1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
|
// Copyright 2019 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <arpa/inet.h>
#include <ifaddrs.h>
#include <linux/capability.h>
#include <linux/if_arp.h>
#include <linux/if_packet.h>
#include <net/ethernet.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/udp.h>
#include <poll.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <unistd.h>
#include "gtest/gtest.h"
#include "absl/base/internal/endian.h"
#include "test/syscalls/linux/socket_test_util.h"
#include "test/syscalls/linux/unix_domain_socket_test_util.h"
#include "test/util/capability_util.h"
#include "test/util/file_descriptor.h"
#include "test/util/test_util.h"
// Some of these tests involve sending packets via AF_PACKET sockets and the
// loopback interface. Because AF_PACKET circumvents so much of the networking
// stack, Linux sees these packets as "martian", i.e. they claim to be to/from
// localhost but don't have the usual associated data. Thus Linux drops them by
// default. You can see where this happens by following the code at:
//
// - net/ipv4/ip_input.c:ip_rcv_finish, which calls
// - net/ipv4/route.c:ip_route_input_noref, which calls
// - net/ipv4/route.c:ip_route_input_slow, which finds and drops martian
// packets.
//
// To tell Linux not to drop these packets, you need to tell it to accept our
// funny packets (which are completely valid and correct, but lack associated
// in-kernel data because we use AF_PACKET):
//
// echo 1 >> /proc/sys/net/ipv4/conf/lo/accept_local
// echo 1 >> /proc/sys/net/ipv4/conf/lo/route_localnet
//
// These tests require CAP_NET_RAW to run.
// TODO(gvisor.dev/issue/173): gVisor support.
namespace gvisor {
namespace testing {
namespace {
using ::testing::AnyOf;
using ::testing::Eq;
constexpr char kMessage[] = "soweoneul malhaebwa";
constexpr in_port_t kPort = 0x409c; // htons(40000)
//
// "Cooked" tests. Cooked AF_PACKET sockets do not contain link layer
// headers, and provide link layer destination/source information via a
// returned struct sockaddr_ll.
//
// Send kMessage via sock to loopback
void SendUDPMessage(int sock) {
struct sockaddr_in dest = {};
dest.sin_port = kPort;
dest.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
dest.sin_family = AF_INET;
EXPECT_THAT(sendto(sock, kMessage, sizeof(kMessage), 0,
reinterpret_cast<struct sockaddr*>(&dest), sizeof(dest)),
SyscallSucceedsWithValue(sizeof(kMessage)));
}
// Send an IP packet and make sure ETH_P_<something else> doesn't pick it up.
TEST(BasicCookedPacketTest, WrongType) {
if (!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW))) {
ASSERT_THAT(socket(AF_PACKET, SOCK_DGRAM, ETH_P_PUP),
SyscallFailsWithErrno(EPERM));
GTEST_SKIP();
}
FileDescriptor sock = ASSERT_NO_ERRNO_AND_VALUE(
Socket(AF_PACKET, SOCK_DGRAM, htons(ETH_P_PUP)));
// Let's use a simple IP payload: a UDP datagram.
FileDescriptor udp_sock =
ASSERT_NO_ERRNO_AND_VALUE(Socket(AF_INET, SOCK_DGRAM, 0));
SendUDPMessage(udp_sock.get());
// Wait and make sure the socket never becomes readable.
struct pollfd pfd = {};
pfd.fd = sock.get();
pfd.events = POLLIN;
EXPECT_THAT(RetryEINTR(poll)(&pfd, 1, 1000), SyscallSucceedsWithValue(0));
}
// Tests for "cooked" (SOCK_DGRAM) packet(7) sockets.
class CookedPacketTest : public ::testing::TestWithParam<int> {
protected:
// Creates a socket to be used in tests.
void SetUp() override;
// Closes the socket created by SetUp().
void TearDown() override;
// Gets the device index of the loopback device.
int GetLoopbackIndex();
// The socket used for both reading and writing.
int socket_;
};
void CookedPacketTest::SetUp() {
if (!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW))) {
ASSERT_THAT(socket(AF_PACKET, SOCK_DGRAM, htons(GetParam())),
SyscallFailsWithErrno(EPERM));
GTEST_SKIP();
}
if (!IsRunningOnGvisor()) {
FileDescriptor acceptLocal = ASSERT_NO_ERRNO_AND_VALUE(
Open("/proc/sys/net/ipv4/conf/lo/accept_local", O_RDONLY));
FileDescriptor routeLocalnet = ASSERT_NO_ERRNO_AND_VALUE(
Open("/proc/sys/net/ipv4/conf/lo/route_localnet", O_RDONLY));
char enabled;
ASSERT_THAT(read(acceptLocal.get(), &enabled, 1),
SyscallSucceedsWithValue(1));
ASSERT_EQ(enabled, '1');
ASSERT_THAT(read(routeLocalnet.get(), &enabled, 1),
SyscallSucceedsWithValue(1));
ASSERT_EQ(enabled, '1');
}
ASSERT_THAT(socket_ = socket(AF_PACKET, SOCK_DGRAM, htons(GetParam())),
SyscallSucceeds());
}
void CookedPacketTest::TearDown() {
// TearDown will be run even if we skip the test.
if (ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW))) {
EXPECT_THAT(close(socket_), SyscallSucceeds());
}
}
int CookedPacketTest::GetLoopbackIndex() {
struct ifreq ifr;
snprintf(ifr.ifr_name, IFNAMSIZ, "lo");
EXPECT_THAT(ioctl(socket_, SIOCGIFINDEX, &ifr), SyscallSucceeds());
EXPECT_NE(ifr.ifr_ifindex, 0);
return ifr.ifr_ifindex;
}
// Receive and verify the message via packet socket on interface.
void ReceiveMessage(int sock, int ifindex) {
// Wait for the socket to become readable.
struct pollfd pfd = {};
pfd.fd = sock;
pfd.events = POLLIN;
EXPECT_THAT(RetryEINTR(poll)(&pfd, 1, 2000), SyscallSucceedsWithValue(1));
// Read and verify the data.
constexpr size_t packet_size =
sizeof(struct iphdr) + sizeof(struct udphdr) + sizeof(kMessage);
char buf[64];
struct sockaddr_ll src = {};
socklen_t src_len = sizeof(src);
ASSERT_THAT(recvfrom(sock, buf, sizeof(buf), 0,
reinterpret_cast<struct sockaddr*>(&src), &src_len),
SyscallSucceedsWithValue(packet_size));
// sockaddr_ll ends with an 8 byte physical address field, but ethernet
// addresses only use 6 bytes. Linux used to return sizeof(sockaddr_ll)-2
// here, but since commit b2cf86e1563e33a14a1c69b3e508d15dc12f804c returns
// sizeof(sockaddr_ll).
ASSERT_THAT(src_len, AnyOf(Eq(sizeof(src)), Eq(sizeof(src) - 2)));
// TODO(b/129292371): Verify protocol once we return it.
// Verify the source address.
EXPECT_EQ(src.sll_family, AF_PACKET);
EXPECT_EQ(src.sll_ifindex, ifindex);
EXPECT_EQ(src.sll_halen, ETH_ALEN);
// This came from the loopback device, so the address is all 0s.
for (int i = 0; i < src.sll_halen; i++) {
EXPECT_EQ(src.sll_addr[i], 0);
}
// Verify the IP header. We memcpy to deal with pointer aligment.
struct iphdr ip = {};
memcpy(&ip, buf, sizeof(ip));
EXPECT_EQ(ip.ihl, 5);
EXPECT_EQ(ip.version, 4);
EXPECT_EQ(ip.tot_len, htons(packet_size));
EXPECT_EQ(ip.protocol, IPPROTO_UDP);
EXPECT_EQ(ip.daddr, htonl(INADDR_LOOPBACK));
EXPECT_EQ(ip.saddr, htonl(INADDR_LOOPBACK));
// Verify the UDP header. We memcpy to deal with pointer aligment.
struct udphdr udp = {};
memcpy(&udp, buf + sizeof(iphdr), sizeof(udp));
EXPECT_EQ(udp.dest, kPort);
EXPECT_EQ(udp.len, htons(sizeof(udphdr) + sizeof(kMessage)));
// Verify the payload.
char* payload = reinterpret_cast<char*>(buf + sizeof(iphdr) + sizeof(udphdr));
EXPECT_EQ(strncmp(payload, kMessage, sizeof(kMessage)), 0);
}
// Receive via a packet socket.
TEST_P(CookedPacketTest, Receive) {
// Let's use a simple IP payload: a UDP datagram.
FileDescriptor udp_sock =
ASSERT_NO_ERRNO_AND_VALUE(Socket(AF_INET, SOCK_DGRAM, 0));
SendUDPMessage(udp_sock.get());
// Receive and verify the data.
int loopback_index = GetLoopbackIndex();
ReceiveMessage(socket_, loopback_index);
}
// Send via a packet socket.
TEST_P(CookedPacketTest, Send) {
// TODO(b/129292371): Remove once we support packet socket writing.
SKIP_IF(IsRunningOnGvisor());
// Let's send a UDP packet and receive it using a regular UDP socket.
FileDescriptor udp_sock =
ASSERT_NO_ERRNO_AND_VALUE(Socket(AF_INET, SOCK_DGRAM, 0));
struct sockaddr_in bind_addr = {};
bind_addr.sin_family = AF_INET;
bind_addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
bind_addr.sin_port = kPort;
ASSERT_THAT(
bind(udp_sock.get(), reinterpret_cast<struct sockaddr*>(&bind_addr),
sizeof(bind_addr)),
SyscallSucceeds());
// Set up the destination physical address.
struct sockaddr_ll dest = {};
dest.sll_family = AF_PACKET;
dest.sll_halen = ETH_ALEN;
dest.sll_ifindex = GetLoopbackIndex();
dest.sll_protocol = htons(ETH_P_IP);
// We're sending to the loopback device, so the address is all 0s.
memset(dest.sll_addr, 0x00, ETH_ALEN);
// Set up the IP header.
struct iphdr iphdr = {0};
iphdr.ihl = 5;
iphdr.version = 4;
iphdr.tos = 0;
iphdr.tot_len =
htons(sizeof(struct iphdr) + sizeof(struct udphdr) + sizeof(kMessage));
// Get a pseudo-random ID. If we clash with an in-use ID the test will fail,
// but we have no way of getting an ID we know to be good.
srand(*reinterpret_cast<unsigned int*>(&iphdr));
iphdr.id = rand();
// Linux sets this bit ("do not fragment") for small packets.
iphdr.frag_off = 1 << 6;
iphdr.ttl = 64;
iphdr.protocol = IPPROTO_UDP;
iphdr.daddr = htonl(INADDR_LOOPBACK);
iphdr.saddr = htonl(INADDR_LOOPBACK);
iphdr.check = IPChecksum(iphdr);
// Set up the UDP header.
struct udphdr udphdr = {};
udphdr.source = kPort;
udphdr.dest = kPort;
udphdr.len = htons(sizeof(udphdr) + sizeof(kMessage));
udphdr.check = UDPChecksum(iphdr, udphdr, kMessage, sizeof(kMessage));
// Copy both headers and the payload into our packet buffer.
char send_buf[sizeof(iphdr) + sizeof(udphdr) + sizeof(kMessage)];
memcpy(send_buf, &iphdr, sizeof(iphdr));
memcpy(send_buf + sizeof(iphdr), &udphdr, sizeof(udphdr));
memcpy(send_buf + sizeof(iphdr) + sizeof(udphdr), kMessage, sizeof(kMessage));
// Send it.
ASSERT_THAT(sendto(socket_, send_buf, sizeof(send_buf), 0,
reinterpret_cast<struct sockaddr*>(&dest), sizeof(dest)),
SyscallSucceedsWithValue(sizeof(send_buf)));
// Wait for the packet to become available on both sockets.
struct pollfd pfd = {};
pfd.fd = udp_sock.get();
pfd.events = POLLIN;
ASSERT_THAT(RetryEINTR(poll)(&pfd, 1, 5000), SyscallSucceedsWithValue(1));
pfd.fd = socket_;
pfd.events = POLLIN;
ASSERT_THAT(RetryEINTR(poll)(&pfd, 1, 5000), SyscallSucceedsWithValue(1));
// Receive on the packet socket.
char recv_buf[sizeof(send_buf)];
ASSERT_THAT(recv(socket_, recv_buf, sizeof(recv_buf), 0),
SyscallSucceedsWithValue(sizeof(recv_buf)));
ASSERT_EQ(memcmp(recv_buf, send_buf, sizeof(send_buf)), 0);
// Receive on the UDP socket.
struct sockaddr_in src;
socklen_t src_len = sizeof(src);
ASSERT_THAT(recvfrom(udp_sock.get(), recv_buf, sizeof(recv_buf), MSG_DONTWAIT,
reinterpret_cast<struct sockaddr*>(&src), &src_len),
SyscallSucceedsWithValue(sizeof(kMessage)));
// Check src and payload.
EXPECT_EQ(strncmp(recv_buf, kMessage, sizeof(kMessage)), 0);
EXPECT_EQ(src.sin_family, AF_INET);
EXPECT_EQ(src.sin_port, kPort);
EXPECT_EQ(src.sin_addr.s_addr, htonl(INADDR_LOOPBACK));
}
// Bind and receive via packet socket.
TEST_P(CookedPacketTest, BindReceive) {
struct sockaddr_ll bind_addr = {};
bind_addr.sll_family = AF_PACKET;
bind_addr.sll_protocol = htons(GetParam());
bind_addr.sll_ifindex = GetLoopbackIndex();
ASSERT_THAT(bind(socket_, reinterpret_cast<struct sockaddr*>(&bind_addr),
sizeof(bind_addr)),
SyscallSucceeds());
// Let's use a simple IP payload: a UDP datagram.
FileDescriptor udp_sock =
ASSERT_NO_ERRNO_AND_VALUE(Socket(AF_INET, SOCK_DGRAM, 0));
SendUDPMessage(udp_sock.get());
// Receive and verify the data.
ReceiveMessage(socket_, bind_addr.sll_ifindex);
}
// Double Bind socket.
TEST_P(CookedPacketTest, DoubleBind) {
struct sockaddr_ll bind_addr = {};
bind_addr.sll_family = AF_PACKET;
bind_addr.sll_protocol = htons(GetParam());
bind_addr.sll_ifindex = GetLoopbackIndex();
ASSERT_THAT(bind(socket_, reinterpret_cast<struct sockaddr*>(&bind_addr),
sizeof(bind_addr)),
SyscallSucceeds());
// Binding socket again should fail.
ASSERT_THAT(
bind(socket_, reinterpret_cast<struct sockaddr*>(&bind_addr),
sizeof(bind_addr)),
// Linux 4.09 returns EINVAL here, but some time before 4.19 it switched
// to EADDRINUSE.
AnyOf(SyscallFailsWithErrno(EADDRINUSE), SyscallFailsWithErrno(EINVAL)));
}
// Bind and verify we do not receive data on interface which is not bound
TEST_P(CookedPacketTest, BindDrop) {
// Let's use a simple IP payload: a UDP datagram.
FileDescriptor udp_sock =
ASSERT_NO_ERRNO_AND_VALUE(Socket(AF_INET, SOCK_DGRAM, 0));
struct ifaddrs* if_addr_list = nullptr;
auto cleanup = Cleanup([&if_addr_list]() { freeifaddrs(if_addr_list); });
ASSERT_THAT(getifaddrs(&if_addr_list), SyscallSucceeds());
// Get interface other than loopback.
struct ifreq ifr = {};
for (struct ifaddrs* i = if_addr_list; i; i = i->ifa_next) {
if (strcmp(i->ifa_name, "lo") != 0) {
strncpy(ifr.ifr_name, i->ifa_name, sizeof(ifr.ifr_name));
break;
}
}
// Skip if no interface is available other than loopback.
if (strlen(ifr.ifr_name) == 0) {
GTEST_SKIP();
}
// Get interface index.
EXPECT_THAT(ioctl(socket_, SIOCGIFINDEX, &ifr), SyscallSucceeds());
EXPECT_NE(ifr.ifr_ifindex, 0);
// Bind to packet socket requires only family, protocol and ifindex.
struct sockaddr_ll bind_addr = {};
bind_addr.sll_family = AF_PACKET;
bind_addr.sll_protocol = htons(GetParam());
bind_addr.sll_ifindex = ifr.ifr_ifindex;
ASSERT_THAT(bind(socket_, reinterpret_cast<struct sockaddr*>(&bind_addr),
sizeof(bind_addr)),
SyscallSucceeds());
// Send to loopback interface.
struct sockaddr_in dest = {};
dest.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
dest.sin_family = AF_INET;
dest.sin_port = kPort;
EXPECT_THAT(sendto(udp_sock.get(), kMessage, sizeof(kMessage), 0,
reinterpret_cast<struct sockaddr*>(&dest), sizeof(dest)),
SyscallSucceedsWithValue(sizeof(kMessage)));
// Wait and make sure the socket never receives any data.
struct pollfd pfd = {};
pfd.fd = socket_;
pfd.events = POLLIN;
EXPECT_THAT(RetryEINTR(poll)(&pfd, 1, 1000), SyscallSucceedsWithValue(0));
}
// Bind with invalid address.
TEST_P(CookedPacketTest, BindFail) {
// Null address.
ASSERT_THAT(
bind(socket_, nullptr, sizeof(struct sockaddr)),
AnyOf(SyscallFailsWithErrno(EFAULT), SyscallFailsWithErrno(EINVAL)));
// Address of size 1.
uint8_t addr = 0;
ASSERT_THAT(
bind(socket_, reinterpret_cast<struct sockaddr*>(&addr), sizeof(addr)),
SyscallFailsWithErrno(EINVAL));
}
INSTANTIATE_TEST_SUITE_P(AllInetTests, CookedPacketTest,
::testing::Values(ETH_P_IP, ETH_P_ALL));
} // namespace
} // namespace testing
} // namespace gvisor
|