1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
|
// Copyright 2021 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <errno.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <sys/types.h>
#include "absl/time/clock.h"
#include "test/util/capability_util.h"
#include "test/util/temp_path.h"
#include "test/util/test_util.h"
namespace gvisor {
namespace testing {
namespace {
constexpr int msgMax = 8192; // Max size for message in bytes.
constexpr int msgMni = 32000; // Max number of identifiers.
constexpr int msgMnb = 16384; // Default max size of message queue in bytes.
// Queue is a RAII class used to automatically clean message queues.
class Queue {
public:
explicit Queue(int id) : id_(id) {}
~Queue() {
if (id_ >= 0) {
EXPECT_THAT(msgctl(id_, IPC_RMID, nullptr), SyscallSucceeds());
}
}
int release() {
int old = id_;
id_ = -1;
return old;
}
int get() { return id_; }
private:
int id_ = -1;
};
// Default size for messages.
constexpr size_t msgSize = 50;
// msgbuf is a simple buffer using to send and receive text messages for
// testing purposes.
struct msgbuf {
int64_t mtype;
char mtext[msgSize];
};
bool operator==(msgbuf& a, msgbuf& b) {
for (size_t i = 0; i < msgSize; i++) {
if (a.mtext[i] != b.mtext[i]) {
return false;
}
}
return a.mtype == b.mtype;
}
// Test simple creation and retrieval for msgget(2).
TEST(MsgqueueTest, MsgGet) {
const TempPath keyfile = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFile());
const key_t key = ftok(keyfile.path().c_str(), 1);
ASSERT_THAT(key, SyscallSucceeds());
Queue queue(msgget(key, IPC_CREAT));
ASSERT_THAT(queue.get(), SyscallSucceeds());
EXPECT_THAT(msgget(key, 0), SyscallSucceedsWithValue(queue.get()));
}
// Test simple failure scenarios for msgget(2).
TEST(MsgqueueTest, MsgGetFail) {
const TempPath keyfile = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFile());
const key_t key = ftok(keyfile.path().c_str(), 1);
ASSERT_THAT(key, SyscallSucceeds());
EXPECT_THAT(msgget(key, 0), SyscallFailsWithErrno(ENOENT));
Queue queue(msgget(key, IPC_CREAT));
ASSERT_THAT(queue.get(), SyscallSucceeds());
EXPECT_THAT(msgget(key, IPC_CREAT | IPC_EXCL), SyscallFailsWithErrno(EEXIST));
}
// Test using msgget(2) with IPC_PRIVATE option.
TEST(MsgqueueTest, MsgGetIpcPrivate) {
Queue queue1(msgget(IPC_PRIVATE, 0));
ASSERT_THAT(queue1.get(), SyscallSucceeds());
Queue queue2(msgget(IPC_PRIVATE, 0));
ASSERT_THAT(queue2.get(), SyscallSucceeds());
EXPECT_NE(queue1.get(), queue2.get());
}
// Test simple msgsnd and msgrcv.
TEST(MsgqueueTest, MsgOpSimple) {
Queue queue(msgget(IPC_PRIVATE, 0600));
ASSERT_THAT(queue.get(), SyscallSucceeds());
msgbuf buf{1, "A message."};
msgbuf rcv;
ASSERT_THAT(msgsnd(queue.get(), &buf, sizeof(buf.mtext), 0),
SyscallSucceeds());
EXPECT_THAT(msgrcv(queue.get(), &rcv, sizeof(buf.mtext) + 1, 0, 0),
SyscallSucceedsWithValue(sizeof(buf.mtext)));
EXPECT_TRUE(buf == rcv);
}
// Test msgsnd and msgrcv of an empty message.
TEST(MsgqueueTest, MsgOpEmpty) {
Queue queue(msgget(IPC_PRIVATE, 0600));
ASSERT_THAT(queue.get(), SyscallSucceeds());
msgbuf buf{1, ""};
msgbuf rcv;
ASSERT_THAT(msgsnd(queue.get(), &buf, 0, 0), SyscallSucceeds());
EXPECT_THAT(msgrcv(queue.get(), &rcv, sizeof(buf.mtext) + 1, 0, 0),
SyscallSucceedsWithValue(0));
}
// Test truncation of message with MSG_NOERROR flag.
TEST(MsgqueueTest, MsgOpTruncate) {
Queue queue(msgget(IPC_PRIVATE, 0600));
ASSERT_THAT(queue.get(), SyscallSucceeds());
msgbuf buf{1, ""};
msgbuf rcv;
ASSERT_THAT(msgsnd(queue.get(), &buf, sizeof(buf.mtext), 0),
SyscallSucceeds());
EXPECT_THAT(msgrcv(queue.get(), &rcv, sizeof(buf.mtext) - 1, 0, MSG_NOERROR),
SyscallSucceedsWithValue(sizeof(buf.mtext) - 1));
}
// Test msgsnd and msgrcv using invalid arguments.
TEST(MsgqueueTest, MsgOpInvalidArgs) {
Queue queue(msgget(IPC_PRIVATE, 0600));
ASSERT_THAT(queue.get(), SyscallSucceeds());
msgbuf buf{1, ""};
EXPECT_THAT(msgsnd(-1, &buf, 0, 0), SyscallFailsWithErrno(EINVAL));
EXPECT_THAT(msgsnd(queue.get(), &buf, -1, 0), SyscallFailsWithErrno(EINVAL));
buf.mtype = -1;
EXPECT_THAT(msgsnd(queue.get(), &buf, 1, 0), SyscallFailsWithErrno(EINVAL));
EXPECT_THAT(msgrcv(-1, &buf, 1, 0, 0), SyscallFailsWithErrno(EINVAL));
EXPECT_THAT(msgrcv(queue.get(), &buf, -1, 0, 0),
SyscallFailsWithErrno(EINVAL));
}
// Test non-blocking msgrcv with an empty queue.
TEST(MsgqueueTest, MsgOpNoMsg) {
Queue queue(msgget(IPC_PRIVATE, 0600));
ASSERT_THAT(queue.get(), SyscallSucceeds());
msgbuf rcv;
EXPECT_THAT(msgrcv(queue.get(), &rcv, sizeof(rcv.mtext) + 1, 0, IPC_NOWAIT),
SyscallFailsWithErrno(ENOMSG));
}
// Test non-blocking msgrcv with a non-empty queue, but no messages of wanted
// type.
TEST(MsgqueueTest, MsgOpNoMsgType) {
Queue queue(msgget(IPC_PRIVATE, 0600));
ASSERT_THAT(queue.get(), SyscallSucceeds());
msgbuf buf{1, ""};
ASSERT_THAT(msgsnd(queue.get(), &buf, sizeof(buf.mtext), 0),
SyscallSucceeds());
EXPECT_THAT(msgrcv(queue.get(), &buf, sizeof(buf.mtext) + 1, 2, IPC_NOWAIT),
SyscallFailsWithErrno(ENOMSG));
}
// Test msgrcv with a larger size message than wanted, and truncation disabled.
TEST(MsgqueueTest, MsgOpTooBig) {
Queue queue(msgget(IPC_PRIVATE, 0600));
ASSERT_THAT(queue.get(), SyscallSucceeds());
msgbuf buf{1, ""};
ASSERT_THAT(msgsnd(queue.get(), &buf, sizeof(buf.mtext), 0),
SyscallSucceeds());
EXPECT_THAT(msgrcv(queue.get(), &buf, sizeof(buf.mtext) - 1, 0, 0),
SyscallFailsWithErrno(E2BIG));
}
// Test receiving messages based on type.
TEST(MsgqueueTest, MsgRcvType) {
Queue queue(msgget(IPC_PRIVATE, 0600));
ASSERT_THAT(queue.get(), SyscallSucceeds());
// Send messages in an order and receive them in reverse, based on type,
// which shouldn't block.
std::map<int64_t, msgbuf> typeToBuf = {
{1, msgbuf{1, "Message 1."}}, {2, msgbuf{2, "Message 2."}},
{3, msgbuf{3, "Message 3."}}, {4, msgbuf{4, "Message 4."}},
{5, msgbuf{5, "Message 5."}}, {6, msgbuf{6, "Message 6."}},
{7, msgbuf{7, "Message 7."}}, {8, msgbuf{8, "Message 8."}},
{9, msgbuf{9, "Message 9."}}};
for (auto const& [type, buf] : typeToBuf) {
ASSERT_THAT(msgsnd(queue.get(), &buf, sizeof(buf.mtext), 0),
SyscallSucceeds());
}
for (int64_t i = typeToBuf.size(); i > 0; i--) {
msgbuf rcv;
EXPECT_THAT(msgrcv(queue.get(), &rcv, sizeof(typeToBuf[i].mtext) + 1, i, 0),
SyscallSucceedsWithValue(sizeof(typeToBuf[i].mtext)));
EXPECT_TRUE(typeToBuf[i] == rcv);
}
}
// Test using MSG_EXCEPT to receive a different-type message.
TEST(MsgqueueTest, MsgExcept) {
Queue queue(msgget(IPC_PRIVATE, 0600));
ASSERT_THAT(queue.get(), SyscallSucceeds());
std::map<int64_t, msgbuf> typeToBuf = {
{1, msgbuf{1, "Message 1."}},
{2, msgbuf{2, "Message 2."}},
};
for (auto const& [type, buf] : typeToBuf) {
ASSERT_THAT(msgsnd(queue.get(), &buf, sizeof(buf.mtext), 0),
SyscallSucceeds());
}
for (int64_t i = typeToBuf.size(); i > 0; i--) {
msgbuf actual = typeToBuf[i == 1 ? 2 : 1];
msgbuf rcv;
EXPECT_THAT(
msgrcv(queue.get(), &rcv, sizeof(actual.mtext) + 1, i, MSG_EXCEPT),
SyscallSucceedsWithValue(sizeof(actual.mtext)));
EXPECT_TRUE(actual == rcv);
}
}
// Test msgrcv with a negative type.
TEST(MsgqueueTest, MsgRcvTypeNegative) {
Queue queue(msgget(IPC_PRIVATE, 0600));
ASSERT_THAT(queue.get(), SyscallSucceeds());
// When msgtyp is negative, msgrcv returns the first message with mtype less
// than or equal to the absolute value.
msgbuf buf{2, "A message."};
msgbuf rcv;
ASSERT_THAT(msgsnd(queue.get(), &buf, sizeof(buf.mtext), 0),
SyscallSucceeds());
// Nothing is less than or equal to 1.
EXPECT_THAT(msgrcv(queue.get(), &rcv, sizeof(buf.mtext) + 1, -1, IPC_NOWAIT),
SyscallFailsWithErrno(ENOMSG));
EXPECT_THAT(msgrcv(queue.get(), &rcv, sizeof(buf.mtext) + 1, -3, 0),
SyscallSucceedsWithValue(sizeof(buf.mtext)));
EXPECT_TRUE(buf == rcv);
}
// Test permission-related failure scenarios.
TEST(MsgqueueTest, MsgOpPermissions) {
AutoCapability cap(CAP_IPC_OWNER, false);
Queue queue(msgget(IPC_PRIVATE, 0000));
ASSERT_THAT(queue.get(), SyscallSucceeds());
msgbuf buf{1, ""};
EXPECT_THAT(msgsnd(queue.get(), &buf, sizeof(buf.mtext), 0),
SyscallFailsWithErrno(EACCES));
EXPECT_THAT(msgrcv(queue.get(), &buf, sizeof(buf.mtext), 0, 0),
SyscallFailsWithErrno(EACCES));
}
// Test limits for messages and queues.
TEST(MsgqueueTest, MsgOpLimits) {
Queue queue(msgget(IPC_PRIVATE, 0600));
ASSERT_THAT(queue.get(), SyscallSucceeds());
msgbuf buf{1, "A message."};
// Limit for one message.
EXPECT_THAT(msgsnd(queue.get(), &buf, msgMax + 1, 0),
SyscallFailsWithErrno(EINVAL));
// Limit for queue.
// Use a buffer with the maximum mount of bytes that can be transformed to
// make it easier to exhaust the queue limit.
struct msgmax {
int64_t mtype;
char mtext[msgMax];
};
msgmax limit{1, ""};
for (size_t i = 0, msgCount = msgMnb / msgMax; i < msgCount; i++) {
EXPECT_THAT(msgsnd(queue.get(), &limit, sizeof(limit.mtext), 0),
SyscallSucceeds());
}
EXPECT_THAT(msgsnd(queue.get(), &limit, sizeof(limit.mtext), IPC_NOWAIT),
SyscallFailsWithErrno(EAGAIN));
}
// MsgCopySupported returns true if MSG_COPY is supported.
bool MsgCopySupported() {
// msgrcv(2) man page states that MSG_COPY flag is available only if the
// kernel was built with the CONFIG_CHECKPOINT_RESTORE option. If MSG_COPY
// is used when the kernel was configured without the option, msgrcv produces
// a ENOSYS error.
// To avoid test failure, we perform a small test using msgrcv, and skip the
// test if errno == ENOSYS. This means that the test will always run on
// gVisor, but may be skipped on native linux.
Queue queue(msgget(IPC_PRIVATE, 0600));
msgbuf buf{1, "Test message."};
msgsnd(queue.get(), &buf, sizeof(buf.mtext), 0);
return !(msgrcv(queue.get(), &buf, sizeof(buf.mtext) + 1, 0,
MSG_COPY | IPC_NOWAIT) == -1 &&
errno == ENOSYS);
}
// Test usage of MSG_COPY for msgrcv.
TEST(MsgqueueTest, MsgCopy) {
SKIP_IF(!MsgCopySupported());
Queue queue(msgget(IPC_PRIVATE, 0600));
ASSERT_THAT(queue.get(), SyscallSucceeds());
msgbuf bufs[5] = {
msgbuf{1, "Message 1."}, msgbuf{2, "Message 2."}, msgbuf{3, "Message 3."},
msgbuf{4, "Message 4."}, msgbuf{5, "Message 5."},
};
for (auto& buf : bufs) {
ASSERT_THAT(msgsnd(queue.get(), &buf, sizeof(buf.mtext), 0),
SyscallSucceeds());
}
// Receive a copy of the messages.
for (size_t i = 0, size = sizeof(bufs) / sizeof(bufs[0]); i < size; i++) {
msgbuf buf = bufs[i];
msgbuf rcv;
EXPECT_THAT(msgrcv(queue.get(), &rcv, sizeof(buf.mtext) + 1, i,
MSG_COPY | IPC_NOWAIT),
SyscallSucceedsWithValue(sizeof(buf.mtext)));
EXPECT_TRUE(buf == rcv);
}
// Invalid index.
msgbuf rcv;
EXPECT_THAT(msgrcv(queue.get(), &rcv, 1, 5, MSG_COPY | IPC_NOWAIT),
SyscallFailsWithErrno(ENOMSG));
// Re-receive the messages normally.
for (auto& buf : bufs) {
msgbuf rcv;
EXPECT_THAT(msgrcv(queue.get(), &rcv, sizeof(buf.mtext) + 1, 0, 0),
SyscallSucceedsWithValue(sizeof(buf.mtext)));
EXPECT_TRUE(buf == rcv);
}
}
// Test msgrcv (most probably) blocking on an empty queue.
TEST(MsgqueueTest, MsgRcvBlocking) {
Queue queue(msgget(IPC_PRIVATE, 0600));
ASSERT_THAT(queue.get(), SyscallSucceeds());
msgbuf buf{1, "A message."};
const pid_t child_pid = fork();
if (child_pid == 0) {
msgbuf rcv;
TEST_PCHECK(RetryEINTR(msgrcv)(queue.get(), &rcv, sizeof(buf.mtext) + 1, 0,
0) == sizeof(buf.mtext) &&
buf == rcv);
_exit(0);
}
// Sleep to try and make msgrcv block before sending a message.
absl::SleepFor(absl::Milliseconds(150));
EXPECT_THAT(msgsnd(queue.get(), &buf, sizeof(buf.mtext), 0),
SyscallSucceeds());
int status;
ASSERT_THAT(RetryEINTR(waitpid)(child_pid, &status, 0),
SyscallSucceedsWithValue(child_pid));
EXPECT_TRUE(WIFEXITED(status) && WEXITSTATUS(status) == 0);
}
// Test msgrcv (most probably) waiting for a specific-type message.
TEST(MsgqueueTest, MsgRcvTypeBlocking) {
Queue queue(msgget(IPC_PRIVATE, 0600));
ASSERT_THAT(queue.get(), SyscallSucceeds());
msgbuf bufs[5] = {{1, "A message."},
{1, "A message."},
{1, "A message."},
{1, "A message."},
{2, "A different message."}};
const pid_t child_pid = fork();
if (child_pid == 0) {
msgbuf buf = bufs[4]; // Buffer that should be received.
msgbuf rcv;
TEST_PCHECK(RetryEINTR(msgrcv)(queue.get(), &rcv, sizeof(buf.mtext) + 1, 2,
0) == sizeof(buf.mtext) &&
buf == rcv);
_exit(0);
}
// Sleep to try and make msgrcv block before sending messages.
absl::SleepFor(absl::Milliseconds(150));
// Send all buffers in order, only last one should be received.
for (auto& buf : bufs) {
EXPECT_THAT(msgsnd(queue.get(), &buf, sizeof(buf.mtext), 0),
SyscallSucceeds());
}
int status;
ASSERT_THAT(RetryEINTR(waitpid)(child_pid, &status, 0),
SyscallSucceedsWithValue(child_pid));
EXPECT_TRUE(WIFEXITED(status) && WEXITSTATUS(status) == 0);
}
// Test msgsnd (most probably) blocking on a full queue.
TEST(MsgqueueTest, MsgSndBlocking) {
Queue queue(msgget(IPC_PRIVATE, 0600));
ASSERT_THAT(queue.get(), SyscallSucceeds());
// Use a buffer with the maximum mount of bytes that can be transformed to
// make it easier to exhaust the queue limit.
struct msgmax {
int64_t mtype;
char mtext[msgMax];
};
msgmax buf{1, ""}; // Has max amount of bytes.
const size_t msgCount = msgMnb / msgMax; // Number of messages that can be
// sent without blocking.
const pid_t child_pid = fork();
if (child_pid == 0) {
// Fill the queue.
for (size_t i = 0; i < msgCount; i++) {
TEST_PCHECK(msgsnd(queue.get(), &buf, sizeof(buf.mtext), 0) == 0);
}
// Next msgsnd should block.
TEST_PCHECK(RetryEINTR(msgsnd)(queue.get(), &buf, sizeof(buf.mtext), 0) ==
0);
_exit(0);
}
// To increase the chance of the last msgsnd blocking before doing a msgrcv,
// we use MSG_COPY option to copy the last index in the queue. As long as
// MSG_COPY fails, the queue hasn't yet been filled. When MSG_COPY succeeds,
// the queue is filled, and most probably, a blocking msgsnd has been made.
msgmax rcv;
while (msgrcv(queue.get(), &rcv, msgMax, msgCount - 1,
MSG_COPY | IPC_NOWAIT) == -1 &&
errno == ENOMSG) {
}
// Delay a bit more for the blocking msgsnd.
absl::SleepFor(absl::Milliseconds(100));
EXPECT_THAT(msgrcv(queue.get(), &rcv, sizeof(buf.mtext), 0, 0),
SyscallSucceedsWithValue(sizeof(buf.mtext)));
int status;
ASSERT_THAT(RetryEINTR(waitpid)(child_pid, &status, 0),
SyscallSucceedsWithValue(child_pid));
EXPECT_TRUE(WIFEXITED(status) && WEXITSTATUS(status) == 0);
}
// Test removing a queue while a blocking msgsnd is executing.
TEST(MsgqueueTest, MsgSndRmWhileBlocking) {
Queue queue(msgget(IPC_PRIVATE, 0600));
ASSERT_THAT(queue.get(), SyscallSucceeds());
// Use a buffer with the maximum mount of bytes that can be transformed to
// make it easier to exhaust the queue limit.
struct msgmax {
int64_t mtype;
char mtext[msgMax];
};
const size_t msgCount = msgMnb / msgMax; // Number of messages that can be
// sent without blocking.
const pid_t child_pid = fork();
if (child_pid == 0) {
// Fill the queue.
msgmax buf{1, ""};
for (size_t i = 0; i < msgCount; i++) {
EXPECT_THAT(msgsnd(queue.get(), &buf, sizeof(buf.mtext), 0),
SyscallSucceeds());
}
// Next msgsnd should block. Because we're repeating on EINTR, msgsnd may
// race with msgctl(IPC_RMID) and return EINVAL.
TEST_PCHECK(RetryEINTR(msgsnd)(queue.get(), &buf, sizeof(buf.mtext), 0) ==
-1 &&
(errno == EIDRM || errno == EINVAL));
_exit(0);
}
// Similar to MsgSndBlocking, we do this to increase the chance of msgsnd
// blocking before removing the queue.
msgmax rcv;
while (msgrcv(queue.get(), &rcv, msgMax, msgCount - 1,
MSG_COPY | IPC_NOWAIT) == -1 &&
errno == ENOMSG) {
}
absl::SleepFor(absl::Milliseconds(100));
EXPECT_THAT(msgctl(queue.release(), IPC_RMID, nullptr), SyscallSucceeds());
int status;
ASSERT_THAT(RetryEINTR(waitpid)(child_pid, &status, 0),
SyscallSucceedsWithValue(child_pid));
EXPECT_TRUE(WIFEXITED(status) && WEXITSTATUS(status) == 0);
}
// Test removing a queue while a blocking msgrcv is executing.
TEST(MsgqueueTest, MsgRcvRmWhileBlocking) {
Queue queue(msgget(IPC_PRIVATE, 0600));
ASSERT_THAT(queue.get(), SyscallSucceeds());
const pid_t child_pid = fork();
if (child_pid == 0) {
// Because we're repeating on EINTR, msgsnd may race with msgctl(IPC_RMID)
// and return EINVAL.
msgbuf rcv;
TEST_PCHECK(RetryEINTR(msgrcv)(queue.get(), &rcv, 1, 2, 0) == -1 &&
(errno == EIDRM || errno == EINVAL));
_exit(0);
}
// Sleep to try and make msgrcv block before sending messages.
absl::SleepFor(absl::Milliseconds(150));
EXPECT_THAT(msgctl(queue.release(), IPC_RMID, nullptr), SyscallSucceeds());
int status;
ASSERT_THAT(RetryEINTR(waitpid)(child_pid, &status, 0),
SyscallSucceedsWithValue(child_pid));
EXPECT_TRUE(WIFEXITED(status) && WEXITSTATUS(status) == 0);
}
// Test a collection of msgsnd/msgrcv operations in different processes.
TEST(MsgqueueTest, MsgOpGeneral) {
Queue queue(msgget(IPC_PRIVATE, 0600));
ASSERT_THAT(queue.get(), SyscallSucceeds());
// Create 50 sending, and 50 receiving processes. There are only 5 messages to
// be sent and received, each with a different type. All messages will be sent
// and received equally (10 of each.) By the end of the test all processes
// should unblock and return normally.
const size_t msgCount = 5;
std::map<int64_t, msgbuf> typeToBuf = {{1, msgbuf{1, "Message 1."}},
{2, msgbuf{2, "Message 2."}},
{3, msgbuf{3, "Message 3."}},
{4, msgbuf{4, "Message 4."}},
{5, msgbuf{5, "Message 5."}}};
std::vector<pid_t> children;
const size_t pCount = 50;
for (size_t i = 1; i <= pCount; i++) {
const pid_t child_pid = fork();
if (child_pid == 0) {
msgbuf buf = typeToBuf[(i % msgCount) + 1];
msgbuf rcv;
TEST_PCHECK(RetryEINTR(msgrcv)(queue.get(), &rcv, sizeof(buf.mtext) + 1,
(i % msgCount) + 1,
0) == sizeof(buf.mtext) &&
buf == rcv);
_exit(0);
}
children.push_back(child_pid);
}
for (size_t i = 1; i <= pCount; i++) {
const pid_t child_pid = fork();
if (child_pid == 0) {
msgbuf buf = typeToBuf[(i % msgCount) + 1];
TEST_PCHECK(RetryEINTR(msgsnd)(queue.get(), &buf, sizeof(buf.mtext), 0) ==
0);
_exit(0);
}
children.push_back(child_pid);
}
for (auto const& pid : children) {
int status;
ASSERT_THAT(RetryEINTR(waitpid)(pid, &status, 0),
SyscallSucceedsWithValue(pid));
EXPECT_TRUE(WIFEXITED(status) && WEXITSTATUS(status) == 0);
}
}
} // namespace
} // namespace testing
} // namespace gvisor
|