1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <elf.h>
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <linux/magic.h>
#include <linux/sem.h>
#include <sched.h>
#include <signal.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/prctl.h>
#include <sys/ptrace.h>
#include <sys/stat.h>
#include <sys/statfs.h>
#include <sys/utsname.h>
#include <syscall.h>
#include <unistd.h>
#include <algorithm>
#include <atomic>
#include <functional>
#include <iostream>
#include <map>
#include <memory>
#include <ostream>
#include <regex>
#include <string>
#include <unordered_set>
#include <utility>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/container/node_hash_set.h"
#include "absl/strings/ascii.h"
#include "absl/strings/match.h"
#include "absl/strings/numbers.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_split.h"
#include "absl/strings/string_view.h"
#include "absl/synchronization/mutex.h"
#include "absl/synchronization/notification.h"
#include "absl/time/clock.h"
#include "absl/time/time.h"
#include "test/util/capability_util.h"
#include "test/util/cleanup.h"
#include "test/util/file_descriptor.h"
#include "test/util/fs_util.h"
#include "test/util/memory_util.h"
#include "test/util/mount_util.h"
#include "test/util/multiprocess_util.h"
#include "test/util/posix_error.h"
#include "test/util/proc_util.h"
#include "test/util/temp_path.h"
#include "test/util/test_util.h"
#include "test/util/thread_util.h"
#include "test/util/time_util.h"
#include "test/util/timer_util.h"
// NOTE(magi): No, this isn't really a syscall but this is a really simple
// way to get it tested on both gVisor, PTrace and Linux.
using ::testing::AllOf;
using ::testing::AnyOf;
using ::testing::ContainerEq;
using ::testing::Contains;
using ::testing::ContainsRegex;
using ::testing::Eq;
using ::testing::Gt;
using ::testing::HasSubstr;
using ::testing::IsSupersetOf;
using ::testing::Pair;
using ::testing::UnorderedElementsAre;
using ::testing::UnorderedElementsAreArray;
// Exported by glibc.
extern char** environ;
namespace gvisor {
namespace testing {
namespace {
#ifndef SUID_DUMP_DISABLE
#define SUID_DUMP_DISABLE 0
#endif /* SUID_DUMP_DISABLE */
#ifndef SUID_DUMP_USER
#define SUID_DUMP_USER 1
#endif /* SUID_DUMP_USER */
#ifndef SUID_DUMP_ROOT
#define SUID_DUMP_ROOT 2
#endif /* SUID_DUMP_ROOT */
#if defined(__x86_64__) || defined(__i386__)
// This list of "required" fields is taken from reading the file
// arch/x86/kernel/cpu/proc.c and seeing which fields will be unconditionally
// printed by the kernel.
static const char* required_fields[] = {
"processor",
"vendor_id",
"cpu family",
"model\t\t:",
"model name",
"stepping",
"cpu MHz",
"fpu\t\t:",
"fpu_exception",
"cpuid level",
"wp",
"bogomips",
"clflush size",
"cache_alignment",
"address sizes",
"power management",
};
#elif __aarch64__
// This list of "required" fields is taken from reading the file
// arch/arm64/kernel/cpuinfo.c and seeing which fields will be unconditionally
// printed by the kernel.
static const char* required_fields[] = {
"processor", "BogoMIPS", "Features", "CPU implementer",
"CPU architecture", "CPU variant", "CPU part", "CPU revision",
};
#else
#error "Unknown architecture"
#endif
// Takes the subprocess command line and pid.
// If it returns !OK, WithSubprocess returns immediately.
using SubprocessCallback = std::function<PosixError(int)>;
std::vector<std::string> saved_argv; // NOLINT
// Helper function to dump /proc/{pid}/status and check the
// state data. State should = "Z" for zombied or "RSD" for
// running, interruptible sleeping (S), or uninterruptible sleep
// (D).
void CompareProcessState(absl::string_view state, int pid) {
auto status_file = ASSERT_NO_ERRNO_AND_VALUE(
GetContents(absl::StrCat("/proc/", pid, "/status")));
// N.B. POSIX extended regexes don't support shorthand character classes (\w)
// inside of brackets.
EXPECT_THAT(status_file,
ContainsRegex(absl::StrCat("State:.[", state,
R"EOL(]\s+\([a-zA-Z ]+\))EOL")));
}
// Run callbacks while a subprocess is running, zombied, and/or exited.
PosixError WithSubprocess(SubprocessCallback const& running,
SubprocessCallback const& zombied,
SubprocessCallback const& exited) {
int pipe_fds[2] = {};
if (pipe(pipe_fds) < 0) {
return PosixError(errno, "pipe");
}
int child_pid = fork();
if (child_pid < 0) {
return PosixError(errno, "fork");
}
if (child_pid == 0) {
close(pipe_fds[0]); // Close the read end.
const DisableSave ds; // Timing issues.
// Write to the pipe to tell it we're ready.
char buf = 'a';
int res = 0;
res = WriteFd(pipe_fds[1], &buf, sizeof(buf));
TEST_CHECK_MSG(res == sizeof(buf), "Write failure in subprocess");
while (true) {
SleepSafe(absl::Milliseconds(100));
}
}
close(pipe_fds[1]); // Close the write end.
int status = 0;
auto wait_cleanup = Cleanup([child_pid, &status] {
EXPECT_THAT(waitpid(child_pid, &status, 0), SyscallSucceeds());
});
auto kill_cleanup = Cleanup([child_pid] {
EXPECT_THAT(kill(child_pid, SIGKILL), SyscallSucceeds());
});
// Wait for the child.
char buf = 0;
int res = ReadFd(pipe_fds[0], &buf, sizeof(buf));
if (res < 0) {
return PosixError(errno, "Read from pipe");
} else if (res == 0) {
return PosixError(EPIPE, "Unable to read from pipe: EOF");
}
if (running) {
// The first arg, RSD, refers to a "running process", or a process with a
// state of Running (R), Interruptable Sleep (S) or Uninterruptable
// Sleep (D).
CompareProcessState("RSD", child_pid);
RETURN_IF_ERRNO(running(child_pid));
}
// Kill the process.
kill_cleanup.Release()();
siginfo_t info;
// Wait until the child process has exited (WEXITED flag) but don't
// reap the child (WNOWAIT flag).
EXPECT_THAT(waitid(P_PID, child_pid, &info, WNOWAIT | WEXITED),
SyscallSucceeds());
if (zombied) {
// Arg of "Z" refers to a Zombied Process.
CompareProcessState("Z", child_pid);
RETURN_IF_ERRNO(zombied(child_pid));
}
// Wait on the process.
wait_cleanup.Release()();
// If the process is reaped, then then this should return
// with ECHILD.
EXPECT_THAT(waitpid(child_pid, &status, WNOHANG),
SyscallFailsWithErrno(ECHILD));
if (exited) {
RETURN_IF_ERRNO(exited(child_pid));
}
return NoError();
}
// Access the file returned by name when a subprocess is running.
PosixError AccessWhileRunning(std::function<std::string(int pid)> name,
int flags, std::function<void(int fd)> access) {
FileDescriptor fd;
return WithSubprocess(
[&](int pid) -> PosixError {
// Running.
ASSIGN_OR_RETURN_ERRNO(fd, Open(name(pid), flags));
access(fd.get());
return NoError();
},
nullptr, nullptr);
}
// Access the file returned by name when the a subprocess is zombied.
PosixError AccessWhileZombied(std::function<std::string(int pid)> name,
int flags, std::function<void(int fd)> access) {
FileDescriptor fd;
return WithSubprocess(
[&](int pid) -> PosixError {
// Running.
ASSIGN_OR_RETURN_ERRNO(fd, Open(name(pid), flags));
return NoError();
},
[&](int pid) -> PosixError {
// Zombied.
access(fd.get());
return NoError();
},
nullptr);
}
// Access the file returned by name when the a subprocess is exited.
PosixError AccessWhileExited(std::function<std::string(int pid)> name,
int flags, std::function<void(int fd)> access) {
FileDescriptor fd;
return WithSubprocess(
[&](int pid) -> PosixError {
// Running.
ASSIGN_OR_RETURN_ERRNO(fd, Open(name(pid), flags));
return NoError();
},
nullptr,
[&](int pid) -> PosixError {
// Exited.
access(fd.get());
return NoError();
});
}
// ReadFd(fd=/proc/PID/basename) while PID is running.
int ReadWhileRunning(std::string const& basename, void* buf, size_t count) {
int ret = 0;
int err = 0;
EXPECT_NO_ERRNO(AccessWhileRunning(
[&](int pid) -> std::string {
return absl::StrCat("/proc/", pid, "/", basename);
},
O_RDONLY,
[&](int fd) {
ret = ReadFd(fd, buf, count);
err = errno;
}));
errno = err;
return ret;
}
// ReadFd(fd=/proc/PID/basename) while PID is zombied.
int ReadWhileZombied(std::string const& basename, void* buf, size_t count) {
int ret = 0;
int err = 0;
EXPECT_NO_ERRNO(AccessWhileZombied(
[&](int pid) -> std::string {
return absl::StrCat("/proc/", pid, "/", basename);
},
O_RDONLY,
[&](int fd) {
ret = ReadFd(fd, buf, count);
err = errno;
}));
errno = err;
return ret;
}
// ReadFd(fd=/proc/PID/basename) while PID is exited.
int ReadWhileExited(std::string const& basename, void* buf, size_t count) {
int ret = 0;
int err = 0;
EXPECT_NO_ERRNO(AccessWhileExited(
[&](int pid) -> std::string {
return absl::StrCat("/proc/", pid, "/", basename);
},
O_RDONLY,
[&](int fd) {
ret = ReadFd(fd, buf, count);
err = errno;
}));
errno = err;
return ret;
}
// readlinkat(fd=/proc/PID/, basename) while PID is running.
int ReadlinkWhileRunning(std::string const& basename, char* buf, size_t count) {
int ret = 0;
int err = 0;
EXPECT_NO_ERRNO(AccessWhileRunning(
[&](int pid) -> std::string { return absl::StrCat("/proc/", pid, "/"); },
O_DIRECTORY,
[&](int fd) {
ret = readlinkat(fd, basename.c_str(), buf, count);
err = errno;
}));
errno = err;
return ret;
}
// readlinkat(fd=/proc/PID/, basename) while PID is zombied.
int ReadlinkWhileZombied(std::string const& basename, char* buf, size_t count) {
int ret = 0;
int err = 0;
EXPECT_NO_ERRNO(AccessWhileZombied(
[&](int pid) -> std::string { return absl::StrCat("/proc/", pid, "/"); },
O_DIRECTORY,
[&](int fd) {
ret = readlinkat(fd, basename.c_str(), buf, count);
err = errno;
}));
errno = err;
return ret;
}
// readlinkat(fd=/proc/PID/, basename) while PID is exited.
int ReadlinkWhileExited(std::string const& basename, char* buf, size_t count) {
int ret = 0;
int err = 0;
EXPECT_NO_ERRNO(AccessWhileExited(
[&](int pid) -> std::string { return absl::StrCat("/proc/", pid, "/"); },
O_DIRECTORY,
[&](int fd) {
ret = readlinkat(fd, basename.c_str(), buf, count);
err = errno;
}));
errno = err;
return ret;
}
TEST(ProcTest, NotFoundInRoot) {
struct stat s;
EXPECT_THAT(stat("/proc/foobar", &s), SyscallFailsWithErrno(ENOENT));
}
TEST(ProcSelfTest, IsThreadGroupLeader) {
ScopedThread([] {
const pid_t tgid = getpid();
const pid_t tid = syscall(SYS_gettid);
EXPECT_NE(tgid, tid);
auto link = ASSERT_NO_ERRNO_AND_VALUE(ReadLink("/proc/self"));
EXPECT_EQ(link, absl::StrCat(tgid));
});
}
TEST(ProcThreadSelfTest, Basic) {
const pid_t tgid = getpid();
const pid_t tid = syscall(SYS_gettid);
EXPECT_EQ(tgid, tid);
auto link_threadself =
ASSERT_NO_ERRNO_AND_VALUE(ReadLink("/proc/thread-self"));
EXPECT_EQ(link_threadself, absl::StrCat(tgid, "/task/", tid));
// Just read one file inside thread-self to ensure that the link is valid.
auto link_threadself_exe =
ASSERT_NO_ERRNO_AND_VALUE(ReadLink("/proc/thread-self/exe"));
auto link_procself_exe =
ASSERT_NO_ERRNO_AND_VALUE(ReadLink("/proc/self/exe"));
EXPECT_EQ(link_threadself_exe, link_procself_exe);
}
TEST(ProcThreadSelfTest, Thread) {
ScopedThread([] {
const pid_t tgid = getpid();
const pid_t tid = syscall(SYS_gettid);
EXPECT_NE(tgid, tid);
auto link_threadself =
ASSERT_NO_ERRNO_AND_VALUE(ReadLink("/proc/thread-self"));
EXPECT_EQ(link_threadself, absl::StrCat(tgid, "/task/", tid));
// Just read one file inside thread-self to ensure that the link is valid.
auto link_threadself_exe =
ASSERT_NO_ERRNO_AND_VALUE(ReadLink("/proc/thread-self/exe"));
auto link_procself_exe =
ASSERT_NO_ERRNO_AND_VALUE(ReadLink("/proc/self/exe"));
EXPECT_EQ(link_threadself_exe, link_procself_exe);
// A thread should not have "/proc/<tid>/task".
struct stat s;
EXPECT_THAT(stat("/proc/thread-self/task", &s),
SyscallFailsWithErrno(ENOENT));
});
}
// Returns the /proc/PID/maps entry for the MAP_PRIVATE | MAP_ANONYMOUS mapping
// m with start address addr and length len.
std::string AnonymousMapsEntry(uintptr_t addr, size_t len, int prot) {
return absl::StrCat(absl::Hex(addr, absl::PadSpec::kZeroPad8), "-",
absl::Hex(addr + len, absl::PadSpec::kZeroPad8), " ",
prot & PROT_READ ? "r" : "-",
prot & PROT_WRITE ? "w" : "-",
prot & PROT_EXEC ? "x" : "-", "p 00000000 00:00 0 ");
}
std::string AnonymousMapsEntryForMapping(const Mapping& m, int prot) {
return AnonymousMapsEntry(m.addr(), m.len(), prot);
}
PosixErrorOr<std::map<uint64_t, uint64_t>> ReadProcSelfAuxv() {
std::string auxv_file;
RETURN_IF_ERRNO(GetContents("/proc/self/auxv", &auxv_file));
const Elf64_auxv_t* auxv_data =
reinterpret_cast<const Elf64_auxv_t*>(auxv_file.data());
std::map<uint64_t, uint64_t> auxv_entries;
for (int i = 0; auxv_data[i].a_type != AT_NULL; i++) {
auto a_type = auxv_data[i].a_type;
EXPECT_EQ(0, auxv_entries.count(a_type)) << "a_type: " << a_type;
auxv_entries.emplace(a_type, auxv_data[i].a_un.a_val);
}
return auxv_entries;
}
TEST(ProcSelfAuxv, EntryPresence) {
auto auxv_entries = ASSERT_NO_ERRNO_AND_VALUE(ReadProcSelfAuxv());
EXPECT_EQ(auxv_entries.count(AT_ENTRY), 1);
EXPECT_EQ(auxv_entries.count(AT_PHDR), 1);
EXPECT_EQ(auxv_entries.count(AT_PHENT), 1);
EXPECT_EQ(auxv_entries.count(AT_PHNUM), 1);
EXPECT_EQ(auxv_entries.count(AT_BASE), 1);
EXPECT_EQ(auxv_entries.count(AT_UID), 1);
EXPECT_EQ(auxv_entries.count(AT_EUID), 1);
EXPECT_EQ(auxv_entries.count(AT_GID), 1);
EXPECT_EQ(auxv_entries.count(AT_EGID), 1);
EXPECT_EQ(auxv_entries.count(AT_SECURE), 1);
EXPECT_EQ(auxv_entries.count(AT_CLKTCK), 1);
EXPECT_EQ(auxv_entries.count(AT_RANDOM), 1);
EXPECT_EQ(auxv_entries.count(AT_EXECFN), 1);
EXPECT_EQ(auxv_entries.count(AT_PAGESZ), 1);
EXPECT_EQ(auxv_entries.count(AT_SYSINFO_EHDR), 1);
}
TEST(ProcSelfAuxv, EntryValues) {
auto proc_auxv = ASSERT_NO_ERRNO_AND_VALUE(ReadProcSelfAuxv());
// We need to find the ELF auxiliary vector. The section of memory pointed to
// by envp contains some pointers to non-null pointers, followed by a single
// pointer to a null pointer, followed by the auxiliary vector.
char** envpi = environ;
while (*envpi) {
++envpi;
}
const Elf64_auxv_t* envp_auxv =
reinterpret_cast<const Elf64_auxv_t*>(envpi + 1);
int i;
for (i = 0; envp_auxv[i].a_type != AT_NULL; i++) {
auto a_type = envp_auxv[i].a_type;
EXPECT_EQ(proc_auxv.count(a_type), 1);
EXPECT_EQ(proc_auxv[a_type], envp_auxv[i].a_un.a_val)
<< "a_type: " << a_type;
}
EXPECT_EQ(i, proc_auxv.size());
}
// Just open and read a part of /proc/self/mem, check that we can read an item.
TEST(ProcPidMem, Read) {
auto memfd = ASSERT_NO_ERRNO_AND_VALUE(Open("/proc/self/mem", O_RDONLY));
char input[] = "hello-world";
char output[sizeof(input)];
ASSERT_THAT(pread(memfd.get(), output, sizeof(output),
reinterpret_cast<off_t>(input)),
SyscallSucceedsWithValue(sizeof(input)));
ASSERT_STREQ(input, output);
}
// Perform read on an unmapped region.
TEST(ProcPidMem, Unmapped) {
// Strategy: map then unmap, so we have a guaranteed unmapped region
auto memfd = ASSERT_NO_ERRNO_AND_VALUE(Open("/proc/self/mem", O_RDONLY));
Mapping mapping = ASSERT_NO_ERRNO_AND_VALUE(
MmapAnon(kPageSize, PROT_READ | PROT_WRITE, MAP_PRIVATE));
// Fill it with things
memset(mapping.ptr(), 'x', mapping.len());
char expected = 'x', output;
ASSERT_THAT(pread(memfd.get(), &output, sizeof(output),
reinterpret_cast<off_t>(mapping.ptr())),
SyscallSucceedsWithValue(sizeof(output)));
ASSERT_EQ(expected, output);
// Unmap region again
ASSERT_THAT(munmap(mapping.ptr(), mapping.len()), SyscallSucceeds());
// Now we want EIO error
ASSERT_THAT(pread(memfd.get(), &output, sizeof(output),
reinterpret_cast<off_t>(mapping.ptr())),
SyscallFailsWithErrno(EIO));
}
// Perform read repeatedly to verify offset change.
TEST(ProcPidMem, RepeatedRead) {
auto const num_reads = 3;
char expected[] = "01234567890abcdefghijkl";
char output[sizeof(expected) / num_reads];
auto memfd = ASSERT_NO_ERRNO_AND_VALUE(Open("/proc/self/mem", O_RDONLY));
ASSERT_THAT(lseek(memfd.get(), reinterpret_cast<off_t>(&expected), SEEK_SET),
SyscallSucceedsWithValue(reinterpret_cast<off_t>(&expected)));
for (auto i = 0; i < num_reads; i++) {
ASSERT_THAT(read(memfd.get(), &output, sizeof(output)),
SyscallSucceedsWithValue(sizeof(output)));
ASSERT_EQ(strncmp(&expected[i * sizeof(output)], output, sizeof(output)),
0);
}
}
// Perform seek operations repeatedly.
TEST(ProcPidMem, RepeatedSeek) {
auto const num_reads = 3;
char expected[] = "01234567890abcdefghijkl";
char output[sizeof(expected) / num_reads];
auto memfd = ASSERT_NO_ERRNO_AND_VALUE(Open("/proc/self/mem", O_RDONLY));
ASSERT_THAT(lseek(memfd.get(), reinterpret_cast<off_t>(&expected), SEEK_SET),
SyscallSucceedsWithValue(reinterpret_cast<off_t>(&expected)));
// Read from start
ASSERT_THAT(read(memfd.get(), &output, sizeof(output)),
SyscallSucceedsWithValue(sizeof(output)));
ASSERT_EQ(strncmp(&expected[0 * sizeof(output)], output, sizeof(output)), 0);
// Skip ahead one read
ASSERT_THAT(lseek(memfd.get(), sizeof(output), SEEK_CUR),
SyscallSucceedsWithValue(reinterpret_cast<off_t>(&expected) +
sizeof(output) * 2));
// Do read again
ASSERT_THAT(read(memfd.get(), &output, sizeof(output)),
SyscallSucceedsWithValue(sizeof(output)));
ASSERT_EQ(strncmp(&expected[2 * sizeof(output)], output, sizeof(output)), 0);
// Skip back three reads
ASSERT_THAT(lseek(memfd.get(), -3 * sizeof(output), SEEK_CUR),
SyscallSucceedsWithValue(reinterpret_cast<off_t>(&expected)));
// Do read again
ASSERT_THAT(read(memfd.get(), &output, sizeof(output)),
SyscallSucceedsWithValue(sizeof(output)));
ASSERT_EQ(strncmp(&expected[0 * sizeof(output)], output, sizeof(output)), 0);
// Check that SEEK_END does not work
ASSERT_THAT(lseek(memfd.get(), 0, SEEK_END), SyscallFailsWithErrno(EINVAL));
}
// Perform read past an allocated memory region.
TEST(ProcPidMem, PartialRead) {
// Strategy: map large region, then do unmap and remap smaller region
auto memfd = ASSERT_NO_ERRNO_AND_VALUE(Open("/proc/self/mem", O_RDONLY));
Mapping mapping = ASSERT_NO_ERRNO_AND_VALUE(
MmapAnon(2 * kPageSize, PROT_READ | PROT_WRITE, MAP_PRIVATE));
ASSERT_THAT(munmap(mapping.ptr(), mapping.len()), SyscallSucceeds());
Mapping smaller_mapping = ASSERT_NO_ERRNO_AND_VALUE(
Mmap(mapping.ptr(), kPageSize, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0));
// Fill it with things
memset(smaller_mapping.ptr(), 'x', smaller_mapping.len());
// Now we want no error
char expected[] = {'x'};
std::unique_ptr<char[]> output(new char[kPageSize]);
off_t read_offset =
reinterpret_cast<off_t>(smaller_mapping.ptr()) + kPageSize - 1;
ASSERT_THAT(
pread(memfd.get(), output.get(), sizeof(output.get()), read_offset),
SyscallSucceedsWithValue(sizeof(expected)));
// Since output is larger, than expected we have to do manual compare
ASSERT_EQ(expected[0], (output).get()[0]);
}
// Perform read on /proc/[pid]/mem after exit.
TEST(ProcPidMem, AfterExit) {
int pfd1[2] = {};
int pfd2[2] = {};
char expected[] = "hello-world";
ASSERT_THAT(pipe(pfd1), SyscallSucceeds());
ASSERT_THAT(pipe(pfd2), SyscallSucceeds());
// Create child process
pid_t const child_pid = fork();
if (child_pid == 0) {
// Close reading end of first pipe
close(pfd1[0]);
// Tell parent about location of input
char ok = 1;
TEST_CHECK(WriteFd(pfd1[1], &ok, sizeof(ok)) == sizeof(ok));
TEST_PCHECK(close(pfd1[1]) == 0);
// Close writing end of second pipe
TEST_PCHECK(close(pfd2[1]) == 0);
// Await parent OK to die
ok = 0;
TEST_CHECK(ReadFd(pfd2[0], &ok, sizeof(ok)) == sizeof(ok));
// Close rest pipes
TEST_PCHECK(close(pfd2[0]) == 0);
_exit(0);
}
// In parent process.
ASSERT_THAT(child_pid, SyscallSucceeds());
// Close writing end of first pipe
EXPECT_THAT(close(pfd1[1]), SyscallSucceeds());
// Wait for child to be alive and well
char ok = 0;
EXPECT_THAT(ReadFd(pfd1[0], &ok, sizeof(ok)),
SyscallSucceedsWithValue(sizeof(ok)));
// Close reading end of first pipe
EXPECT_THAT(close(pfd1[0]), SyscallSucceeds());
// Open /proc/pid/mem fd
std::string mempath = absl::StrCat("/proc/", child_pid, "/mem");
auto memfd = ASSERT_NO_ERRNO_AND_VALUE(Open(mempath, O_RDONLY));
// Expect that we can read
char output[sizeof(expected)];
EXPECT_THAT(pread(memfd.get(), &output, sizeof(output),
reinterpret_cast<off_t>(&expected)),
SyscallSucceedsWithValue(sizeof(output)));
EXPECT_STREQ(expected, output);
// Tell proc its ok to go
EXPECT_THAT(close(pfd2[0]), SyscallSucceeds());
ok = 1;
EXPECT_THAT(WriteFd(pfd2[1], &ok, sizeof(ok)),
SyscallSucceedsWithValue(sizeof(ok)));
EXPECT_THAT(close(pfd2[1]), SyscallSucceeds());
// Expect termination
int status;
ASSERT_THAT(waitpid(child_pid, &status, 0), SyscallSucceeds());
// Expect that we can't read anymore
EXPECT_THAT(pread(memfd.get(), &output, sizeof(output),
reinterpret_cast<off_t>(&expected)),
SyscallSucceedsWithValue(0));
}
// Read from /proc/[pid]/mem with different UID/GID and attached state.
TEST(ProcPidMem, DifferentUserAttached) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_SETUID)));
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_DAC_OVERRIDE)));
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_SYS_PTRACE)));
int pfd1[2] = {};
int pfd2[2] = {};
ASSERT_THAT(pipe(pfd1), SyscallSucceeds());
ASSERT_THAT(pipe(pfd2), SyscallSucceeds());
// Create child process
pid_t const child_pid = fork();
if (child_pid == 0) {
// Close reading end of first pipe
close(pfd1[0]);
// Tell parent about location of input
char input[] = "hello-world";
off_t input_location = reinterpret_cast<off_t>(input);
TEST_CHECK(WriteFd(pfd1[1], &input_location, sizeof(input_location)) ==
sizeof(input_location));
TEST_PCHECK(close(pfd1[1]) == 0);
// Close writing end of second pipe
TEST_PCHECK(close(pfd2[1]) == 0);
// Await parent OK to die
char ok = 0;
TEST_CHECK(ReadFd(pfd2[0], &ok, sizeof(ok)) == sizeof(ok));
// Close rest pipes
TEST_PCHECK(close(pfd2[0]) == 0);
_exit(0);
}
// In parent process.
ASSERT_THAT(child_pid, SyscallSucceeds());
// Close writing end of first pipe
EXPECT_THAT(close(pfd1[1]), SyscallSucceeds());
// Read target location from child
off_t target_location;
EXPECT_THAT(ReadFd(pfd1[0], &target_location, sizeof(target_location)),
SyscallSucceedsWithValue(sizeof(target_location)));
// Close reading end of first pipe
EXPECT_THAT(close(pfd1[0]), SyscallSucceeds());
ScopedThread([&] {
// Attach to child subprocess without stopping it
EXPECT_THAT(ptrace(PTRACE_SEIZE, child_pid, NULL, NULL), SyscallSucceeds());
// Keep capabilities after setuid
EXPECT_THAT(prctl(PR_SET_KEEPCAPS, 1, 0, 0, 0), SyscallSucceeds());
constexpr int kNobody = 65534;
EXPECT_THAT(syscall(SYS_setuid, kNobody), SyscallSucceeds());
// Only restore CAP_SYS_PTRACE and CAP_DAC_OVERRIDE
EXPECT_NO_ERRNO(SetCapability(CAP_SYS_PTRACE, true));
EXPECT_NO_ERRNO(SetCapability(CAP_DAC_OVERRIDE, true));
// Open /proc/pid/mem fd
std::string mempath = absl::StrCat("/proc/", child_pid, "/mem");
auto memfd = ASSERT_NO_ERRNO_AND_VALUE(Open(mempath, O_RDONLY));
char expected[] = "hello-world";
char output[sizeof(expected)];
EXPECT_THAT(pread(memfd.get(), output, sizeof(output),
reinterpret_cast<off_t>(target_location)),
SyscallSucceedsWithValue(sizeof(output)));
EXPECT_STREQ(expected, output);
// Tell proc its ok to go
EXPECT_THAT(close(pfd2[0]), SyscallSucceeds());
char ok = 1;
EXPECT_THAT(WriteFd(pfd2[1], &ok, sizeof(ok)),
SyscallSucceedsWithValue(sizeof(ok)));
EXPECT_THAT(close(pfd2[1]), SyscallSucceeds());
// Expect termination
int status;
ASSERT_THAT(waitpid(child_pid, &status, 0), SyscallSucceeds());
EXPECT_TRUE(WIFEXITED(status) && WEXITSTATUS(status) == 0)
<< " status " << status;
});
}
// Attempt to read from /proc/[pid]/mem with different UID/GID.
TEST(ProcPidMem, DifferentUser) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_SETUID)));
int pfd1[2] = {};
int pfd2[2] = {};
ASSERT_THAT(pipe(pfd1), SyscallSucceeds());
ASSERT_THAT(pipe(pfd2), SyscallSucceeds());
// Create child process
pid_t const child_pid = fork();
if (child_pid == 0) {
// Close reading end of first pipe
close(pfd1[0]);
// Tell parent about location of input
char input[] = "hello-world";
off_t input_location = reinterpret_cast<off_t>(input);
TEST_CHECK(WriteFd(pfd1[1], &input_location, sizeof(input_location)) ==
sizeof(input_location));
TEST_PCHECK(close(pfd1[1]) == 0);
// Close writing end of second pipe
TEST_PCHECK(close(pfd2[1]) == 0);
// Await parent OK to die
char ok = 0;
TEST_CHECK(ReadFd(pfd2[0], &ok, sizeof(ok)) == sizeof(ok));
// Close rest pipes
TEST_PCHECK(close(pfd2[0]) == 0);
_exit(0);
}
// In parent process.
ASSERT_THAT(child_pid, SyscallSucceeds());
// Close writing end of first pipe
EXPECT_THAT(close(pfd1[1]), SyscallSucceeds());
// Read target location from child
off_t target_location;
EXPECT_THAT(ReadFd(pfd1[0], &target_location, sizeof(target_location)),
SyscallSucceedsWithValue(sizeof(target_location)));
// Close reading end of first pipe
EXPECT_THAT(close(pfd1[0]), SyscallSucceeds());
ScopedThread([&] {
constexpr int kNobody = 65534;
EXPECT_THAT(syscall(SYS_setuid, kNobody), SyscallSucceeds());
// Attempt to open /proc/[child_pid]/mem
std::string mempath = absl::StrCat("/proc/", child_pid, "/mem");
EXPECT_THAT(open(mempath.c_str(), O_RDONLY), SyscallFailsWithErrno(EACCES));
// Tell proc its ok to go
EXPECT_THAT(close(pfd2[0]), SyscallSucceeds());
char ok = 1;
EXPECT_THAT(WriteFd(pfd2[1], &ok, sizeof(ok)),
SyscallSucceedsWithValue(sizeof(ok)));
EXPECT_THAT(close(pfd2[1]), SyscallSucceeds());
// Expect termination
int status;
ASSERT_THAT(waitpid(child_pid, &status, 0), SyscallSucceeds());
});
}
// Perform read on /proc/[pid]/mem with same UID/GID.
TEST(ProcPidMem, SameUser) {
int pfd1[2] = {};
int pfd2[2] = {};
ASSERT_THAT(pipe(pfd1), SyscallSucceeds());
ASSERT_THAT(pipe(pfd2), SyscallSucceeds());
// Create child process
pid_t const child_pid = fork();
if (child_pid == 0) {
// Close reading end of first pipe
close(pfd1[0]);
// Tell parent about location of input
char input[] = "hello-world";
off_t input_location = reinterpret_cast<off_t>(input);
TEST_CHECK(WriteFd(pfd1[1], &input_location, sizeof(input_location)) ==
sizeof(input_location));
TEST_PCHECK(close(pfd1[1]) == 0);
// Close writing end of second pipe
TEST_PCHECK(close(pfd2[1]) == 0);
// Await parent OK to die
char ok = 0;
TEST_CHECK(ReadFd(pfd2[0], &ok, sizeof(ok)) == sizeof(ok));
// Close rest pipes
TEST_PCHECK(close(pfd2[0]) == 0);
_exit(0);
}
// In parent process.
ASSERT_THAT(child_pid, SyscallSucceeds());
// Close writing end of first pipe
EXPECT_THAT(close(pfd1[1]), SyscallSucceeds());
// Read target location from child
off_t target_location;
EXPECT_THAT(ReadFd(pfd1[0], &target_location, sizeof(target_location)),
SyscallSucceedsWithValue(sizeof(target_location)));
// Close reading end of first pipe
EXPECT_THAT(close(pfd1[0]), SyscallSucceeds());
// Open /proc/pid/mem fd
std::string mempath = absl::StrCat("/proc/", child_pid, "/mem");
auto memfd = ASSERT_NO_ERRNO_AND_VALUE(Open(mempath, O_RDONLY));
char expected[] = "hello-world";
char output[sizeof(expected)];
EXPECT_THAT(pread(memfd.get(), output, sizeof(output),
reinterpret_cast<off_t>(target_location)),
SyscallSucceedsWithValue(sizeof(output)));
EXPECT_STREQ(expected, output);
// Tell proc its ok to go
EXPECT_THAT(close(pfd2[0]), SyscallSucceeds());
char ok = 1;
EXPECT_THAT(WriteFd(pfd2[1], &ok, sizeof(ok)),
SyscallSucceedsWithValue(sizeof(ok)));
EXPECT_THAT(close(pfd2[1]), SyscallSucceeds());
// Expect termination
int status;
ASSERT_THAT(waitpid(child_pid, &status, 0), SyscallSucceeds());
}
// Just open and read /proc/self/maps, check that we can find [stack]
TEST(ProcSelfMaps, Basic) {
auto proc_self_maps =
ASSERT_NO_ERRNO_AND_VALUE(GetContents("/proc/self/maps"));
std::vector<std::string> strings = absl::StrSplit(proc_self_maps, '\n');
std::vector<std::string> stacks;
// Make sure there's a stack in there.
for (const auto& str : strings) {
if (str.find("[stack]") != std::string::npos) {
stacks.push_back(str);
}
}
ASSERT_EQ(1, stacks.size()) << "[stack] not found in: " << proc_self_maps;
// Linux pads to 73 characters then we add 7.
EXPECT_EQ(80, stacks[0].length());
}
TEST(ProcSelfMaps, Map1) {
Mapping mapping =
ASSERT_NO_ERRNO_AND_VALUE(MmapAnon(kPageSize, PROT_READ, MAP_PRIVATE));
auto proc_self_maps =
ASSERT_NO_ERRNO_AND_VALUE(GetContents("/proc/self/maps"));
std::vector<std::string> strings = absl::StrSplit(proc_self_maps, '\n');
std::vector<std::string> addrs;
// Make sure if is listed.
for (const auto& str : strings) {
if (str == AnonymousMapsEntryForMapping(mapping, PROT_READ)) {
addrs.push_back(str);
}
}
ASSERT_EQ(1, addrs.size());
}
TEST(ProcSelfMaps, Map2) {
// NOTE(magi): The permissions must be different or the pages will get merged.
Mapping map1 = ASSERT_NO_ERRNO_AND_VALUE(
MmapAnon(kPageSize, PROT_READ | PROT_EXEC, MAP_PRIVATE));
Mapping map2 =
ASSERT_NO_ERRNO_AND_VALUE(MmapAnon(kPageSize, PROT_WRITE, MAP_PRIVATE));
auto proc_self_maps =
ASSERT_NO_ERRNO_AND_VALUE(GetContents("/proc/self/maps"));
std::vector<std::string> strings = absl::StrSplit(proc_self_maps, '\n');
std::vector<std::string> addrs;
// Make sure if is listed.
for (const auto& str : strings) {
if (str == AnonymousMapsEntryForMapping(map1, PROT_READ | PROT_EXEC)) {
addrs.push_back(str);
}
}
ASSERT_EQ(1, addrs.size());
addrs.clear();
for (const auto& str : strings) {
if (str == AnonymousMapsEntryForMapping(map2, PROT_WRITE)) {
addrs.push_back(str);
}
}
ASSERT_EQ(1, addrs.size());
}
TEST(ProcSelfMaps, MapUnmap) {
Mapping map1 = ASSERT_NO_ERRNO_AND_VALUE(
MmapAnon(kPageSize, PROT_READ | PROT_EXEC, MAP_PRIVATE));
Mapping map2 =
ASSERT_NO_ERRNO_AND_VALUE(MmapAnon(kPageSize, PROT_WRITE, MAP_PRIVATE));
auto proc_self_maps =
ASSERT_NO_ERRNO_AND_VALUE(GetContents("/proc/self/maps"));
std::vector<std::string> strings = absl::StrSplit(proc_self_maps, '\n');
std::vector<std::string> addrs;
// Make sure if is listed.
for (const auto& str : strings) {
if (str == AnonymousMapsEntryForMapping(map1, PROT_READ | PROT_EXEC)) {
addrs.push_back(str);
}
}
ASSERT_EQ(1, addrs.size()) << proc_self_maps;
addrs.clear();
for (const auto& str : strings) {
if (str == AnonymousMapsEntryForMapping(map2, PROT_WRITE)) {
addrs.push_back(str);
}
}
ASSERT_EQ(1, addrs.size());
map2.reset();
// Read it again.
proc_self_maps = ASSERT_NO_ERRNO_AND_VALUE(GetContents("/proc/self/maps"));
strings = absl::StrSplit(proc_self_maps, '\n');
// First entry should be there.
addrs.clear();
for (const auto& str : strings) {
if (str == AnonymousMapsEntryForMapping(map1, PROT_READ | PROT_EXEC)) {
addrs.push_back(str);
}
}
ASSERT_EQ(1, addrs.size());
addrs.clear();
// But not the second.
for (const auto& str : strings) {
if (str == AnonymousMapsEntryForMapping(map2, PROT_WRITE)) {
addrs.push_back(str);
}
}
ASSERT_EQ(0, addrs.size());
}
TEST(ProcSelfMaps, Mprotect) {
// FIXME(jamieliu): Linux's mprotect() sometimes fails to merge VMAs in this
// case.
SKIP_IF(!IsRunningOnGvisor());
// Reserve 5 pages of address space.
Mapping m = ASSERT_NO_ERRNO_AND_VALUE(
MmapAnon(5 * kPageSize, PROT_NONE, MAP_PRIVATE));
// Change the permissions on the middle 3 pages. (The first and last pages may
// be merged with other vmas on either side, so they aren't tested directly;
// they just ensure that the middle 3 pages are bracketed by VMAs with
// incompatible permissions.)
ASSERT_THAT(mprotect(reinterpret_cast<void*>(m.addr() + kPageSize),
3 * kPageSize, PROT_READ),
SyscallSucceeds());
// Check that the middle 3 pages make up a single VMA.
auto proc_self_maps =
ASSERT_NO_ERRNO_AND_VALUE(GetContents("/proc/self/maps"));
std::vector<std::string> strings = absl::StrSplit(proc_self_maps, '\n');
EXPECT_THAT(strings, Contains(AnonymousMapsEntry(m.addr() + kPageSize,
3 * kPageSize, PROT_READ)));
// Change the permissions on the middle page only.
ASSERT_THAT(mprotect(reinterpret_cast<void*>(m.addr() + 2 * kPageSize),
kPageSize, PROT_READ | PROT_WRITE),
SyscallSucceeds());
// Check that the single VMA has been split into 3 VMAs.
proc_self_maps = ASSERT_NO_ERRNO_AND_VALUE(GetContents("/proc/self/maps"));
strings = absl::StrSplit(proc_self_maps, '\n');
EXPECT_THAT(
strings,
IsSupersetOf(
{AnonymousMapsEntry(m.addr() + kPageSize, kPageSize, PROT_READ),
AnonymousMapsEntry(m.addr() + 2 * kPageSize, kPageSize,
PROT_READ | PROT_WRITE),
AnonymousMapsEntry(m.addr() + 3 * kPageSize, kPageSize,
PROT_READ)}));
// Change the permissions on the middle page back.
ASSERT_THAT(mprotect(reinterpret_cast<void*>(m.addr() + 2 * kPageSize),
kPageSize, PROT_READ),
SyscallSucceeds());
// Check that the 3 VMAs have been merged back into a single VMA.
proc_self_maps = ASSERT_NO_ERRNO_AND_VALUE(GetContents("/proc/self/maps"));
strings = absl::StrSplit(proc_self_maps, '\n');
EXPECT_THAT(strings, Contains(AnonymousMapsEntry(m.addr() + kPageSize,
3 * kPageSize, PROT_READ)));
}
TEST(ProcSelfMaps, SharedAnon) {
const Mapping m = ASSERT_NO_ERRNO_AND_VALUE(
MmapAnon(kPageSize, PROT_READ, MAP_SHARED | MAP_ANONYMOUS));
const auto proc_self_maps =
ASSERT_NO_ERRNO_AND_VALUE(GetContents("/proc/self/maps"));
for (const auto& line : absl::StrSplit(proc_self_maps, '\n')) {
const auto entry = ASSERT_NO_ERRNO_AND_VALUE(ParseProcMapsLine(line));
if (entry.start <= m.addr() && m.addr() < entry.end) {
// cf. proc(5), "/proc/[pid]/map_files/"
EXPECT_EQ(entry.filename, "/dev/zero (deleted)");
return;
}
}
FAIL() << "no maps entry containing mapping at " << m.ptr();
}
TEST(ProcSelfFd, OpenFd) {
int pipe_fds[2];
ASSERT_THAT(pipe2(pipe_fds, O_CLOEXEC), SyscallSucceeds());
// Reopen the write end.
const std::string path = absl::StrCat("/proc/self/fd/", pipe_fds[1]);
const FileDescriptor fd = ASSERT_NO_ERRNO_AND_VALUE(Open(path, O_WRONLY));
// Ensure that a read/write works.
const std::string data = "hello";
std::unique_ptr<char[]> buffer(new char[data.size()]);
EXPECT_THAT(write(fd.get(), data.c_str(), data.size()),
SyscallSucceedsWithValue(5));
EXPECT_THAT(read(pipe_fds[0], buffer.get(), data.size()),
SyscallSucceedsWithValue(5));
EXPECT_EQ(strncmp(buffer.get(), data.c_str(), data.size()), 0);
// Cleanup.
ASSERT_THAT(close(pipe_fds[0]), SyscallSucceeds());
ASSERT_THAT(close(pipe_fds[1]), SyscallSucceeds());
}
static void CheckFdDirGetdentsDuplicates(const std::string& path) {
const FileDescriptor fd =
ASSERT_NO_ERRNO_AND_VALUE(Open(path.c_str(), O_RDONLY | O_DIRECTORY));
// Open a FD whose value is supposed to be much larger than
// the number of FDs opened by current process.
auto newfd = fcntl(fd.get(), F_DUPFD, 1024);
EXPECT_GE(newfd, 1024);
auto fd_closer = Cleanup([newfd]() { close(newfd); });
auto fd_files = ASSERT_NO_ERRNO_AND_VALUE(ListDir(path.c_str(), false));
absl::node_hash_set<std::string> fd_files_dedup(fd_files.begin(),
fd_files.end());
EXPECT_EQ(fd_files.size(), fd_files_dedup.size());
}
// This is a regression test for gvisor.dev/issues/3894
TEST(ProcSelfFd, GetdentsDuplicates) {
CheckFdDirGetdentsDuplicates("/proc/self/fd");
}
// This is a regression test for gvisor.dev/issues/3894
TEST(ProcSelfFdInfo, GetdentsDuplicates) {
CheckFdDirGetdentsDuplicates("/proc/self/fdinfo");
}
TEST(ProcSelfFdInfo, CorrectFds) {
// Make sure there is at least one open file.
auto f = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFile());
const FileDescriptor fd = ASSERT_NO_ERRNO_AND_VALUE(Open(f.path(), O_RDONLY));
// Get files in /proc/self/fd.
auto fd_files = ASSERT_NO_ERRNO_AND_VALUE(ListDir("/proc/self/fd", false));
// Get files in /proc/self/fdinfo.
auto fdinfo_files =
ASSERT_NO_ERRNO_AND_VALUE(ListDir("/proc/self/fdinfo", false));
// They should contain the same fds.
EXPECT_THAT(fd_files, UnorderedElementsAreArray(fdinfo_files));
// Both should contain fd.
auto fd_s = absl::StrCat(fd.get());
EXPECT_THAT(fd_files, Contains(fd_s));
}
TEST(ProcSelfFdInfo, Flags) {
std::string path = NewTempAbsPath();
// Create file here with O_CREAT to test that O_CREAT does not appear in
// fdinfo flags.
int flags = O_CREAT | O_RDWR | O_APPEND | O_CLOEXEC;
const FileDescriptor fd = ASSERT_NO_ERRNO_AND_VALUE(Open(path, flags, 0644));
// Automatically delete path.
TempPath temp_path(path);
// O_CREAT does not appear in fdinfo flags.
flags &= ~O_CREAT;
// O_LARGEFILE always appears (on x86_64).
flags |= kOLargeFile;
auto fd_info = ASSERT_NO_ERRNO_AND_VALUE(
GetContents(absl::StrCat("/proc/self/fdinfo/", fd.get())));
EXPECT_THAT(fd_info, HasSubstr(absl::StrFormat("flags:\t%#o", flags)));
}
TEST(ProcSelfExe, Absolute) {
auto exe = ASSERT_NO_ERRNO_AND_VALUE(ReadLink("/proc/self/exe"));
EXPECT_EQ(exe[0], '/');
}
TEST(ProcSelfCwd, Absolute) {
auto exe = ASSERT_NO_ERRNO_AND_VALUE(ReadLink("/proc/self/cwd"));
EXPECT_EQ(exe[0], '/');
}
// Sanity check for /proc/cpuinfo fields that must be present.
TEST(ProcCpuinfo, RequiredFieldsArePresent) {
std::string proc_cpuinfo =
ASSERT_NO_ERRNO_AND_VALUE(GetContents("/proc/cpuinfo"));
ASSERT_FALSE(proc_cpuinfo.empty());
std::vector<std::string> cpuinfo_fields = absl::StrSplit(proc_cpuinfo, '\n');
// Check that the usual fields are there. We don't really care about the
// contents.
for (const std::string& field : required_fields) {
EXPECT_THAT(proc_cpuinfo, HasSubstr(field));
}
}
TEST(ProcCpuinfo, DeniesWriteNonRoot) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_FOWNER)));
// Do setuid in a separate thread so that after finishing this test, the
// process can still open files the test harness created before starting this
// test. Otherwise, the files are created by root (UID before the test), but
// cannot be opened by the `uid` set below after the test. After calling
// setuid(non-zero-UID), there is no way to get root privileges back.
ScopedThread([&] {
// Use syscall instead of glibc setuid wrapper because we want this setuid
// call to only apply to this task. POSIX threads, however, require that all
// threads have the same UIDs, so using the setuid wrapper sets all threads'
// real UID.
// Also drops capabilities.
constexpr int kNobody = 65534;
EXPECT_THAT(syscall(SYS_setuid, kNobody), SyscallSucceeds());
EXPECT_THAT(open("/proc/cpuinfo", O_WRONLY), SyscallFailsWithErrno(EACCES));
EXPECT_THAT(truncate("/proc/cpuinfo", 123), SyscallFailsWithErrno(EACCES));
});
}
// With root privileges, it is possible to open /proc/cpuinfo with write mode,
// but all write operations should fail.
TEST(ProcCpuinfo, DeniesWriteRoot) {
// VFS1 does not behave differently for root/non-root.
SKIP_IF(IsRunningWithVFS1());
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_FOWNER)));
int fd;
EXPECT_THAT(fd = open("/proc/cpuinfo", O_WRONLY), SyscallSucceeds());
if (fd > 0) {
// Truncate is not tested--it may succeed on some kernels without doing
// anything.
EXPECT_THAT(write(fd, "x", 1), SyscallFails());
EXPECT_THAT(pwrite(fd, "x", 1, 123), SyscallFails());
}
}
// Sanity checks that uptime is present.
TEST(ProcUptime, IsPresent) {
std::string proc_uptime =
ASSERT_NO_ERRNO_AND_VALUE(GetContents("/proc/uptime"));
ASSERT_FALSE(proc_uptime.empty());
std::vector<std::string> uptime_parts = absl::StrSplit(proc_uptime, ' ');
// Parse once.
double uptime0, uptime1, idletime0, idletime1;
ASSERT_TRUE(absl::SimpleAtod(uptime_parts[0], &uptime0));
ASSERT_TRUE(absl::SimpleAtod(uptime_parts[1], &idletime0));
// Sleep for one second.
absl::SleepFor(absl::Seconds(1));
// Parse again.
proc_uptime = ASSERT_NO_ERRNO_AND_VALUE(GetContents("/proc/uptime"));
ASSERT_FALSE(proc_uptime.empty());
uptime_parts = absl::StrSplit(proc_uptime, ' ');
ASSERT_TRUE(absl::SimpleAtod(uptime_parts[0], &uptime1));
ASSERT_TRUE(absl::SimpleAtod(uptime_parts[1], &idletime1));
// Sanity check.
//
// We assert that between 0.99 and 59.99 seconds have passed. If more than a
// minute has passed, then we must be executing really, really slowly.
EXPECT_GE(uptime0, 0.0);
EXPECT_GE(idletime0, 0.0);
EXPECT_GT(uptime1, uptime0);
EXPECT_GE(uptime1, uptime0 + 0.99);
EXPECT_LE(uptime1, uptime0 + 59.99);
EXPECT_GE(idletime1, idletime0);
}
TEST(ProcMeminfo, ContainsBasicFields) {
std::string proc_meminfo =
ASSERT_NO_ERRNO_AND_VALUE(GetContents("/proc/meminfo"));
EXPECT_THAT(proc_meminfo, AllOf(ContainsRegex(R"(MemTotal:\s+[0-9]+ kB)"),
ContainsRegex(R"(MemFree:\s+[0-9]+ kB)")));
}
TEST(ProcStat, ContainsBasicFields) {
std::string proc_stat = ASSERT_NO_ERRNO_AND_VALUE(GetContents("/proc/stat"));
std::vector<std::string> names;
for (auto const& line : absl::StrSplit(proc_stat, '\n')) {
std::vector<std::string> fields =
absl::StrSplit(line, ' ', absl::SkipWhitespace());
if (fields.empty()) {
continue;
}
names.push_back(fields[0]);
}
EXPECT_THAT(names,
IsSupersetOf({"cpu", "intr", "ctxt", "btime", "processes",
"procs_running", "procs_blocked", "softirq"}));
}
TEST(ProcStat, EndsWithNewline) {
std::string proc_stat = ASSERT_NO_ERRNO_AND_VALUE(GetContents("/proc/stat"));
EXPECT_EQ(proc_stat.back(), '\n');
}
TEST(ProcStat, Fields) {
std::string proc_stat = ASSERT_NO_ERRNO_AND_VALUE(GetContents("/proc/stat"));
std::vector<std::string> names;
for (auto const& line : absl::StrSplit(proc_stat, '\n')) {
std::vector<std::string> fields =
absl::StrSplit(line, ' ', absl::SkipWhitespace());
if (fields.empty()) {
continue;
}
if (absl::StartsWith(fields[0], "cpu")) {
// As of Linux 3.11, each CPU entry has 10 fields, plus the name.
EXPECT_GE(fields.size(), 11) << proc_stat;
} else if (fields[0] == "ctxt") {
// Single field.
EXPECT_EQ(fields.size(), 2) << proc_stat;
} else if (fields[0] == "btime") {
// Single field.
EXPECT_EQ(fields.size(), 2) << proc_stat;
} else if (fields[0] == "itime") {
// Single field.
ASSERT_EQ(fields.size(), 2) << proc_stat;
// This is the only floating point field.
double val;
EXPECT_TRUE(absl::SimpleAtod(fields[1], &val)) << proc_stat;
continue;
} else if (fields[0] == "processes") {
// Single field.
EXPECT_EQ(fields.size(), 2) << proc_stat;
} else if (fields[0] == "procs_running") {
// Single field.
EXPECT_EQ(fields.size(), 2) << proc_stat;
} else if (fields[0] == "procs_blocked") {
// Single field.
EXPECT_EQ(fields.size(), 2) << proc_stat;
} else if (fields[0] == "softirq") {
// As of Linux 3.11, there are 10 softirqs. 12 fields for name + total.
EXPECT_GE(fields.size(), 12) << proc_stat;
}
// All fields besides itime are valid base 10 numbers.
for (size_t i = 1; i < fields.size(); i++) {
uint64_t val;
EXPECT_TRUE(absl::SimpleAtoi(fields[i], &val)) << proc_stat;
}
}
}
TEST(ProcLoadavg, EndsWithNewline) {
std::string proc_loadvg =
ASSERT_NO_ERRNO_AND_VALUE(GetContents("/proc/loadavg"));
EXPECT_EQ(proc_loadvg.back(), '\n');
}
TEST(ProcLoadavg, Fields) {
std::string proc_loadvg =
ASSERT_NO_ERRNO_AND_VALUE(GetContents("/proc/loadavg"));
std::vector<std::string> lines = absl::StrSplit(proc_loadvg, '\n');
// Single line.
EXPECT_EQ(lines.size(), 2) << proc_loadvg;
std::vector<std::string> fields =
absl::StrSplit(lines[0], absl::ByAnyChar(" /"), absl::SkipWhitespace());
// Six fields.
EXPECT_EQ(fields.size(), 6) << proc_loadvg;
double val;
uint64_t val2;
// First three fields are floating point numbers.
EXPECT_TRUE(absl::SimpleAtod(fields[0], &val)) << proc_loadvg;
EXPECT_TRUE(absl::SimpleAtod(fields[1], &val)) << proc_loadvg;
EXPECT_TRUE(absl::SimpleAtod(fields[2], &val)) << proc_loadvg;
// Rest of the fields are valid base 10 numbers.
EXPECT_TRUE(absl::SimpleAtoi(fields[3], &val2)) << proc_loadvg;
EXPECT_TRUE(absl::SimpleAtoi(fields[4], &val2)) << proc_loadvg;
EXPECT_TRUE(absl::SimpleAtoi(fields[5], &val2)) << proc_loadvg;
}
// NOTE: Tests in priority.cc also check certain priority related fields in
// /proc/self/stat.
class ProcPidStatTest : public ::testing::TestWithParam<std::string> {};
TEST_P(ProcPidStatTest, HasBasicFields) {
std::string proc_pid_stat = ASSERT_NO_ERRNO_AND_VALUE(
GetContents(absl::StrCat("/proc/", GetParam(), "/stat")));
ASSERT_FALSE(proc_pid_stat.empty());
std::vector<std::string> fields = absl::StrSplit(proc_pid_stat, ' ');
ASSERT_GE(fields.size(), 24);
EXPECT_EQ(absl::StrCat(getpid()), fields[0]);
// fields[1] is the thread name.
EXPECT_EQ("R", fields[2]); // task state
EXPECT_EQ(absl::StrCat(getppid()), fields[3]);
// If the test starts up quickly, then the process start time and the kernel
// boot time will be very close, and the proc starttime field (which is the
// delta of the two times) will be 0. For that unfortunate reason, we can
// only check that starttime >= 0, and not that it is strictly > 0.
uint64_t starttime;
ASSERT_TRUE(absl::SimpleAtoi(fields[21], &starttime));
EXPECT_GE(starttime, 0);
uint64_t vss;
ASSERT_TRUE(absl::SimpleAtoi(fields[22], &vss));
EXPECT_GT(vss, 0);
uint64_t rss;
ASSERT_TRUE(absl::SimpleAtoi(fields[23], &rss));
EXPECT_GT(rss, 0);
uint64_t rsslim;
ASSERT_TRUE(absl::SimpleAtoi(fields[24], &rsslim));
EXPECT_GT(rsslim, 0);
}
INSTANTIATE_TEST_SUITE_P(SelfAndNumericPid, ProcPidStatTest,
::testing::Values("self", absl::StrCat(getpid())));
using ProcPidStatmTest = ::testing::TestWithParam<std::string>;
TEST_P(ProcPidStatmTest, HasBasicFields) {
std::string proc_pid_statm = ASSERT_NO_ERRNO_AND_VALUE(
GetContents(absl::StrCat("/proc/", GetParam(), "/statm")));
ASSERT_FALSE(proc_pid_statm.empty());
std::vector<std::string> fields = absl::StrSplit(proc_pid_statm, ' ');
ASSERT_GE(fields.size(), 7);
uint64_t vss;
ASSERT_TRUE(absl::SimpleAtoi(fields[0], &vss));
EXPECT_GT(vss, 0);
uint64_t rss;
ASSERT_TRUE(absl::SimpleAtoi(fields[1], &rss));
EXPECT_GT(rss, 0);
}
INSTANTIATE_TEST_SUITE_P(SelfAndNumericPid, ProcPidStatmTest,
::testing::Values("self", absl::StrCat(getpid())));
PosixErrorOr<uint64_t> CurrentRSS() {
ASSIGN_OR_RETURN_ERRNO(auto proc_self_stat, GetContents("/proc/self/stat"));
if (proc_self_stat.empty()) {
return PosixError(EINVAL, "empty /proc/self/stat");
}
std::vector<std::string> fields = absl::StrSplit(proc_self_stat, ' ');
if (fields.size() < 24) {
return PosixError(
EINVAL,
absl::StrCat("/proc/self/stat has too few fields: ", proc_self_stat));
}
uint64_t rss;
if (!absl::SimpleAtoi(fields[23], &rss)) {
return PosixError(
EINVAL, absl::StrCat("/proc/self/stat RSS field is not a number: ",
fields[23]));
}
// RSS is given in number of pages.
return rss * kPageSize;
}
// The size of mapping created by MapPopulateRSS.
constexpr uint64_t kMappingSize = 100 << 20;
// Tolerance on RSS comparisons to account for background thread mappings,
// reclaimed pages, newly faulted pages, etc.
constexpr uint64_t kRSSTolerance = 10 << 20;
// Capture RSS before and after an anonymous mapping with passed prot.
void MapPopulateRSS(int prot, uint64_t* before, uint64_t* after) {
*before = ASSERT_NO_ERRNO_AND_VALUE(CurrentRSS());
// N.B. The kernel asynchronously accumulates per-task RSS counters into the
// mm RSS, which is exposed by /proc/PID/stat. Task exit is a synchronization
// point (kernel/exit.c:do_exit -> sync_mm_rss), so perform the mapping on
// another thread to ensure it is reflected in RSS after the thread exits.
Mapping mapping;
ScopedThread t([&mapping, prot] {
mapping = ASSERT_NO_ERRNO_AND_VALUE(
MmapAnon(kMappingSize, prot, MAP_PRIVATE | MAP_POPULATE));
});
t.Join();
*after = ASSERT_NO_ERRNO_AND_VALUE(CurrentRSS());
}
// TODO(b/73896574): Test for PROT_READ + MAP_POPULATE anonymous mappings. Their
// semantics are more subtle:
//
// Small pages -> Zero page mapped, not counted in RSS
// (mm/memory.c:do_anonymous_page).
//
// Huge pages (THP enabled, use_zero_page=0) -> Pages committed
// (mm/memory.c:__handle_mm_fault -> create_huge_pmd).
//
// Huge pages (THP enabled, use_zero_page=1) -> Zero page mapped, not counted in
// RSS (mm/huge_memory.c:do_huge_pmd_anonymous_page).
// PROT_WRITE + MAP_POPULATE anonymous mappings are always committed.
TEST(ProcSelfStat, PopulateWriteRSS) {
uint64_t before, after;
MapPopulateRSS(PROT_READ | PROT_WRITE, &before, &after);
// Mapping is committed.
EXPECT_NEAR(before + kMappingSize, after, kRSSTolerance);
}
// PROT_NONE + MAP_POPULATE anonymous mappings are never committed.
TEST(ProcSelfStat, PopulateNoneRSS) {
uint64_t before, after;
MapPopulateRSS(PROT_NONE, &before, &after);
// Mapping not committed.
EXPECT_NEAR(before, after, kRSSTolerance);
}
// Returns the calling thread's name.
PosixErrorOr<std::string> ThreadName() {
// "The buffer should allow space for up to 16 bytes; the returned std::string
// will be null-terminated if it is shorter than that." - prctl(2). But we
// always want the thread name to be null-terminated.
char thread_name[17];
int rc = prctl(PR_GET_NAME, thread_name, 0, 0, 0);
MaybeSave();
if (rc < 0) {
return PosixError(errno, "prctl(PR_GET_NAME)");
}
thread_name[16] = '\0';
return std::string(thread_name);
}
// Parses the contents of a /proc/[pid]/status file into a collection of
// key-value pairs.
PosixErrorOr<std::map<std::string, std::string>> ParseProcStatus(
absl::string_view status_str) {
std::map<std::string, std::string> fields;
for (absl::string_view const line :
absl::StrSplit(status_str, '\n', absl::SkipWhitespace())) {
const std::pair<absl::string_view, absl::string_view> kv =
absl::StrSplit(line, absl::MaxSplits(":\t", 1));
if (kv.first.empty()) {
return PosixError(
EINVAL, absl::StrCat("failed to parse key in line \"", line, "\""));
}
std::string key(kv.first);
if (fields.count(key)) {
return PosixError(EINVAL,
absl::StrCat("duplicate key \"", kv.first, "\""));
}
std::string value(kv.second);
absl::StripLeadingAsciiWhitespace(&value);
fields.emplace(std::move(key), std::move(value));
}
return fields;
}
TEST(ParseProcStatusTest, ParsesSimpleStatusFileWithMixedWhitespaceCorrectly) {
EXPECT_THAT(
ParseProcStatus(
"Name:\tinit\nState:\tS (sleeping)\nCapEff:\t 0000001fffffffff\n"),
IsPosixErrorOkAndHolds(UnorderedElementsAre(
Pair("Name", "init"), Pair("State", "S (sleeping)"),
Pair("CapEff", "0000001fffffffff"))));
}
TEST(ParseProcStatusTest, DetectsDuplicateKeys) {
auto proc_status_or = ParseProcStatus("Name:\tfoo\nName:\tfoo\n");
EXPECT_THAT(proc_status_or,
PosixErrorIs(EINVAL, ::testing::StrEq("duplicate key \"Name\"")));
}
TEST(ParseProcStatusTest, DetectsMissingTabs) {
EXPECT_THAT(ParseProcStatus("Name:foo\nPid: 1\n"),
IsPosixErrorOkAndHolds(UnorderedElementsAre(Pair("Name:foo", ""),
Pair("Pid: 1", ""))));
}
TEST(ProcPidStatusTest, HasBasicFields) {
// Do this on a separate thread since we want tgid != tid.
ScopedThread([] {
const pid_t tgid = getpid();
const pid_t tid = syscall(SYS_gettid);
EXPECT_NE(tgid, tid);
const auto thread_name = ASSERT_NO_ERRNO_AND_VALUE(ThreadName());
std::string status_str = ASSERT_NO_ERRNO_AND_VALUE(
GetContents(absl::StrCat("/proc/", tid, "/status")));
ASSERT_FALSE(status_str.empty());
const auto status = ASSERT_NO_ERRNO_AND_VALUE(ParseProcStatus(status_str));
EXPECT_THAT(status, IsSupersetOf({Pair("Name", thread_name),
Pair("Tgid", absl::StrCat(tgid)),
Pair("Pid", absl::StrCat(tid)),
Pair("PPid", absl::StrCat(getppid()))}));
});
}
TEST(ProcPidStatusTest, StateRunning) {
// Task must be running when reading the file.
const pid_t tid = syscall(SYS_gettid);
std::string status_str = ASSERT_NO_ERRNO_AND_VALUE(
GetContents(absl::StrCat("/proc/", tid, "/status")));
EXPECT_THAT(ParseProcStatus(status_str),
IsPosixErrorOkAndHolds(Contains(Pair("State", "R (running)"))));
}
TEST(ProcPidStatusTest, StateSleeping) {
// Starts a child process that blocks and checks that State is sleeping.
auto res = WithSubprocess(
[&](int pid) -> PosixError {
// Because this test is timing based we will disable cooperative saving
// and the test itself also has random saving disabled.
const DisableSave ds;
// Try multiple times in case the child isn't sleeping when status file
// is read.
MonotonicTimer timer;
timer.Start();
for (;;) {
ASSIGN_OR_RETURN_ERRNO(
std::string status_str,
GetContents(absl::StrCat("/proc/", pid, "/status")));
ASSIGN_OR_RETURN_ERRNO(auto map, ParseProcStatus(status_str));
if (map["State"] == std::string("S (sleeping)")) {
// Test passed!
return NoError();
}
if (timer.Duration() > absl::Seconds(10)) {
return PosixError(ETIMEDOUT, "Timeout waiting for child to sleep");
}
absl::SleepFor(absl::Milliseconds(10));
}
},
nullptr, nullptr);
ASSERT_NO_ERRNO(res);
}
TEST(ProcPidStatusTest, ValuesAreTabDelimited) {
std::string status_str =
ASSERT_NO_ERRNO_AND_VALUE(GetContents("/proc/self/status"));
ASSERT_FALSE(status_str.empty());
for (absl::string_view const line :
absl::StrSplit(status_str, '\n', absl::SkipWhitespace())) {
EXPECT_NE(std::string::npos, line.find(":\t"));
}
}
// Threads properly counts running threads.
//
// TODO(mpratt): Test zombied threads while the thread group leader is still
// running with generalized fork and clone children from the wait test.
TEST(ProcPidStatusTest, Threads) {
char buf[4096] = {};
EXPECT_THAT(ReadWhileRunning("status", buf, sizeof(buf) - 1),
SyscallSucceedsWithValue(Gt(0)));
auto status = ASSERT_NO_ERRNO_AND_VALUE(ParseProcStatus(buf));
auto it = status.find("Threads");
ASSERT_NE(it, status.end());
int threads = -1;
EXPECT_TRUE(absl::SimpleAtoi(it->second, &threads))
<< "Threads value " << it->second << " is not a number";
// Don't make assumptions about the exact number of threads, as it may not be
// constant.
EXPECT_GE(threads, 1);
memset(buf, 0, sizeof(buf));
EXPECT_THAT(ReadWhileZombied("status", buf, sizeof(buf) - 1),
SyscallSucceedsWithValue(Gt(0)));
status = ASSERT_NO_ERRNO_AND_VALUE(ParseProcStatus(buf));
it = status.find("Threads");
ASSERT_NE(it, status.end());
threads = -1;
EXPECT_TRUE(absl::SimpleAtoi(it->second, &threads))
<< "Threads value " << it->second << " is not a number";
// There must be only the thread group leader remaining, zombied.
EXPECT_EQ(threads, 1);
}
// Returns true if all characters in s are digits.
bool IsDigits(absl::string_view s) {
return std::all_of(s.begin(), s.end(), absl::ascii_isdigit);
}
TEST(ProcPidStatTest, VmStats) {
std::string status_str =
ASSERT_NO_ERRNO_AND_VALUE(GetContents("/proc/self/status"));
ASSERT_FALSE(status_str.empty());
auto status = ASSERT_NO_ERRNO_AND_VALUE(ParseProcStatus(status_str));
const auto vss_it = status.find("VmSize");
ASSERT_NE(vss_it, status.end());
absl::string_view vss_str(vss_it->second);
// Room for the " kB" suffix plus at least one digit.
ASSERT_GT(vss_str.length(), 3);
EXPECT_TRUE(absl::EndsWith(vss_str, " kB"));
// Everything else is part of a number.
EXPECT_TRUE(IsDigits(vss_str.substr(0, vss_str.length() - 3))) << vss_str;
// ... which is not 0.
EXPECT_NE('0', vss_str[0]);
const auto rss_it = status.find("VmRSS");
ASSERT_NE(rss_it, status.end());
absl::string_view rss_str(rss_it->second);
// Room for the " kB" suffix plus at least one digit.
ASSERT_GT(rss_str.length(), 3);
EXPECT_TRUE(absl::EndsWith(rss_str, " kB"));
// Everything else is part of a number.
EXPECT_TRUE(IsDigits(rss_str.substr(0, rss_str.length() - 3))) << rss_str;
// ... which is not 0.
EXPECT_NE('0', rss_str[0]);
const auto data_it = status.find("VmData");
ASSERT_NE(data_it, status.end());
absl::string_view data_str(data_it->second);
// Room for the " kB" suffix plus at least one digit.
ASSERT_GT(data_str.length(), 3);
EXPECT_TRUE(absl::EndsWith(data_str, " kB"));
// Everything else is part of a number.
EXPECT_TRUE(IsDigits(data_str.substr(0, data_str.length() - 3))) << data_str;
// ... which is not 0.
EXPECT_NE('0', data_str[0]);
}
// Parse an array of NUL-terminated char* arrays, returning a vector of
// strings.
std::vector<std::string> ParseNulTerminatedStrings(std::string contents) {
EXPECT_EQ('\0', contents.back());
// The split will leave an empty string if the NUL-byte remains, so pop
// it.
contents.pop_back();
return absl::StrSplit(contents, '\0');
}
TEST(ProcPidCmdline, MatchesArgv) {
std::vector<std::string> proc_cmdline = ParseNulTerminatedStrings(
ASSERT_NO_ERRNO_AND_VALUE(GetContents("/proc/self/cmdline")));
EXPECT_THAT(saved_argv, ContainerEq(proc_cmdline));
}
TEST(ProcPidEnviron, MatchesEnviron) {
std::vector<std::string> proc_environ = ParseNulTerminatedStrings(
ASSERT_NO_ERRNO_AND_VALUE(GetContents("/proc/self/environ")));
// Get the environment from the environ variable, which we will compare with
// /proc/self/environ.
std::vector<std::string> env;
for (char** v = environ; *v; v++) {
env.push_back(*v);
}
EXPECT_THAT(env, ContainerEq(proc_environ));
}
TEST(ProcPidCmdline, SubprocessForkSameCmdline) {
std::vector<std::string> proc_cmdline_parent;
std::vector<std::string> proc_cmdline;
proc_cmdline_parent = ParseNulTerminatedStrings(
ASSERT_NO_ERRNO_AND_VALUE(GetContents("/proc/self/cmdline")));
auto res = WithSubprocess(
[&](int pid) -> PosixError {
ASSIGN_OR_RETURN_ERRNO(
auto raw_cmdline,
GetContents(absl::StrCat("/proc/", pid, "/cmdline")));
proc_cmdline = ParseNulTerminatedStrings(raw_cmdline);
return NoError();
},
nullptr, nullptr);
ASSERT_NO_ERRNO(res);
for (size_t i = 0; i < proc_cmdline_parent.size(); i++) {
EXPECT_EQ(proc_cmdline_parent[i], proc_cmdline[i]);
}
}
TEST(ProcPidCmdline, SubprocessSeekCmdline) {
FileDescriptor fd;
ASSERT_NO_ERRNO(WithSubprocess(
[&](int pid) -> PosixError {
// Running. Open /proc/pid/cmdline.
ASSIGN_OR_RETURN_ERRNO(
fd, Open(absl::StrCat("/proc/", pid, "/cmdline"), O_RDONLY));
return NoError();
},
[&](int pid) -> PosixError {
// Zombie, but seek should still succeed.
int ret = lseek(fd.get(), 0x801, 0);
if (ret < 0) {
return PosixError(errno);
}
return NoError();
},
[&](int pid) -> PosixError {
// Exited.
int ret = lseek(fd.get(), 0x801, 0);
if (ret < 0) {
return PosixError(errno);
}
return NoError();
}));
}
// Test whether /proc/PID/ symlinks can be read for a running process.
TEST(ProcPidSymlink, SubprocessRunning) {
char buf[1];
EXPECT_THAT(ReadlinkWhileRunning("exe", buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
EXPECT_THAT(ReadlinkWhileRunning("ns/net", buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
EXPECT_THAT(ReadlinkWhileRunning("ns/pid", buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
EXPECT_THAT(ReadlinkWhileRunning("ns/user", buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
}
TEST(ProcPidSymlink, SubprocessZombied) {
AutoCapability cap1(CAP_DAC_OVERRIDE, false);
AutoCapability cap2(CAP_DAC_READ_SEARCH, false);
char buf[1];
int want = EACCES;
if (!IsRunningOnGvisor()) {
auto version = ASSERT_NO_ERRNO_AND_VALUE(GetKernelVersion());
if (version.major > 4 || (version.major == 4 && version.minor > 3)) {
want = ENOENT;
}
}
EXPECT_THAT(ReadlinkWhileZombied("exe", buf, sizeof(buf)),
SyscallFailsWithErrno(want));
if (!IsRunningOnGvisor()) {
EXPECT_THAT(ReadlinkWhileZombied("ns/net", buf, sizeof(buf)),
SyscallFailsWithErrno(want));
}
// FIXME(gvisor.dev/issue/164): Inconsistent behavior between linux on proc
// files.
//
// ~4.3: Syscall fails with EACCES.
// 4.17: Syscall succeeds and returns 1.
//
if (!IsRunningOnGvisor()) {
return;
}
EXPECT_THAT(ReadlinkWhileZombied("ns/pid", buf, sizeof(buf)),
SyscallFailsWithErrno(want));
EXPECT_THAT(ReadlinkWhileZombied("ns/user", buf, sizeof(buf)),
SyscallFailsWithErrno(want));
}
// Test whether /proc/PID/ symlinks can be read for an exited process.
TEST(ProcPidSymlink, SubprocessExited) {
char buf[1];
EXPECT_THAT(ReadlinkWhileExited("exe", buf, sizeof(buf)),
SyscallFailsWithErrno(ESRCH));
EXPECT_THAT(ReadlinkWhileExited("ns/net", buf, sizeof(buf)),
SyscallFailsWithErrno(ESRCH));
EXPECT_THAT(ReadlinkWhileExited("ns/pid", buf, sizeof(buf)),
SyscallFailsWithErrno(ESRCH));
EXPECT_THAT(ReadlinkWhileExited("ns/user", buf, sizeof(buf)),
SyscallFailsWithErrno(ESRCH));
}
// /proc/PID/exe points to the correct binary.
TEST(ProcPidExe, Subprocess) {
auto link = ASSERT_NO_ERRNO_AND_VALUE(ReadLink("/proc/self/exe"));
auto expected_absolute_path =
ASSERT_NO_ERRNO_AND_VALUE(MakeAbsolute(link, ""));
char actual[PATH_MAX + 1] = {};
ASSERT_THAT(ReadlinkWhileRunning("exe", actual, sizeof(actual)),
SyscallSucceedsWithValue(Gt(0)));
EXPECT_EQ(actual, expected_absolute_path);
}
// /proc/PID/cwd points to the correct directory.
TEST(ProcPidCwd, Subprocess) {
auto want = ASSERT_NO_ERRNO_AND_VALUE(GetCWD());
char got[PATH_MAX + 1] = {};
ASSERT_THAT(ReadlinkWhileRunning("cwd", got, sizeof(got)),
SyscallSucceedsWithValue(Gt(0)));
EXPECT_EQ(got, want);
}
// Test whether /proc/PID/ files can be read for a running process.
TEST(ProcPidFile, SubprocessRunning) {
char buf[1];
EXPECT_THAT(ReadWhileRunning("auxv", buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
EXPECT_THAT(ReadWhileRunning("cmdline", buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
EXPECT_THAT(ReadWhileRunning("comm", buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
EXPECT_THAT(ReadWhileRunning("gid_map", buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
EXPECT_THAT(ReadWhileRunning("io", buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
EXPECT_THAT(ReadWhileRunning("maps", buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
EXPECT_THAT(ReadWhileRunning("stat", buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
EXPECT_THAT(ReadWhileRunning("status", buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
EXPECT_THAT(ReadWhileRunning("uid_map", buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
EXPECT_THAT(ReadWhileRunning("oom_score", buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
EXPECT_THAT(ReadWhileRunning("oom_score_adj", buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
}
// Test whether /proc/PID/ files can be read for a zombie process.
TEST(ProcPidFile, SubprocessZombie) {
char buf[1];
// FIXME(gvisor.dev/issue/164): Loosen requirement due to inconsistent
// behavior on different kernels.
//
// ~4.3: Succeds and returns 0.
// 4.17: Succeeds and returns 1.
// gVisor: Succeeds and returns 0.
EXPECT_THAT(ReadWhileZombied("auxv", buf, sizeof(buf)), SyscallSucceeds());
EXPECT_THAT(ReadWhileZombied("cmdline", buf, sizeof(buf)),
SyscallSucceedsWithValue(0));
EXPECT_THAT(ReadWhileZombied("comm", buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
EXPECT_THAT(ReadWhileZombied("gid_map", buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
EXPECT_THAT(ReadWhileZombied("maps", buf, sizeof(buf)),
SyscallSucceedsWithValue(0));
EXPECT_THAT(ReadWhileZombied("stat", buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
EXPECT_THAT(ReadWhileZombied("status", buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
EXPECT_THAT(ReadWhileZombied("uid_map", buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
EXPECT_THAT(ReadWhileZombied("oom_score", buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
EXPECT_THAT(ReadWhileZombied("oom_score_adj", buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
// FIXME(gvisor.dev/issue/164): Inconsistent behavior between gVisor and linux
// on proc files.
//
// ~4.3: Fails and returns EACCES.
// gVisor & 4.17: Succeeds and returns 1.
//
// EXPECT_THAT(ReadWhileZombied("io", buf, sizeof(buf)),
// SyscallFailsWithErrno(EACCES));
}
// Test whether /proc/PID/ files can be read for an exited process.
TEST(ProcPidFile, SubprocessExited) {
char buf[1];
// FIXME(gvisor.dev/issue/164): Inconsistent behavior between kernels.
//
// ~4.3: Fails and returns ESRCH.
// gVisor: Fails with ESRCH.
// 4.17: Succeeds and returns 1.
//
// EXPECT_THAT(ReadWhileExited("auxv", buf, sizeof(buf)),
// SyscallFailsWithErrno(ESRCH));
EXPECT_THAT(ReadWhileExited("cmdline", buf, sizeof(buf)),
SyscallFailsWithErrno(ESRCH));
if (!IsRunningOnGvisor()) {
// FIXME(gvisor.dev/issue/164): Succeeds on gVisor.
EXPECT_THAT(ReadWhileExited("comm", buf, sizeof(buf)),
SyscallFailsWithErrno(ESRCH));
}
EXPECT_THAT(ReadWhileExited("gid_map", buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
if (!IsRunningOnGvisor()) {
// FIXME(gvisor.dev/issue/164): Succeeds on gVisor.
EXPECT_THAT(ReadWhileExited("io", buf, sizeof(buf)),
SyscallFailsWithErrno(ESRCH));
}
if (!IsRunningOnGvisor()) {
// FIXME(gvisor.dev/issue/164): Returns EOF on gVisor.
EXPECT_THAT(ReadWhileExited("maps", buf, sizeof(buf)),
SyscallFailsWithErrno(ESRCH));
}
if (!IsRunningOnGvisor()) {
// FIXME(gvisor.dev/issue/164): Succeeds on gVisor.
EXPECT_THAT(ReadWhileExited("stat", buf, sizeof(buf)),
SyscallFailsWithErrno(ESRCH));
}
if (!IsRunningOnGvisor()) {
// FIXME(gvisor.dev/issue/164): Succeeds on gVisor.
EXPECT_THAT(ReadWhileExited("status", buf, sizeof(buf)),
SyscallFailsWithErrno(ESRCH));
}
EXPECT_THAT(ReadWhileExited("uid_map", buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
if (!IsRunningOnGvisor()) {
// FIXME(gvisor.dev/issue/164): Succeeds on gVisor.
EXPECT_THAT(ReadWhileExited("oom_score", buf, sizeof(buf)),
SyscallFailsWithErrno(ESRCH));
}
EXPECT_THAT(ReadWhileExited("oom_score_adj", buf, sizeof(buf)),
SyscallFailsWithErrno(ESRCH));
}
PosixError DirContains(absl::string_view path,
const std::vector<std::string>& expect,
const std::vector<std::string>& exclude) {
ASSIGN_OR_RETURN_ERRNO(auto listing, ListDir(path, false));
for (auto& expected_entry : expect) {
auto cursor = std::find(listing.begin(), listing.end(), expected_entry);
if (cursor == listing.end()) {
return PosixError(
ENOENT,
absl::StrCat("Failed to find one or more paths in '", path, "'"));
}
}
for (auto& excluded_entry : exclude) {
auto cursor = std::find(listing.begin(), listing.end(), excluded_entry);
if (cursor != listing.end()) {
return PosixError(ENOENT, absl::StrCat("File '", excluded_entry,
"' found in path '", path, "'"));
}
}
return NoError();
}
PosixError EventuallyDirContains(absl::string_view path,
const std::vector<std::string>& expect,
const std::vector<std::string>& exclude) {
constexpr int kRetryCount = 100;
const absl::Duration kRetryDelay = absl::Milliseconds(100);
for (int i = 0; i < kRetryCount; ++i) {
auto res = DirContains(path, expect, exclude);
if (res.ok()) {
return res;
} else if (i < kRetryCount - 1) {
// Sleep if this isn't the final iteration.
absl::SleepFor(kRetryDelay);
}
}
return PosixError(ETIMEDOUT,
"Timed out while waiting for directory to contain files ");
}
std::vector<std::string> TaskFiles(const std::vector<pid_t>& pids) {
return ApplyVec<std::string>([](const pid_t p) { return absl::StrCat(p); },
pids);
}
TEST(ProcTask, Basic) {
EXPECT_NO_ERRNO(
DirContains("/proc/self/task", {".", "..", absl::StrCat(getpid())}, {}));
}
// Helper class for creating a new task in the current thread group.
class BlockingChild {
public:
BlockingChild() : thread_([=] { Start(); }) {}
~BlockingChild() { Join(); }
pid_t Tid() const {
absl::MutexLock ml(&mu_);
mu_.Await(absl::Condition(&tid_ready_));
return tid_;
}
void Join() {
{
absl::MutexLock ml(&mu_);
stop_ = true;
}
thread_.Join();
}
private:
void Start() {
absl::MutexLock ml(&mu_);
tid_ = syscall(__NR_gettid);
tid_ready_ = true;
mu_.Await(absl::Condition(&stop_));
}
mutable absl::Mutex mu_;
bool stop_ ABSL_GUARDED_BY(mu_) = false;
pid_t tid_;
bool tid_ready_ ABSL_GUARDED_BY(mu_) = false;
// Must be last to ensure that the destructor for the thread is run before
// any other member of the object is destroyed.
ScopedThread thread_;
};
TEST(ProcTask, NewThreadAppears) {
BlockingChild child1;
EXPECT_NO_ERRNO(
DirContains("/proc/self/task", TaskFiles({child1.Tid()}), {}));
}
TEST(ProcTask, KilledThreadsDisappear) {
BlockingChild child1;
EXPECT_NO_ERRNO(
DirContains("/proc/self/task", TaskFiles({child1.Tid()}), {}));
// Stat child1's task file. Regression test for b/32097707.
struct stat statbuf;
const std::string child1_task_file =
absl::StrCat("/proc/self/task/", child1.Tid());
EXPECT_THAT(stat(child1_task_file.c_str(), &statbuf), SyscallSucceeds());
BlockingChild child2;
EXPECT_NO_ERRNO(DirContains("/proc/self/task",
TaskFiles({child1.Tid(), child2.Tid()}), {}));
BlockingChild child3;
BlockingChild child4;
BlockingChild child5;
EXPECT_NO_ERRNO(
DirContains("/proc/self/task",
TaskFiles({child1.Tid(), child2.Tid(), child3.Tid(),
child4.Tid(), child5.Tid()}),
{}));
child2.Join();
EXPECT_NO_ERRNO(EventuallyDirContains(
"/proc/self/task",
TaskFiles({child1.Tid(), child3.Tid(), child4.Tid(), child5.Tid()}),
TaskFiles({child2.Tid()})));
child1.Join();
child4.Join();
EXPECT_NO_ERRNO(EventuallyDirContains(
"/proc/self/task", TaskFiles({child3.Tid(), child5.Tid()}),
TaskFiles({child2.Tid(), child1.Tid(), child4.Tid()})));
// Stat child1's task file again. This time it should fail. See b/32097707.
EXPECT_THAT(stat(child1_task_file.c_str(), &statbuf),
SyscallFailsWithErrno(ENOENT));
child3.Join();
child5.Join();
EXPECT_NO_ERRNO(
EventuallyDirContains("/proc/self/task", {},
TaskFiles({child2.Tid(), child1.Tid(), child4.Tid(),
child3.Tid(), child5.Tid()})));
}
TEST(ProcTask, ChildTaskDir) {
BlockingChild child1;
EXPECT_NO_ERRNO(
DirContains("/proc/self/task", TaskFiles({child1.Tid()}), {}));
EXPECT_NO_ERRNO(DirContains(absl::StrCat("/proc/", child1.Tid(), "/task"),
TaskFiles({child1.Tid()}), {}));
}
PosixError VerifyPidDir(std::string path) {
return DirContains(path, {"exe", "fd", "io", "maps", "ns", "stat", "status"},
{});
}
TEST(ProcTask, VerifyTaskDir) {
EXPECT_NO_ERRNO(VerifyPidDir("/proc/self"));
EXPECT_NO_ERRNO(VerifyPidDir(absl::StrCat("/proc/self/task/", getpid())));
BlockingChild child1;
EXPECT_NO_ERRNO(VerifyPidDir(absl::StrCat("/proc/self/task/", child1.Tid())));
// Only the first level of task directories should contain the 'task'
// directory. That is:
//
// /proc/1234/task <- should exist
// /proc/1234/task/1234/task <- should not exist
// /proc/1234/task/1235/task <- should not exist (where 1235 is in the same
// thread group as 1234).
EXPECT_NO_ERRNO(
DirContains(absl::StrCat("/proc/self/task/", getpid()), {}, {"task"}));
}
TEST(ProcTask, TaskDirCannotBeDeleted) {
// Drop capabilities that allow us to override file and directory permissions.
AutoCapability cap(CAP_DAC_OVERRIDE, false);
EXPECT_THAT(rmdir("/proc/self/task"), SyscallFails());
EXPECT_THAT(rmdir(absl::StrCat("/proc/self/task/", getpid()).c_str()),
SyscallFailsWithErrno(EACCES));
}
TEST(ProcTask, TaskDirHasCorrectMetadata) {
struct stat st;
EXPECT_THAT(stat("/proc/self/task", &st), SyscallSucceeds());
EXPECT_TRUE(S_ISDIR(st.st_mode));
// Verify file is readable and executable by everyone.
mode_t expected_permissions =
S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP | S_IROTH | S_IXOTH;
mode_t permissions = st.st_mode & (S_IRWXU | S_IRWXG | S_IRWXO);
EXPECT_EQ(expected_permissions, permissions);
}
TEST(ProcTask, TaskDirCanSeekToEnd) {
const FileDescriptor dirfd =
ASSERT_NO_ERRNO_AND_VALUE(Open("/proc/self/task", O_RDONLY));
EXPECT_THAT(lseek(dirfd.get(), 0, SEEK_END), SyscallSucceeds());
}
TEST(ProcTask, VerifyTaskDirNlinks) {
const auto fn = [] {
// A task directory will have 3 links if the taskgroup has a single
// thread. For example, the following shows where the links to
// '/proc/12345/task' comes from for a single threaded process with pid
// 12345:
//
// /proc/12345/task <-- 1 link for the directory itself
// . <-- link from "."
// ..
// 12345
// .
// .. <-- link from ".." to parent.
// <other contents of a task dir>
//
// We can't assert an absolute number of links since we don't control how
// many threads the test framework spawns. Instead, we'll ensure creating a
// new thread increases the number of links as expected.
// Once we reach the test body, we can count on the thread count being
// stable unless we spawn a new one.
const uint64_t initial_links =
TEST_CHECK_NO_ERRNO_AND_VALUE(Links("/proc/self/task"));
TEST_CHECK(initial_links >= 3);
// For each new subtask, we should gain a new link.
BlockingChild child1;
uint64_t links = TEST_CHECK_NO_ERRNO_AND_VALUE(Links("/proc/self/task"));
TEST_CHECK(links == initial_links + 1);
BlockingChild child2;
links = TEST_CHECK_NO_ERRNO_AND_VALUE(Links("/proc/self/task"));
TEST_CHECK(links == initial_links + 2);
};
// Run as a forked process to prevent terminating tasks from other tests to
// show up here and race with the count.
EXPECT_THAT(InForkedProcess(fn), IsPosixErrorOkAndHolds(0));
}
TEST(ProcTask, CommContainsThreadNameAndTrailingNewline) {
constexpr char kThreadName[] = "TestThread12345";
ASSERT_THAT(prctl(PR_SET_NAME, kThreadName), SyscallSucceeds());
auto thread_name = ASSERT_NO_ERRNO_AND_VALUE(
GetContents(JoinPath("/proc", absl::StrCat(getpid()), "task",
absl::StrCat(syscall(SYS_gettid)), "comm")));
EXPECT_EQ(absl::StrCat(kThreadName, "\n"), thread_name);
}
TEST(ProcTaskNs, NsDirExistsAndHasCorrectMetadata) {
EXPECT_NO_ERRNO(DirContains("/proc/self/ns", {"net", "pid", "user"}, {}));
// Let's just test the 'pid' entry, all of them are very similar.
struct stat st;
EXPECT_THAT(lstat("/proc/self/ns/pid", &st), SyscallSucceeds());
EXPECT_TRUE(S_ISLNK(st.st_mode));
auto link = ASSERT_NO_ERRNO_AND_VALUE(ReadLink("/proc/self/ns/pid"));
EXPECT_THAT(link, ::testing::StartsWith("pid:["));
}
TEST(ProcTaskNs, AccessOnNsNodeSucceeds) {
EXPECT_THAT(access("/proc/self/ns/pid", F_OK), SyscallSucceeds());
}
TEST(ProcSysKernelHostname, Exists) {
EXPECT_THAT(open("/proc/sys/kernel/hostname", O_RDONLY), SyscallSucceeds());
}
TEST(ProcSysKernelHostname, MatchesUname) {
struct utsname buf;
EXPECT_THAT(uname(&buf), SyscallSucceeds());
const std::string hostname = absl::StrCat(buf.nodename, "\n");
auto procfs_hostname =
ASSERT_NO_ERRNO_AND_VALUE(GetContents("/proc/sys/kernel/hostname"));
EXPECT_EQ(procfs_hostname, hostname);
}
TEST(ProcSysVmMmapMinAddr, HasNumericValue) {
const std::string mmap_min_addr_str =
ASSERT_NO_ERRNO_AND_VALUE(GetContents("/proc/sys/vm/mmap_min_addr"));
uintptr_t mmap_min_addr;
EXPECT_TRUE(absl::SimpleAtoi(mmap_min_addr_str, &mmap_min_addr))
<< "/proc/sys/vm/mmap_min_addr does not contain a numeric value: "
<< mmap_min_addr_str;
}
TEST(ProcSysVmOvercommitMemory, HasNumericValue) {
const std::string overcommit_memory_str =
ASSERT_NO_ERRNO_AND_VALUE(GetContents("/proc/sys/vm/overcommit_memory"));
uintptr_t overcommit_memory;
EXPECT_TRUE(absl::SimpleAtoi(overcommit_memory_str, &overcommit_memory))
<< "/proc/sys/vm/overcommit_memory does not contain a numeric value: "
<< overcommit_memory;
}
// Check that link for proc fd entries point the target node, not the
// symlink itself. Regression test for b/31155070.
TEST(ProcTaskFd, FstatatFollowsSymlink) {
const TempPath file = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFile());
const FileDescriptor fd =
ASSERT_NO_ERRNO_AND_VALUE(Open(file.path(), O_RDONLY));
struct stat sproc = {};
EXPECT_THAT(
fstatat(-1, absl::StrCat("/proc/self/fd/", fd.get()).c_str(), &sproc, 0),
SyscallSucceeds());
struct stat sfile = {};
EXPECT_THAT(fstatat(-1, file.path().c_str(), &sfile, 0), SyscallSucceeds());
// If fstatat follows the fd symlink, the device and inode numbers should
// match at a minimum.
EXPECT_EQ(sproc.st_dev, sfile.st_dev);
EXPECT_EQ(sproc.st_ino, sfile.st_ino);
EXPECT_EQ(0, memcmp(&sfile, &sproc, sizeof(sfile)));
}
TEST(ProcFilesystems, Bug65172365) {
std::string proc_filesystems =
ASSERT_NO_ERRNO_AND_VALUE(GetContents("/proc/filesystems"));
ASSERT_FALSE(proc_filesystems.empty());
}
TEST(ProcFilesystems, PresenceOfShmMaxMniAll) {
uint64_t shmmax = 0;
uint64_t shmall = 0;
uint64_t shmmni = 0;
std::string proc_file;
proc_file = ASSERT_NO_ERRNO_AND_VALUE(GetContents("/proc/sys/kernel/shmmax"));
ASSERT_FALSE(proc_file.empty());
ASSERT_TRUE(absl::SimpleAtoi(proc_file, &shmmax));
proc_file = ASSERT_NO_ERRNO_AND_VALUE(GetContents("/proc/sys/kernel/shmall"));
ASSERT_FALSE(proc_file.empty());
ASSERT_TRUE(absl::SimpleAtoi(proc_file, &shmall));
proc_file = ASSERT_NO_ERRNO_AND_VALUE(GetContents("/proc/sys/kernel/shmmni"));
ASSERT_FALSE(proc_file.empty());
ASSERT_TRUE(absl::SimpleAtoi(proc_file, &shmmni));
ASSERT_GT(shmmax, 0);
ASSERT_GT(shmall, 0);
ASSERT_GT(shmmni, 0);
ASSERT_LE(shmall, shmmax);
// These values should never be higher than this by default, for more
// information see uapi/linux/shm.h
ASSERT_LE(shmmax, ULONG_MAX - (1UL << 24));
ASSERT_LE(shmall, ULONG_MAX - (1UL << 24));
}
TEST(ProcFilesystems, PresenceOfSem) {
uint32_t semmsl = 0;
uint32_t semmns = 0;
uint32_t semopm = 0;
uint32_t semmni = 0;
std::string proc_file;
proc_file = ASSERT_NO_ERRNO_AND_VALUE(GetContents("/proc/sys/kernel/sem"));
ASSERT_FALSE(proc_file.empty());
std::vector<absl::string_view> sem_limits =
absl::StrSplit(proc_file, absl::ByAnyChar("\t"), absl::SkipWhitespace());
ASSERT_EQ(sem_limits.size(), 4);
ASSERT_TRUE(absl::SimpleAtoi(sem_limits[0], &semmsl));
ASSERT_TRUE(absl::SimpleAtoi(sem_limits[1], &semmns));
ASSERT_TRUE(absl::SimpleAtoi(sem_limits[2], &semopm));
ASSERT_TRUE(absl::SimpleAtoi(sem_limits[3], &semmni));
ASSERT_EQ(semmsl, SEMMSL);
ASSERT_EQ(semmns, SEMMNS);
ASSERT_EQ(semopm, SEMOPM);
ASSERT_EQ(semmni, SEMMNI);
}
// Check that /proc/mounts is a symlink to self/mounts.
TEST(ProcMounts, IsSymlink) {
auto link = ASSERT_NO_ERRNO_AND_VALUE(ReadLink("/proc/mounts"));
EXPECT_EQ(link, "self/mounts");
}
TEST(ProcSelfMountinfo, RequiredFieldsArePresent) {
auto mountinfo =
ASSERT_NO_ERRNO_AND_VALUE(GetContents("/proc/self/mountinfo"));
EXPECT_THAT(
mountinfo,
AllOf(
// Root mount.
ContainsRegex(
R"([0-9]+ [0-9]+ [0-9]+:[0-9]+ /\S* / (rw|ro).*- \S+ \S+ (rw|ro)\S*)"),
// Proc mount - always rw.
ContainsRegex(
R"([0-9]+ [0-9]+ [0-9]+:[0-9]+ / /proc rw.*- \S+ \S+ rw\S*)")));
}
TEST(ProcSelfMountinfo, ContainsProcfsEntry) {
const std::vector<ProcMountInfoEntry> entries =
ASSERT_NO_ERRNO_AND_VALUE(ProcSelfMountInfoEntries());
bool found = false;
for (const auto& e : entries) {
if (e.fstype == "proc") {
found = true;
break;
}
}
EXPECT_TRUE(found);
}
// Check that /proc/self/mounts looks something like a real mounts file.
TEST(ProcSelfMounts, RequiredFieldsArePresent) {
auto mounts = ASSERT_NO_ERRNO_AND_VALUE(GetContents("/proc/self/mounts"));
EXPECT_THAT(mounts,
AllOf(
// Root mount.
ContainsRegex(R"(\S+ / \S+ (rw|ro)\S* [0-9]+ [0-9]+\s)"),
// Root mount.
ContainsRegex(R"(\S+ /proc \S+ rw\S* [0-9]+ [0-9]+\s)")));
}
TEST(ProcSelfMounts, ContainsProcfsEntry) {
const std::vector<ProcMountsEntry> entries =
ASSERT_NO_ERRNO_AND_VALUE(ProcSelfMountsEntries());
bool found = false;
for (const auto& e : entries) {
if (e.fstype == "proc") {
found = true;
break;
}
}
EXPECT_TRUE(found);
}
void CheckDuplicatesRecursively(std::string path) {
std::vector<std::string> child_dirs;
// There is the known issue of the linux procfs, that two consequent calls of
// readdir can return the same entry twice if between these calls one or more
// entries have been removed from this directory.
int max_attempts = 5;
for (int i = 0; i < max_attempts; i++) {
child_dirs.clear();
errno = 0;
bool success = true;
DIR* dir = opendir(path.c_str());
if (dir == nullptr) {
// Ignore any directories we can't read or missing directories as the
// directory could have been deleted/mutated from the time the parent
// directory contents were read.
return;
}
auto dir_closer = Cleanup([&dir]() { closedir(dir); });
absl::node_hash_set<std::string> children;
while (true) {
// Readdir(3): If the end of the directory stream is reached, NULL is
// returned and errno is not changed. If an error occurs, NULL is
// returned and errno is set appropriately. To distinguish end of stream
// and from an error, set errno to zero before calling readdir() and then
// check the value of errno if NULL is returned.
errno = 0;
struct dirent* dp = readdir(dir);
if (dp == nullptr) {
// Linux will return EINVAL when calling getdents on a /proc/tid/net
// file corresponding to a zombie task.
// See fs/proc/proc_net.c:proc_tgid_net_readdir().
//
// We just ignore the directory in this case.
if (errno == EINVAL && absl::StartsWith(path, "/proc/") &&
absl::EndsWith(path, "/net")) {
break;
}
// We may also see permission failures traversing some files.
if (errno == EACCES && absl::StartsWith(path, "/proc/")) {
break;
}
// Otherwise, no errors are allowed.
ASSERT_EQ(errno, 0) << path;
break; // We're done.
}
const std::string name = dp->d_name;
if (name == "." || name == "..") {
continue;
}
// Ignore a duplicate entry if it isn't the last attempt.
if (i == max_attempts - 1) {
ASSERT_EQ(children.find(name), children.end())
<< absl::StrCat(path, "/", name);
} else if (children.find(name) != children.end()) {
std::cerr << "Duplicate entry: " << i << ":"
<< absl::StrCat(path, "/", name) << std::endl;
success = false;
break;
}
children.insert(name);
if (dp->d_type == DT_DIR) {
child_dirs.push_back(name);
}
}
if (success) {
break;
}
}
for (auto dname = child_dirs.begin(); dname != child_dirs.end(); dname++) {
CheckDuplicatesRecursively(absl::StrCat(path, "/", *dname));
}
}
TEST(Proc, NoDuplicates) { CheckDuplicatesRecursively("/proc"); }
// Most /proc/PID files are owned by the task user with SUID_DUMP_USER.
TEST(ProcPid, UserDumpableOwner) {
int before;
ASSERT_THAT(before = prctl(PR_GET_DUMPABLE), SyscallSucceeds());
auto cleanup = Cleanup([before] {
ASSERT_THAT(prctl(PR_SET_DUMPABLE, before), SyscallSucceeds());
});
EXPECT_THAT(prctl(PR_SET_DUMPABLE, SUID_DUMP_USER), SyscallSucceeds());
// This applies to the task directory itself and files inside.
struct stat st;
ASSERT_THAT(stat("/proc/self/", &st), SyscallSucceeds());
EXPECT_EQ(st.st_uid, geteuid());
EXPECT_EQ(st.st_gid, getegid());
ASSERT_THAT(stat("/proc/self/stat", &st), SyscallSucceeds());
EXPECT_EQ(st.st_uid, geteuid());
EXPECT_EQ(st.st_gid, getegid());
}
// /proc/PID files are owned by root with SUID_DUMP_DISABLE.
TEST(ProcPid, RootDumpableOwner) {
int before;
ASSERT_THAT(before = prctl(PR_GET_DUMPABLE), SyscallSucceeds());
auto cleanup = Cleanup([before] {
ASSERT_THAT(prctl(PR_SET_DUMPABLE, before), SyscallSucceeds());
});
EXPECT_THAT(prctl(PR_SET_DUMPABLE, SUID_DUMP_DISABLE), SyscallSucceeds());
// This *does not* applies to the task directory itself (or other 0555
// directories), but does to files inside.
struct stat st;
ASSERT_THAT(stat("/proc/self/", &st), SyscallSucceeds());
EXPECT_EQ(st.st_uid, geteuid());
EXPECT_EQ(st.st_gid, getegid());
// This file is owned by root. Also allow nobody in case this test is running
// in a userns without root mapped.
ASSERT_THAT(stat("/proc/self/stat", &st), SyscallSucceeds());
EXPECT_THAT(st.st_uid, AnyOf(Eq(0), Eq(65534)));
EXPECT_THAT(st.st_gid, AnyOf(Eq(0), Eq(65534)));
}
TEST(Proc, GetdentsEnoent) {
FileDescriptor fd;
ASSERT_NO_ERRNO(WithSubprocess(
[&](int pid) -> PosixError {
// Running.
ASSIGN_OR_RETURN_ERRNO(fd, Open(absl::StrCat("/proc/", pid, "/task"),
O_RDONLY | O_DIRECTORY));
return NoError();
},
nullptr, nullptr));
char buf[1024];
ASSERT_THAT(syscall(SYS_getdents64, fd.get(), buf, sizeof(buf)),
SyscallFailsWithErrno(ENOENT));
}
void CheckSyscwFromIOFile(const std::string& path, const std::string& regex) {
std::string output;
ASSERT_NO_ERRNO(GetContents(path, &output));
ASSERT_THAT(output, ContainsRegex(absl::StrCat("syscw:\\s+", regex, "\n")));
}
// Checks that there is variable accounting of IO between threads/tasks.
TEST(Proc, PidTidIOAccounting) {
absl::Notification notification;
// Run a thread with a bunch of writes. Check that io account records exactly
// the number of write calls. File open/close is there to prevent buffering.
ScopedThread writer([¬ification] {
const int num_writes = 100;
for (int i = 0; i < num_writes; i++) {
auto path = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFile());
ASSERT_NO_ERRNO(SetContents(path.path(), "a"));
}
notification.Notify();
const std::string& writer_dir =
absl::StrCat("/proc/", getpid(), "/task/", gettid(), "/io");
CheckSyscwFromIOFile(writer_dir, std::to_string(num_writes));
});
// Run a thread and do no writes. Check that no writes are recorded.
ScopedThread noop([¬ification] {
notification.WaitForNotification();
const std::string& noop_dir =
absl::StrCat("/proc/", getpid(), "/task/", gettid(), "/io");
CheckSyscwFromIOFile(noop_dir, "0");
});
writer.Join();
noop.Join();
}
TEST(Proc, Statfs) {
struct statfs st;
EXPECT_THAT(statfs("/proc", &st), SyscallSucceeds());
if (IsRunningWithVFS1()) {
EXPECT_EQ(st.f_type, ANON_INODE_FS_MAGIC);
} else {
EXPECT_EQ(st.f_type, PROC_SUPER_MAGIC);
}
EXPECT_EQ(st.f_bsize, getpagesize());
EXPECT_EQ(st.f_namelen, NAME_MAX);
}
} // namespace
} // namespace testing
} // namespace gvisor
int main(int argc, char** argv) {
for (int i = 0; i < argc; ++i) {
gvisor::testing::saved_argv.emplace_back(std::string(argv[i]));
}
gvisor::testing::TestInit(&argc, &argv);
return gvisor::testing::RunAllTests();
}
|