NO_ERRNO_AND_VALUE(ProcNetUnixEntries());
EXPECT_EQ(entries.size(), 2);
}
TEST(ProcNetUnix, StreamSocketStateUnconnectedOnBind) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(
AbstractUnboundUnixDomainSocketPair(SOCK_STREAM).Create());
ASSERT_THAT(bind(sockets->first_fd(), sockets->first_addr(),
sockets->first_addr_size()),
SyscallSucceeds());
std::vector<UnixEntry> entries =
ASSERT_NO_ERRNO_AND_VALUE(ProcNetUnixEntries());
const std::string address = ExtractPath(sockets->first_addr());
UnixEntry bind_entry;
ASSERT_TRUE(FindByPath(entries, &bind_entry, address));
EXPECT_EQ(bind_entry.state, SS_UNCONNECTED);
}
TEST(ProcNetUnix, StreamSocketStateStateUnconnectedOnListen) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(
AbstractUnboundUnixDomainSocketPair(SOCK_STREAM).Create());
ASSERT_THAT(bind(sockets->first_fd(), sockets->first_addr(),
sockets->first_addr_size()),
SyscallSucceeds());
std::vector<UnixEntry> entries =
ASSERT_NO_ERRNO_AND_VALUE(ProcNetUnixEntries());
const std::string address = ExtractPath(sockets->first_addr());
UnixEntry bind_entry;
ASSERT_TRUE(FindByPath(entries, &bind_entry, address));
EXPECT_EQ(bind_entry.state, SS_UNCONNECTED);
ASSERT_THAT(listen(sockets->first_fd(), 5), SyscallSucceeds());
entries = ASSERT_NO_ERRNO_AND_VALUE(ProcNetUnixEntries());
UnixEntry listen_entry;
ASSERT_TRUE(
FindByPath(entries, &listen_entry, ExtractPath(sockets->first_addr())));
EXPECT_EQ(listen_entry.state, SS_UNCONNECTED);
// The bind and listen entries should refer to the same socket.
EXPECT_EQ(listen_entry.inode, bind_entry.inode);
}
TEST(ProcNetUnix, StreamSocketStateStateConnectedOnAccept) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(
AbstractUnboundUnixDomainSocketPair(SOCK_STREAM).Create());
const std::string address = ExtractPath(sockets->first_addr());
ASSERT_THAT(bind(sockets->first_fd(), sockets->first_addr(),
sockets->first_addr_size()),
SyscallSucceeds());
ASSERT_THAT(listen(sockets->first_fd(), 5), SyscallSucceeds());
std::vector<UnixEntry> entries =
ASSERT_NO_ERRNO_AND_VALUE(ProcNetUnixEntries());
UnixEntry listen_entry;
ASSERT_TRUE(
FindByPath(entries, &listen_entry, ExtractPath(sockets->first_addr())));
ASSERT_THAT(connect(sockets->second_fd(), sockets->first_addr(),
sockets->first_addr_size()),
SyscallSucceeds());
int clientfd;
ASSERT_THAT(clientfd = accept(sockets->first_fd(), nullptr, nullptr),
SyscallSucceeds());
// Find the entry for the accepted socket. UDS proc entries don't have a
// remote address, so we distinguish the accepted socket from the listen
// socket by checking for a different inode.
entries = ASSERT_NO_ERRNO_AND_VALUE(ProcNetUnixEntries());
UnixEntry accept_entry;
ASSERT_TRUE(FindBy(
entries, &accept_entry, [address, listen_entry](const UnixEntry& e) {
return e.path == address && e.inode != listen_entry.inode;
}));
EXPECT_EQ(accept_entry.state, SS_CONNECTED);
// Listen entry should still be in SS_UNCONNECTED state.
ASSERT_TRUE(FindBy(entries, &listen_entry,
[&sockets, listen_entry](const UnixEntry& e) {
return e.path == ExtractPath(sockets->first_addr()) &&
e.inode == listen_entry.inode;
}));
EXPECT_EQ(listen_entry.state, SS_UNCONNECTED);
}
TEST(ProcNetUnix, DgramSocketStateDisconnectingOnBind) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(
AbstractUnboundUnixDomainSocketPair(SOCK_DGRAM).Create());
std::vector<UnixEntry> entries =
ASSERT_NO_ERRNO_AND_VALUE(ProcNetUnixEntries());
// On gVisor, the only two UDS on the system are the ones we just created and
// we rely on this to locate the test socket entries in the remainder of the
// test. On a generic Linux system, we have no easy way to locate the
// corresponding entries, as they don't have an address yet.
if (IsRunningOnGvisor()) {
ASSERT_EQ(entries.size(), 2);
for (const auto& e : entries) {
ASSERT_EQ(e.state, SS_DISCONNECTING);
}
}
ASSERT_THAT(bind(sockets->first_fd(), sockets->first_addr(),
sockets->first_addr_size()),
SyscallSucceeds());
entries = ASSERT_NO_ERRNO_AND_VALUE(ProcNetUnixEntries());
const std::string address = ExtractPath(sockets->first_addr());
UnixEntry bind_entry;
ASSERT_TRUE(FindByPath(entries, &bind_entry, address));
EXPECT_EQ(bind_entry.state, SS_UNCONNECTED);
}
TEST(ProcNetUnix, DgramSocketStateConnectingOnConnect) {
auto sockets = ASSERT_NO_ERRNO_AND_VALUE(
AbstractUnboundUnixDomainSocketPair(SOCK_DGRAM).Create());
std::vector<UnixEntry> entries =
ASSERT_NO_ERRNO_AND_VALUE(ProcNetUnixEntries());
// On gVisor, the only two UDS on the system are the ones we just created and
// we rely on this to locate the test socket entries in the remainder of the
// test. On a generic Linux system, we have no easy way to locate the
// corresponding entries, as they don't have an address yet.
if (IsRunningOnGvisor()) {
ASSERT_EQ(entries.size(), 2);
for (const auto& e : entries) {
ASSERT_EQ(e.state, SS_DISCONNECTING);
}
}
ASSERT_THAT(bind(sockets->first_fd(), sockets->first_addr(),
sockets->first_addr_size()),
SyscallSucceeds());
entries = ASSERT_NO_ERRNO_AND_VALUE(ProcNetUnixEntries());
const std::string address = ExtractPath(sockets->first_addr());
UnixEntry bind_entry;
ASSERT_TRUE(FindByPath(entries, &bind_entry, address));
ASSERT_THAT(connect(sockets->second_fd(), sockets->first_addr(),
sockets->first_addr_size()),
SyscallSucceeds());
entries = ASSERT_NO_ERRNO_AND_VALUE(ProcNetUnixEntries());
// Once again, we have no easy way to identify the connecting socket as it has
// no listed address. We can only identify the entry as the "non-bind socket
// entry" on gVisor, where we're guaranteed to have only the two entries we
// create during this test.
if (IsRunningOnGvisor()) {
ASSERT_EQ(entries.size(), 2);
UnixEntry connect_entry;
ASSERT_TRUE(
FindBy(entries, &connect_entry, [bind_entry](const UnixEntry& e) {
return e.inode != bind_entry.inode;
}));
EXPECT_EQ(connect_entry.state, SS_CONNECTING);
}
}
} // namespace
} // namespace testing
} // namespace gvisor
|