1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <fcntl.h> /* Obtain O_* constant definitions */
#include <linux/magic.h>
#include <sys/ioctl.h>
#include <sys/statfs.h>
#include <sys/uio.h>
#include <unistd.h>
#include <vector>
#include "gtest/gtest.h"
#include "absl/strings/str_cat.h"
#include "absl/synchronization/notification.h"
#include "absl/time/clock.h"
#include "absl/time/time.h"
#include "test/util/file_descriptor.h"
#include "test/util/fs_util.h"
#include "test/util/posix_error.h"
#include "test/util/temp_path.h"
#include "test/util/test_util.h"
#include "test/util/thread_util.h"
namespace gvisor {
namespace testing {
namespace {
// Used as a non-zero sentinel value, below.
constexpr int kTestValue = 0x12345678;
// Used for synchronization in race tests.
const absl::Duration syncDelay = absl::Seconds(2);
struct PipeCreator {
std::string name_;
// void (fds, is_blocking, is_namedpipe).
std::function<void(int[2], bool*, bool*)> create_;
};
class PipeTest : public ::testing::TestWithParam<PipeCreator> {
public:
static void SetUpTestSuite() {
// Tests intentionally generate SIGPIPE.
TEST_PCHECK(signal(SIGPIPE, SIG_IGN) != SIG_ERR);
}
// Initializes rfd_ and wfd_ as a blocking pipe.
//
// The return value indicates success: the test should be skipped otherwise.
bool CreateBlocking() { return create(true); }
// Initializes rfd_ and wfd_ as a non-blocking pipe.
//
// The return value is per CreateBlocking.
bool CreateNonBlocking() { return create(false); }
// Returns true iff the pipe represents a named pipe.
bool IsNamedPipe() const { return named_pipe_; }
int Size() const {
int s1 = fcntl(rfd_.get(), F_GETPIPE_SZ);
int s2 = fcntl(wfd_.get(), F_GETPIPE_SZ);
EXPECT_GT(s1, 0);
EXPECT_GT(s2, 0);
EXPECT_EQ(s1, s2);
return s1;
}
static void TearDownTestSuite() {
TEST_PCHECK(signal(SIGPIPE, SIG_DFL) != SIG_ERR);
}
private:
bool create(bool wants_blocking) {
// Generate the pipe.
int fds[2] = {-1, -1};
bool is_blocking = false;
GetParam().create_(fds, &is_blocking, &named_pipe_);
if (fds[0] < 0 || fds[1] < 0) {
return false;
}
// Save descriptors.
rfd_.reset(fds[0]);
wfd_.reset(fds[1]);
// Adjust blocking, if needed.
if (!is_blocking && wants_blocking) {
// Clear the blocking flag.
EXPECT_THAT(fcntl(fds[0], F_SETFL, 0), SyscallSucceeds());
EXPECT_THAT(fcntl(fds[1], F_SETFL, 0), SyscallSucceeds());
} else if (is_blocking && !wants_blocking) {
// Set the descriptors to blocking.
EXPECT_THAT(fcntl(fds[0], F_SETFL, O_NONBLOCK), SyscallSucceeds());
EXPECT_THAT(fcntl(fds[1], F_SETFL, O_NONBLOCK), SyscallSucceeds());
}
return true;
}
protected:
FileDescriptor rfd_;
FileDescriptor wfd_;
private:
bool named_pipe_ = false;
};
TEST_P(PipeTest, Inode) {
SKIP_IF(!CreateBlocking());
// Ensure that the inode number is the same for each end.
struct stat rst;
ASSERT_THAT(fstat(rfd_.get(), &rst), SyscallSucceeds());
struct stat wst;
ASSERT_THAT(fstat(wfd_.get(), &wst), SyscallSucceeds());
EXPECT_EQ(rst.st_ino, wst.st_ino);
}
TEST_P(PipeTest, Permissions) {
SKIP_IF(!CreateBlocking());
// Attempt bad operations.
int buf = kTestValue;
ASSERT_THAT(write(rfd_.get(), &buf, sizeof(buf)),
SyscallFailsWithErrno(EBADF));
EXPECT_THAT(read(wfd_.get(), &buf, sizeof(buf)),
SyscallFailsWithErrno(EBADF));
}
TEST_P(PipeTest, Flags) {
SKIP_IF(!CreateBlocking());
if (IsNamedPipe()) {
// May be stubbed to zero; define locally.
EXPECT_THAT(fcntl(rfd_.get(), F_GETFL),
SyscallSucceedsWithValue(kOLargeFile | O_RDONLY));
EXPECT_THAT(fcntl(wfd_.get(), F_GETFL),
SyscallSucceedsWithValue(kOLargeFile | O_WRONLY));
} else {
EXPECT_THAT(fcntl(rfd_.get(), F_GETFL), SyscallSucceedsWithValue(O_RDONLY));
EXPECT_THAT(fcntl(wfd_.get(), F_GETFL), SyscallSucceedsWithValue(O_WRONLY));
}
}
TEST_P(PipeTest, Write) {
SKIP_IF(!CreateBlocking());
int wbuf = kTestValue;
int rbuf = ~kTestValue;
ASSERT_THAT(write(wfd_.get(), &wbuf, sizeof(wbuf)),
SyscallSucceedsWithValue(sizeof(wbuf)));
ASSERT_THAT(read(rfd_.get(), &rbuf, sizeof(rbuf)),
SyscallSucceedsWithValue(sizeof(rbuf)));
EXPECT_EQ(wbuf, rbuf);
}
TEST_P(PipeTest, WritePage) {
SKIP_IF(!CreateBlocking());
std::vector<char> wbuf(kPageSize);
RandomizeBuffer(wbuf.data(), wbuf.size());
std::vector<char> rbuf(wbuf.size());
ASSERT_THAT(write(wfd_.get(), wbuf.data(), wbuf.size()),
SyscallSucceedsWithValue(wbuf.size()));
ASSERT_THAT(read(rfd_.get(), rbuf.data(), rbuf.size()),
SyscallSucceedsWithValue(rbuf.size()));
EXPECT_EQ(memcmp(rbuf.data(), wbuf.data(), wbuf.size()), 0);
}
TEST_P(PipeTest, NonBlocking) {
SKIP_IF(!CreateNonBlocking());
int wbuf = kTestValue;
int rbuf = ~kTestValue;
EXPECT_THAT(read(rfd_.get(), &rbuf, sizeof(rbuf)),
SyscallFailsWithErrno(EWOULDBLOCK));
ASSERT_THAT(write(wfd_.get(), &wbuf, sizeof(wbuf)),
SyscallSucceedsWithValue(sizeof(wbuf)));
ASSERT_THAT(read(rfd_.get(), &rbuf, sizeof(rbuf)),
SyscallSucceedsWithValue(sizeof(rbuf)));
EXPECT_EQ(wbuf, rbuf);
EXPECT_THAT(read(rfd_.get(), &rbuf, sizeof(rbuf)),
SyscallFailsWithErrno(EWOULDBLOCK));
}
TEST(PipeTest, StatFS) {
int fds[2];
ASSERT_THAT(pipe(fds), SyscallSucceeds());
struct statfs st;
EXPECT_THAT(fstatfs(fds[0], &st), SyscallSucceeds());
EXPECT_EQ(st.f_type, PIPEFS_MAGIC);
EXPECT_EQ(st.f_bsize, getpagesize());
EXPECT_EQ(st.f_namelen, NAME_MAX);
}
TEST(Pipe2Test, CloExec) {
int fds[2];
ASSERT_THAT(pipe2(fds, O_CLOEXEC), SyscallSucceeds());
EXPECT_THAT(fcntl(fds[0], F_GETFD), SyscallSucceedsWithValue(FD_CLOEXEC));
EXPECT_THAT(fcntl(fds[1], F_GETFD), SyscallSucceedsWithValue(FD_CLOEXEC));
EXPECT_THAT(close(fds[0]), SyscallSucceeds());
EXPECT_THAT(close(fds[1]), SyscallSucceeds());
}
TEST(Pipe2Test, BadOptions) {
int fds[2];
EXPECT_THAT(pipe2(fds, 0xDEAD), SyscallFailsWithErrno(EINVAL));
}
// Tests that opening named pipes with O_TRUNC shouldn't cause an error, but
// calls to (f)truncate should.
TEST(NamedPipeTest, Truncate) {
const std::string tmp_path = NewTempAbsPath();
SKIP_IF(mkfifo(tmp_path.c_str(), 0644) != 0);
ASSERT_THAT(open(tmp_path.c_str(), O_NONBLOCK | O_RDONLY), SyscallSucceeds());
FileDescriptor fd = ASSERT_NO_ERRNO_AND_VALUE(
Open(tmp_path.c_str(), O_RDWR | O_NONBLOCK | O_TRUNC));
ASSERT_THAT(truncate(tmp_path.c_str(), 0), SyscallFailsWithErrno(EINVAL));
ASSERT_THAT(ftruncate(fd.get(), 0), SyscallFailsWithErrno(EINVAL));
}
TEST_P(PipeTest, Seek) {
SKIP_IF(!CreateBlocking());
for (int i = 0; i < 4; i++) {
// Attempt absolute seeks.
EXPECT_THAT(lseek(rfd_.get(), 0, SEEK_SET), SyscallFailsWithErrno(ESPIPE));
EXPECT_THAT(lseek(rfd_.get(), 4, SEEK_SET), SyscallFailsWithErrno(ESPIPE));
EXPECT_THAT(lseek(wfd_.get(), 0, SEEK_SET), SyscallFailsWithErrno(ESPIPE));
EXPECT_THAT(lseek(wfd_.get(), 4, SEEK_SET), SyscallFailsWithErrno(ESPIPE));
// Attempt relative seeks.
EXPECT_THAT(lseek(rfd_.get(), 0, SEEK_CUR), SyscallFailsWithErrno(ESPIPE));
EXPECT_THAT(lseek(rfd_.get(), 4, SEEK_CUR), SyscallFailsWithErrno(ESPIPE));
EXPECT_THAT(lseek(wfd_.get(), 0, SEEK_CUR), SyscallFailsWithErrno(ESPIPE));
EXPECT_THAT(lseek(wfd_.get(), 4, SEEK_CUR), SyscallFailsWithErrno(ESPIPE));
// Attempt end-of-file seeks.
EXPECT_THAT(lseek(rfd_.get(), 0, SEEK_CUR), SyscallFailsWithErrno(ESPIPE));
EXPECT_THAT(lseek(rfd_.get(), -4, SEEK_END), SyscallFailsWithErrno(ESPIPE));
EXPECT_THAT(lseek(wfd_.get(), 0, SEEK_CUR), SyscallFailsWithErrno(ESPIPE));
EXPECT_THAT(lseek(wfd_.get(), -4, SEEK_END), SyscallFailsWithErrno(ESPIPE));
// Add some more data to the pipe.
int buf = kTestValue;
ASSERT_THAT(write(wfd_.get(), &buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
}
}
TEST_P(PipeTest, OffsetCalls) {
SKIP_IF(!CreateBlocking());
int buf;
EXPECT_THAT(pread(wfd_.get(), &buf, sizeof(buf), 0),
SyscallFailsWithErrno(ESPIPE));
EXPECT_THAT(pwrite(rfd_.get(), &buf, sizeof(buf), 0),
SyscallFailsWithErrno(ESPIPE));
struct iovec iov;
iov.iov_base = &buf;
iov.iov_len = sizeof(buf);
EXPECT_THAT(preadv(wfd_.get(), &iov, 1, 0), SyscallFailsWithErrno(ESPIPE));
EXPECT_THAT(pwritev(rfd_.get(), &iov, 1, 0), SyscallFailsWithErrno(ESPIPE));
}
TEST_P(PipeTest, WriterSideCloses) {
SKIP_IF(!CreateBlocking());
ScopedThread t([this]() {
int buf = ~kTestValue;
ASSERT_THAT(read(rfd_.get(), &buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
EXPECT_EQ(buf, kTestValue);
// This will return when the close() completes.
ASSERT_THAT(read(rfd_.get(), &buf, sizeof(buf)), SyscallSucceeds());
// This will return straight away.
ASSERT_THAT(read(rfd_.get(), &buf, sizeof(buf)),
SyscallSucceedsWithValue(0));
});
// Sleep a bit so the thread can block.
absl::SleepFor(syncDelay);
// Write to unblock.
int buf = kTestValue;
ASSERT_THAT(write(wfd_.get(), &buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
// Sleep a bit so the thread can block again.
absl::SleepFor(syncDelay);
// Allow the thread to complete.
ASSERT_THAT(close(wfd_.release()), SyscallSucceeds());
t.Join();
}
TEST_P(PipeTest, WriterSideClosesReadDataFirst) {
SKIP_IF(!CreateBlocking());
int wbuf = kTestValue;
ASSERT_THAT(write(wfd_.get(), &wbuf, sizeof(wbuf)),
SyscallSucceedsWithValue(sizeof(wbuf)));
ASSERT_THAT(close(wfd_.release()), SyscallSucceeds());
int rbuf;
ASSERT_THAT(read(rfd_.get(), &rbuf, sizeof(rbuf)),
SyscallSucceedsWithValue(sizeof(rbuf)));
EXPECT_EQ(wbuf, rbuf);
EXPECT_THAT(read(rfd_.get(), &rbuf, sizeof(rbuf)),
SyscallSucceedsWithValue(0));
}
TEST_P(PipeTest, ReaderSideCloses) {
SKIP_IF(!CreateBlocking());
ASSERT_THAT(close(rfd_.release()), SyscallSucceeds());
int buf = kTestValue;
EXPECT_THAT(write(wfd_.get(), &buf, sizeof(buf)),
SyscallFailsWithErrno(EPIPE));
}
TEST_P(PipeTest, CloseTwice) {
SKIP_IF(!CreateBlocking());
int reader = rfd_.release();
int writer = wfd_.release();
ASSERT_THAT(close(reader), SyscallSucceeds());
ASSERT_THAT(close(writer), SyscallSucceeds());
EXPECT_THAT(close(reader), SyscallFailsWithErrno(EBADF));
EXPECT_THAT(close(writer), SyscallFailsWithErrno(EBADF));
}
// Blocking write returns EPIPE when read end is closed if nothing has been
// written.
TEST_P(PipeTest, BlockWriteClosed) {
SKIP_IF(!CreateBlocking());
absl::Notification notify;
ScopedThread t([this, ¬ify]() {
std::vector<char> buf(Size());
// Exactly fill the pipe buffer.
ASSERT_THAT(WriteFd(wfd_.get(), buf.data(), buf.size()),
SyscallSucceedsWithValue(buf.size()));
notify.Notify();
// Attempt to write one more byte. Blocks.
// N.B. Don't use WriteFd, we don't want a retry.
EXPECT_THAT(write(wfd_.get(), buf.data(), 1), SyscallFailsWithErrno(EPIPE));
});
notify.WaitForNotification();
ASSERT_THAT(close(rfd_.release()), SyscallSucceeds());
t.Join();
}
// Blocking write returns EPIPE when read end is closed even if something has
// been written.
TEST_P(PipeTest, BlockPartialWriteClosed) {
SKIP_IF(!CreateBlocking());
ScopedThread t([this]() {
const int pipe_size = Size();
std::vector<char> buf(2 * pipe_size);
// Write more than fits in the buffer. Blocks then returns partial write
// when the other end is closed. The next call returns EPIPE.
ASSERT_THAT(write(wfd_.get(), buf.data(), buf.size()),
SyscallSucceedsWithValue(pipe_size));
EXPECT_THAT(write(wfd_.get(), buf.data(), buf.size()),
SyscallFailsWithErrno(EPIPE));
});
// Leave time for write to become blocked.
absl::SleepFor(syncDelay);
// Unblock the above.
ASSERT_THAT(close(rfd_.release()), SyscallSucceeds());
t.Join();
}
TEST_P(PipeTest, ReadFromClosedFd_NoRandomSave) {
SKIP_IF(!CreateBlocking());
absl::Notification notify;
ScopedThread t([this, ¬ify]() {
notify.Notify();
int buf;
ASSERT_THAT(read(rfd_.get(), &buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
ASSERT_EQ(kTestValue, buf);
});
notify.WaitForNotification();
// Make sure that the thread gets to read().
absl::SleepFor(syncDelay);
{
// We cannot save/restore here as the read end of pipe is closed but there
// is ongoing read() above. We will not be able to restart the read()
// successfully in restore run since the read fd is closed.
const DisableSave ds;
ASSERT_THAT(close(rfd_.release()), SyscallSucceeds());
int buf = kTestValue;
ASSERT_THAT(write(wfd_.get(), &buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
t.Join();
}
}
TEST_P(PipeTest, FionRead) {
SKIP_IF(!CreateBlocking());
int n;
ASSERT_THAT(ioctl(rfd_.get(), FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, 0);
ASSERT_THAT(ioctl(wfd_.get(), FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, 0);
std::vector<char> buf(Size());
ASSERT_THAT(write(wfd_.get(), buf.data(), buf.size()),
SyscallSucceedsWithValue(buf.size()));
EXPECT_THAT(ioctl(rfd_.get(), FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, buf.size());
EXPECT_THAT(ioctl(wfd_.get(), FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, buf.size());
}
// Test that opening an empty anonymous pipe RDONLY via /proc/self/fd/N does not
// block waiting for a writer.
TEST_P(PipeTest, OpenViaProcSelfFD) {
SKIP_IF(!CreateBlocking());
SKIP_IF(IsNamedPipe());
// Close the write end of the pipe.
ASSERT_THAT(close(wfd_.release()), SyscallSucceeds());
// Open other side via /proc/self/fd. It should not block.
FileDescriptor proc_self_fd = ASSERT_NO_ERRNO_AND_VALUE(
Open(absl::StrCat("/proc/self/fd/", rfd_.get()), O_RDONLY));
}
// Test that opening and reading from an anonymous pipe (with existing writes)
// RDONLY via /proc/self/fd/N returns the existing data.
TEST_P(PipeTest, OpenViaProcSelfFDWithWrites) {
SKIP_IF(!CreateBlocking());
SKIP_IF(IsNamedPipe());
// Write to the pipe and then close the write fd.
int wbuf = kTestValue;
ASSERT_THAT(write(wfd_.get(), &wbuf, sizeof(wbuf)),
SyscallSucceedsWithValue(sizeof(wbuf)));
ASSERT_THAT(close(wfd_.release()), SyscallSucceeds());
// Open read side via /proc/self/fd, and read from it.
FileDescriptor proc_self_fd = ASSERT_NO_ERRNO_AND_VALUE(
Open(absl::StrCat("/proc/self/fd/", rfd_.get()), O_RDONLY));
int rbuf;
ASSERT_THAT(read(proc_self_fd.get(), &rbuf, sizeof(rbuf)),
SyscallSucceedsWithValue(sizeof(rbuf)));
EXPECT_EQ(wbuf, rbuf);
}
// Test that accesses of /proc/<PID>/fd correctly decrement the refcount.
TEST_P(PipeTest, ProcFDReleasesFile) {
SKIP_IF(!CreateBlocking());
// Stat the pipe FD, which shouldn't alter the refcount.
struct stat wst;
ASSERT_THAT(lstat(absl::StrCat("/proc/self/fd/", wfd_.get()).c_str(), &wst),
SyscallSucceeds());
// Close the write end and ensure that read indicates EOF.
wfd_.reset();
char buf;
ASSERT_THAT(read(rfd_.get(), &buf, 1), SyscallSucceedsWithValue(0));
}
// Same for /proc/<PID>/fdinfo.
TEST_P(PipeTest, ProcFDInfoReleasesFile) {
SKIP_IF(!CreateBlocking());
// Stat the pipe FD, which shouldn't alter the refcount.
struct stat wst;
ASSERT_THAT(
lstat(absl::StrCat("/proc/self/fdinfo/", wfd_.get()).c_str(), &wst),
SyscallSucceeds());
// Close the write end and ensure that read indicates EOF.
wfd_.reset();
char buf;
ASSERT_THAT(read(rfd_.get(), &buf, 1), SyscallSucceedsWithValue(0));
}
TEST_P(PipeTest, SizeChange) {
SKIP_IF(!CreateBlocking());
// Set the minimum possible size.
ASSERT_THAT(fcntl(rfd_.get(), F_SETPIPE_SZ, 0), SyscallSucceeds());
int min = Size();
EXPECT_GT(min, 0); // Should be rounded up.
// Set from the read end.
ASSERT_THAT(fcntl(rfd_.get(), F_SETPIPE_SZ, min + 1), SyscallSucceeds());
int med = Size();
EXPECT_GT(med, min); // Should have grown, may be rounded.
// Set from the write end.
ASSERT_THAT(fcntl(wfd_.get(), F_SETPIPE_SZ, med + 1), SyscallSucceeds());
int max = Size();
EXPECT_GT(max, med); // Ditto.
}
TEST_P(PipeTest, SizeChangeMax) {
SKIP_IF(!CreateBlocking());
// Assert there's some maximum.
EXPECT_THAT(fcntl(rfd_.get(), F_SETPIPE_SZ, 0x7fffffffffffffff),
SyscallFailsWithErrno(EINVAL));
EXPECT_THAT(fcntl(wfd_.get(), F_SETPIPE_SZ, 0x7fffffffffffffff),
SyscallFailsWithErrno(EINVAL));
}
TEST_P(PipeTest, SizeChangeFull) {
SKIP_IF(!CreateBlocking());
// Ensure that we adjust to a large enough size to avoid rounding when we
// perform the size decrease. If rounding occurs, we may not actually
// adjust the size and the call below will return success. It was found via
// experimentation that this granularity avoids the rounding for Linux.
constexpr int kDelta = 64 * 1024;
ASSERT_THAT(fcntl(wfd_.get(), F_SETPIPE_SZ, Size() + kDelta),
SyscallSucceeds());
// Fill the buffer and try to change down.
std::vector<char> buf(Size());
ASSERT_THAT(write(wfd_.get(), buf.data(), buf.size()),
SyscallSucceedsWithValue(buf.size()));
EXPECT_THAT(fcntl(wfd_.get(), F_SETPIPE_SZ, Size() - kDelta),
SyscallFailsWithErrno(EBUSY));
}
TEST_P(PipeTest, Streaming) {
SKIP_IF(!CreateBlocking());
// We make too many calls to go through full save cycles.
DisableSave ds;
// Size() requires 2 syscalls, call it once and remember the value.
const int pipe_size = Size();
const size_t streamed_bytes = 4 * pipe_size;
absl::Notification notify;
ScopedThread t([&, this]() {
std::vector<char> buf(1024);
// Don't start until it's full.
notify.WaitForNotification();
ssize_t total = 0;
while (total < streamed_bytes) {
ASSERT_THAT(read(rfd_.get(), buf.data(), buf.size()),
SyscallSucceedsWithValue(buf.size()));
total += buf.size();
}
});
// Write 4 bytes * pipe_size. It will fill up the pipe once, notify the reader
// to start. Then we write pipe size worth 3 more times to ensure the reader
// can follow along.
//
// The size of each write (which is determined by buf.size()) must be smaller
// than the size of the pipe (which, in the "smallbuffer" configuration, is 1
// page) for the check for notify.Notify() below to be correct.
std::vector<char> buf(1024);
RandomizeBuffer(buf.data(), buf.size());
ssize_t total = 0;
while (total < streamed_bytes) {
ASSERT_THAT(write(wfd_.get(), buf.data(), buf.size()),
SyscallSucceedsWithValue(buf.size()));
total += buf.size();
// Is the next write about to fill up the buffer? Wake up the reader once.
if (total < pipe_size && (total + buf.size()) >= pipe_size) {
notify.Notify();
}
}
}
std::string PipeCreatorName(::testing::TestParamInfo<PipeCreator> info) {
return info.param.name_; // Use the name specified.
}
INSTANTIATE_TEST_SUITE_P(
Pipes, PipeTest,
::testing::Values(
PipeCreator{
"pipe",
[](int fds[2], bool* is_blocking, bool* is_namedpipe) {
ASSERT_THAT(pipe(fds), SyscallSucceeds());
*is_blocking = true;
*is_namedpipe = false;
},
},
PipeCreator{
"pipe2blocking",
[](int fds[2], bool* is_blocking, bool* is_namedpipe) {
ASSERT_THAT(pipe2(fds, 0), SyscallSucceeds());
*is_blocking = true;
*is_namedpipe = false;
},
},
PipeCreator{
"pipe2nonblocking",
[](int fds[2], bool* is_blocking, bool* is_namedpipe) {
ASSERT_THAT(pipe2(fds, O_NONBLOCK), SyscallSucceeds());
*is_blocking = false;
*is_namedpipe = false;
},
},
PipeCreator{
"smallbuffer",
[](int fds[2], bool* is_blocking, bool* is_namedpipe) {
// Set to the minimum available size (will round up).
ASSERT_THAT(pipe(fds), SyscallSucceeds());
ASSERT_THAT(fcntl(fds[0], F_SETPIPE_SZ, 0), SyscallSucceeds());
*is_blocking = true;
*is_namedpipe = false;
},
},
PipeCreator{
"namednonblocking",
[](int fds[2], bool* is_blocking, bool* is_namedpipe) {
// Create a new file-based pipe (non-blocking).
std::string path;
{
auto file = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFile());
path = file.path();
}
SKIP_IF(mkfifo(path.c_str(), 0644) != 0);
fds[0] = open(path.c_str(), O_NONBLOCK | O_RDONLY);
fds[1] = open(path.c_str(), O_NONBLOCK | O_WRONLY);
MaybeSave();
*is_blocking = false;
*is_namedpipe = true;
},
},
PipeCreator{
"namedblocking",
[](int fds[2], bool* is_blocking, bool* is_namedpipe) {
// Create a new file-based pipe (blocking).
std::string path;
{
auto file = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFile());
path = file.path();
}
SKIP_IF(mkfifo(path.c_str(), 0644) != 0);
ScopedThread t(
[&path, &fds]() { fds[1] = open(path.c_str(), O_WRONLY); });
fds[0] = open(path.c_str(), O_RDONLY);
t.Join();
MaybeSave();
*is_blocking = true;
*is_namedpipe = true;
},
}),
PipeCreatorName);
} // namespace
} // namespace testing
} // namespace gvisor
|