1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
|
// Copyright 2021 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <errno.h>
#include <signal.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <sys/types.h>
#include "absl/synchronization/notification.h"
#include "absl/time/clock.h"
#include "test/util/capability_util.h"
#include "test/util/signal_util.h"
#include "test/util/temp_path.h"
#include "test/util/test_util.h"
#include "test/util/thread_util.h"
namespace gvisor {
namespace testing {
namespace {
// Source: include/uapi/linux/msg.h
constexpr int msgMnb = 16384; // Maximum number of bytes in a queue.
constexpr int msgMni = 32000; // Max number of identifiers.
constexpr int msgPool =
(msgMni * msgMnb / 1024); // Size of buffer pool used to hold message data.
constexpr int msgMap = msgMnb; // Maximum number of entries in message map.
constexpr int msgMax = 8192; // Maximum number of bytes in a single message.
constexpr int msgSsz = 16; // Message segment size.
constexpr int msgTql = msgMnb; // Maximum number of messages on all queues.
constexpr int kInterruptSignal = SIGALRM;
// Queue is a RAII class used to automatically clean message queues.
class Queue {
public:
explicit Queue(int id) : id_(id) {}
Queue(const Queue&) = delete;
Queue& operator=(const Queue&) = delete;
Queue(Queue&& other) { id_ = other.release(); }
~Queue() {
if (id_ >= 0) {
EXPECT_THAT(msgctl(id_, IPC_RMID, nullptr), SyscallSucceeds());
}
}
int release() {
int old = id_;
id_ = -1;
return old;
}
int get() { return id_; }
private:
int id_ = -1;
};
PosixErrorOr<Queue> Msgget(key_t key, int flags) {
int id = msgget(key, flags);
if (id == -1) {
return PosixError(errno, absl::StrFormat("msgget(%d, %d)", key, flags));
}
return Queue(id);
}
// Default size for messages.
constexpr size_t msgSize = 50;
// msgbuf is a simple buffer using to send and receive text messages for
// testing purposes.
struct msgbuf {
int64_t mtype;
char mtext[msgSize];
};
bool operator==(msgbuf& a, msgbuf& b) {
for (size_t i = 0; i < msgSize; i++) {
if (a.mtext[i] != b.mtext[i]) {
return false;
}
}
return a.mtype == b.mtype;
}
// msgmax represents a buffer for the largest possible single message.
struct msgmax {
int64_t mtype;
char mtext[msgMax];
};
// Test simple creation and retrieval for msgget(2).
TEST(MsgqueueTest, MsgGet) {
const TempPath keyfile = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFile());
const key_t key = ftok(keyfile.path().c_str(), 1);
ASSERT_THAT(key, SyscallSucceeds());
Queue queue = ASSERT_NO_ERRNO_AND_VALUE(Msgget(key, IPC_CREAT));
EXPECT_THAT(msgget(key, 0), SyscallSucceedsWithValue(queue.get()));
}
// Test simple failure scenarios for msgget(2).
TEST(MsgqueueTest, MsgGetFail) {
const TempPath keyfile = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFile());
const key_t key = ftok(keyfile.path().c_str(), 1);
ASSERT_THAT(key, SyscallSucceeds());
EXPECT_THAT(msgget(key, 0), SyscallFailsWithErrno(ENOENT));
Queue queue = ASSERT_NO_ERRNO_AND_VALUE(Msgget(key, IPC_CREAT));
EXPECT_THAT(msgget(key, IPC_CREAT | IPC_EXCL), SyscallFailsWithErrno(EEXIST));
}
// Test using msgget(2) with IPC_PRIVATE option.
TEST(MsgqueueTest, MsgGetIpcPrivate) {
Queue queue1 = ASSERT_NO_ERRNO_AND_VALUE(Msgget(IPC_PRIVATE, 0));
Queue queue2 = ASSERT_NO_ERRNO_AND_VALUE(Msgget(IPC_PRIVATE, 0));
EXPECT_NE(queue1.get(), queue2.get());
}
// Test simple msgsnd and msgrcv.
TEST(MsgqueueTest, MsgOpSimple) {
Queue queue = ASSERT_NO_ERRNO_AND_VALUE(Msgget(IPC_PRIVATE, 0600));
msgbuf buf{1, "A message."};
msgbuf rcv;
ASSERT_THAT(msgsnd(queue.get(), &buf, sizeof(buf.mtext), 0),
SyscallSucceeds());
EXPECT_THAT(msgrcv(queue.get(), &rcv, sizeof(buf.mtext) + 1, 0, 0),
SyscallSucceedsWithValue(sizeof(buf.mtext)));
EXPECT_TRUE(buf == rcv);
}
// Test msgsnd and msgrcv of an empty message.
TEST(MsgqueueTest, MsgOpEmpty) {
Queue queue = ASSERT_NO_ERRNO_AND_VALUE(Msgget(IPC_PRIVATE, 0600));
msgbuf buf{1, ""};
msgbuf rcv;
ASSERT_THAT(msgsnd(queue.get(), &buf, 0, 0), SyscallSucceeds());
EXPECT_THAT(msgrcv(queue.get(), &rcv, sizeof(buf.mtext) + 1, 0, 0),
SyscallSucceedsWithValue(0));
}
// Test truncation of message with MSG_NOERROR flag.
TEST(MsgqueueTest, MsgOpTruncate) {
Queue queue = ASSERT_NO_ERRNO_AND_VALUE(Msgget(IPC_PRIVATE, 0600));
msgbuf buf{1, ""};
msgbuf rcv;
ASSERT_THAT(msgsnd(queue.get(), &buf, sizeof(buf.mtext), 0),
SyscallSucceeds());
EXPECT_THAT(msgrcv(queue.get(), &rcv, sizeof(buf.mtext) - 1, 0, MSG_NOERROR),
SyscallSucceedsWithValue(sizeof(buf.mtext) - 1));
}
// Test msgsnd and msgrcv using invalid arguments.
TEST(MsgqueueTest, MsgOpInvalidArgs) {
Queue queue = ASSERT_NO_ERRNO_AND_VALUE(Msgget(IPC_PRIVATE, 0600));
msgbuf buf{1, ""};
EXPECT_THAT(msgsnd(-1, &buf, 0, 0), SyscallFailsWithErrno(EINVAL));
EXPECT_THAT(msgsnd(queue.get(), &buf, -1, 0), SyscallFailsWithErrno(EINVAL));
buf.mtype = -1;
EXPECT_THAT(msgsnd(queue.get(), &buf, 1, 0), SyscallFailsWithErrno(EINVAL));
EXPECT_THAT(msgrcv(-1, &buf, 1, 0, 0), SyscallFailsWithErrno(EINVAL));
EXPECT_THAT(msgrcv(queue.get(), &buf, -1, 0, 0),
SyscallFailsWithErrno(EINVAL));
}
// Test non-blocking msgrcv with an empty queue.
TEST(MsgqueueTest, MsgOpNoMsg) {
Queue queue = ASSERT_NO_ERRNO_AND_VALUE(Msgget(IPC_PRIVATE, 0600));
msgbuf rcv;
EXPECT_THAT(msgrcv(queue.get(), &rcv, sizeof(rcv.mtext) + 1, 0, IPC_NOWAIT),
SyscallFailsWithErrno(ENOMSG));
}
// Test non-blocking msgrcv with a non-empty queue, but no messages of wanted
// type.
TEST(MsgqueueTest, MsgOpNoMsgType) {
Queue queue = ASSERT_NO_ERRNO_AND_VALUE(Msgget(IPC_PRIVATE, 0600));
msgbuf buf{1, ""};
ASSERT_THAT(msgsnd(queue.get(), &buf, sizeof(buf.mtext), 0),
SyscallSucceeds());
EXPECT_THAT(msgrcv(queue.get(), &buf, sizeof(buf.mtext) + 1, 2, IPC_NOWAIT),
SyscallFailsWithErrno(ENOMSG));
}
// Test msgrcv with a larger size message than wanted, and truncation disabled.
TEST(MsgqueueTest, MsgOpTooBig) {
Queue queue = ASSERT_NO_ERRNO_AND_VALUE(Msgget(IPC_PRIVATE, 0600));
msgbuf buf{1, ""};
ASSERT_THAT(msgsnd(queue.get(), &buf, sizeof(buf.mtext), 0),
SyscallSucceeds());
EXPECT_THAT(msgrcv(queue.get(), &buf, sizeof(buf.mtext) - 1, 0, 0),
SyscallFailsWithErrno(E2BIG));
}
// Test receiving messages based on type.
TEST(MsgqueueTest, MsgRcvType) {
Queue queue = ASSERT_NO_ERRNO_AND_VALUE(Msgget(IPC_PRIVATE, 0600));
// Send messages in an order and receive them in reverse, based on type,
// which shouldn't block.
std::map<int64_t, msgbuf> typeToBuf = {
{1, msgbuf{1, "Message 1."}}, {2, msgbuf{2, "Message 2."}},
{3, msgbuf{3, "Message 3."}}, {4, msgbuf{4, "Message 4."}},
{5, msgbuf{5, "Message 5."}}, {6, msgbuf{6, "Message 6."}},
{7, msgbuf{7, "Message 7."}}, {8, msgbuf{8, "Message 8."}},
{9, msgbuf{9, "Message 9."}}};
for (auto const& [type, buf] : typeToBuf) {
ASSERT_THAT(msgsnd(queue.get(), &buf, sizeof(buf.mtext), 0),
SyscallSucceeds());
}
for (int64_t i = typeToBuf.size(); i > 0; i--) {
msgbuf rcv;
EXPECT_THAT(msgrcv(queue.get(), &rcv, sizeof(typeToBuf[i].mtext) + 1, i, 0),
SyscallSucceedsWithValue(sizeof(typeToBuf[i].mtext)));
EXPECT_TRUE(typeToBuf[i] == rcv);
}
}
// Test using MSG_EXCEPT to receive a different-type message.
TEST(MsgqueueTest, MsgExcept) {
Queue queue = ASSERT_NO_ERRNO_AND_VALUE(Msgget(IPC_PRIVATE, 0600));
std::map<int64_t, msgbuf> typeToBuf = {
{1, msgbuf{1, "Message 1."}},
{2, msgbuf{2, "Message 2."}},
};
for (auto const& [type, buf] : typeToBuf) {
ASSERT_THAT(msgsnd(queue.get(), &buf, sizeof(buf.mtext), 0),
SyscallSucceeds());
}
for (int64_t i = typeToBuf.size(); i > 0; i--) {
msgbuf actual = typeToBuf[i == 1 ? 2 : 1];
msgbuf rcv;
EXPECT_THAT(
msgrcv(queue.get(), &rcv, sizeof(actual.mtext) + 1, i, MSG_EXCEPT),
SyscallSucceedsWithValue(sizeof(actual.mtext)));
EXPECT_TRUE(actual == rcv);
}
}
// Test msgrcv with a negative type.
TEST(MsgqueueTest, MsgRcvTypeNegative) {
Queue queue = ASSERT_NO_ERRNO_AND_VALUE(Msgget(IPC_PRIVATE, 0600));
// When msgtyp is negative, msgrcv returns the first message with mtype less
// than or equal to the absolute value.
msgbuf buf{2, "A message."};
msgbuf rcv;
ASSERT_THAT(msgsnd(queue.get(), &buf, sizeof(buf.mtext), 0),
SyscallSucceeds());
// Nothing is less than or equal to 1.
EXPECT_THAT(msgrcv(queue.get(), &rcv, sizeof(buf.mtext) + 1, -1, IPC_NOWAIT),
SyscallFailsWithErrno(ENOMSG));
EXPECT_THAT(msgrcv(queue.get(), &rcv, sizeof(buf.mtext) + 1, -3, 0),
SyscallSucceedsWithValue(sizeof(buf.mtext)));
EXPECT_TRUE(buf == rcv);
}
// Test permission-related failure scenarios.
TEST(MsgqueueTest, MsgOpPermissions) {
AutoCapability cap(CAP_IPC_OWNER, false);
Queue queue = ASSERT_NO_ERRNO_AND_VALUE(Msgget(IPC_PRIVATE, 0000));
msgbuf buf{1, ""};
EXPECT_THAT(msgsnd(queue.get(), &buf, sizeof(buf.mtext), 0),
SyscallFailsWithErrno(EACCES));
EXPECT_THAT(msgrcv(queue.get(), &buf, sizeof(buf.mtext), 0, 0),
SyscallFailsWithErrno(EACCES));
}
// Test limits for messages and queues.
TEST(MsgqueueTest, MsgOpLimits) {
Queue queue = ASSERT_NO_ERRNO_AND_VALUE(Msgget(IPC_PRIVATE, 0600));
msgbuf buf{1, "A message."};
// Limit for one message.
EXPECT_THAT(msgsnd(queue.get(), &buf, msgMax + 1, 0),
SyscallFailsWithErrno(EINVAL));
// Limit for queue.
msgmax limit{1, ""};
for (size_t i = 0, msgCount = msgMnb / msgMax; i < msgCount; i++) {
EXPECT_THAT(msgsnd(queue.get(), &limit, sizeof(limit.mtext), 0),
SyscallSucceeds());
}
EXPECT_THAT(msgsnd(queue.get(), &limit, sizeof(limit.mtext), IPC_NOWAIT),
SyscallFailsWithErrno(EAGAIN));
}
// MsgCopySupported returns true if MSG_COPY is supported.
bool MsgCopySupported() {
// msgrcv(2) man page states that MSG_COPY flag is available only if the
// kernel was built with the CONFIG_CHECKPOINT_RESTORE option. If MSG_COPY
// is used when the kernel was configured without the option, msgrcv produces
// a ENOSYS error.
// To avoid test failure, we perform a small test using msgrcv, and skip the
// test if errno == ENOSYS. This means that the test will always run on
// gVisor, but may be skipped on native linux.
auto maybe_id = Msgget(IPC_PRIVATE, 0600);
if (!maybe_id.ok()) {
return false;
}
Queue queue(std::move(maybe_id.ValueOrDie()));
msgbuf buf{1, "Test message."};
msgsnd(queue.get(), &buf, sizeof(buf.mtext), 0);
return !(msgrcv(queue.get(), &buf, sizeof(buf.mtext) + 1, 0,
MSG_COPY | IPC_NOWAIT) == -1 &&
errno == ENOSYS);
}
// Test msgrcv using MSG_COPY.
TEST(MsgqueueTest, MsgCopy) {
SKIP_IF(!MsgCopySupported());
Queue queue = ASSERT_NO_ERRNO_AND_VALUE(Msgget(IPC_PRIVATE, 0600));
msgbuf bufs[5] = {
msgbuf{1, "Message 1."}, msgbuf{2, "Message 2."}, msgbuf{3, "Message 3."},
msgbuf{4, "Message 4."}, msgbuf{5, "Message 5."},
};
for (auto& buf : bufs) {
ASSERT_THAT(msgsnd(queue.get(), &buf, sizeof(buf.mtext), 0),
SyscallSucceeds());
}
// Receive a copy of the messages.
for (size_t i = 0, size = sizeof(bufs) / sizeof(bufs[0]); i < size; i++) {
msgbuf buf = bufs[i];
msgbuf rcv;
EXPECT_THAT(msgrcv(queue.get(), &rcv, sizeof(buf.mtext) + 1, i,
MSG_COPY | IPC_NOWAIT),
SyscallSucceedsWithValue(sizeof(buf.mtext)));
EXPECT_TRUE(buf == rcv);
}
// Re-receive the messages normally.
for (auto& buf : bufs) {
msgbuf rcv;
EXPECT_THAT(msgrcv(queue.get(), &rcv, sizeof(buf.mtext) + 1, 0, 0),
SyscallSucceedsWithValue(sizeof(buf.mtext)));
EXPECT_TRUE(buf == rcv);
}
}
// Test msgrcv using MSG_COPY with invalid arguments.
TEST(MsgqueueTest, MsgCopyInvalidArgs) {
SKIP_IF(!MsgCopySupported());
Queue queue = ASSERT_NO_ERRNO_AND_VALUE(Msgget(IPC_PRIVATE, 0600));
msgbuf rcv;
EXPECT_THAT(msgrcv(queue.get(), &rcv, msgSize, 1, MSG_COPY),
SyscallFailsWithErrno(EINVAL));
EXPECT_THAT(
msgrcv(queue.get(), &rcv, msgSize, 5, MSG_COPY | MSG_EXCEPT | IPC_NOWAIT),
SyscallFailsWithErrno(EINVAL));
}
// Test msgrcv using MSG_COPY with invalid indices.
TEST(MsgqueueTest, MsgCopyInvalidIndex) {
SKIP_IF(!MsgCopySupported());
Queue queue = ASSERT_NO_ERRNO_AND_VALUE(Msgget(IPC_PRIVATE, 0600));
msgbuf rcv;
EXPECT_THAT(msgrcv(queue.get(), &rcv, msgSize, -3, MSG_COPY | IPC_NOWAIT),
SyscallFailsWithErrno(ENOMSG));
EXPECT_THAT(msgrcv(queue.get(), &rcv, msgSize, 5, MSG_COPY | IPC_NOWAIT),
SyscallFailsWithErrno(ENOMSG));
}
// Test msgrcv (most probably) blocking on an empty queue.
TEST(MsgqueueTest, MsgRcvBlocking) {
Queue queue = ASSERT_NO_ERRNO_AND_VALUE(Msgget(IPC_PRIVATE, 0600));
msgbuf buf{1, "A message."};
ScopedThread t([&] {
msgbuf rcv;
ASSERT_THAT(
RetryEINTR(msgrcv)(queue.get(), &rcv, sizeof(buf.mtext) + 1, 0, 0),
SyscallSucceedsWithValue(sizeof(buf.mtext)));
EXPECT_TRUE(rcv == buf);
});
// Sleep to try and make msgrcv block before sending a message.
absl::SleepFor(absl::Milliseconds(150));
EXPECT_THAT(msgsnd(queue.get(), &buf, sizeof(buf.mtext), 0),
SyscallSucceeds());
}
// Test msgrcv (most probably) waiting for a specific-type message.
TEST(MsgqueueTest, MsgRcvTypeBlocking) {
Queue queue = ASSERT_NO_ERRNO_AND_VALUE(Msgget(IPC_PRIVATE, 0600));
msgbuf bufs[5] = {{1, "A message."},
{1, "A message."},
{1, "A message."},
{1, "A message."},
{2, "A different message."}};
ScopedThread t([&] {
msgbuf buf = bufs[4]; // Buffer that should be received.
msgbuf rcv;
ASSERT_THAT(
RetryEINTR(msgrcv)(queue.get(), &rcv, sizeof(buf.mtext) + 1, 2, 0),
SyscallSucceedsWithValue(sizeof(buf.mtext)));
EXPECT_TRUE(rcv == buf);
});
// Sleep to try and make msgrcv block before sending messages.
absl::SleepFor(absl::Milliseconds(150));
// Send all buffers in order, only last one should be received.
for (auto& buf : bufs) {
EXPECT_THAT(msgsnd(queue.get(), &buf, sizeof(buf.mtext), 0),
SyscallSucceeds());
}
}
// Test msgsnd (most probably) blocking on a full queue.
TEST(MsgqueueTest, MsgSndBlocking) {
Queue queue = ASSERT_NO_ERRNO_AND_VALUE(Msgget(IPC_PRIVATE, 0600));
msgmax buf{1, ""}; // Has max amount of bytes.
const size_t msgCount = msgMnb / msgMax; // Number of messages that can be
// sent without blocking.
ScopedThread t([&] {
// Fill the queue.
for (size_t i = 0; i < msgCount; i++) {
ASSERT_THAT(msgsnd(queue.get(), &buf, sizeof(buf.mtext), 0),
SyscallSucceeds());
}
// Next msgsnd should block.
ASSERT_THAT(RetryEINTR(msgsnd)(queue.get(), &buf, sizeof(buf.mtext), 0),
SyscallSucceeds());
});
const DisableSave ds; // Too many syscalls.
// To increase the chance of the last msgsnd blocking before doing a msgrcv,
// we use MSG_COPY option to copy the last index in the queue. As long as
// MSG_COPY fails, the queue hasn't yet been filled. When MSG_COPY succeeds,
// the queue is filled, and most probably, a blocking msgsnd has been made.
msgmax rcv;
while (msgrcv(queue.get(), &rcv, msgMax, msgCount - 1,
MSG_COPY | IPC_NOWAIT) == -1 &&
errno == ENOMSG) {
}
// Delay a bit more for the blocking msgsnd.
absl::SleepFor(absl::Milliseconds(100));
EXPECT_THAT(msgrcv(queue.get(), &rcv, sizeof(buf.mtext), 0, 0),
SyscallSucceedsWithValue(sizeof(buf.mtext)));
}
// Test removing a queue while a blocking msgsnd is executing.
TEST(MsgqueueTest, MsgSndRmWhileBlocking) {
Queue queue = ASSERT_NO_ERRNO_AND_VALUE(Msgget(IPC_PRIVATE, 0600));
// Number of messages that can be sent without blocking.
const size_t msgCount = msgMnb / msgMax;
ScopedThread t([&] {
// Fill the queue.
msgmax buf{1, ""};
for (size_t i = 0; i < msgCount; i++) {
EXPECT_THAT(msgsnd(queue.get(), &buf, sizeof(buf.mtext), 0),
SyscallSucceeds());
}
// Next msgsnd should block. Because we're repeating on EINTR, msgsnd may
// race with msgctl(IPC_RMID) and return EINVAL.
EXPECT_THAT(RetryEINTR(msgsnd)(queue.get(), &buf, sizeof(buf.mtext), 0),
SyscallFails());
EXPECT_TRUE((errno == EIDRM || errno == EINVAL));
});
const DisableSave ds; // Too many syscalls.
// Similar to MsgSndBlocking, we do this to increase the chance of msgsnd
// blocking before removing the queue.
msgmax rcv;
while (msgrcv(queue.get(), &rcv, msgMax, msgCount - 1,
MSG_COPY | IPC_NOWAIT) == -1 &&
errno == ENOMSG) {
}
absl::SleepFor(absl::Milliseconds(100));
EXPECT_THAT(msgctl(queue.release(), IPC_RMID, nullptr), SyscallSucceeds());
}
// Test removing a queue while a blocking msgrcv is executing.
TEST(MsgqueueTest, MsgRcvRmWhileBlocking) {
Queue queue = ASSERT_NO_ERRNO_AND_VALUE(Msgget(IPC_PRIVATE, 0600));
ScopedThread t([&] {
// Because we're repeating on EINTR, msgsnd may race with msgctl(IPC_RMID)
// and return EINVAL.
msgbuf rcv;
EXPECT_THAT(RetryEINTR(msgrcv)(queue.get(), &rcv, 1, 2, 0), SyscallFails());
EXPECT_TRUE(errno == EIDRM || errno == EINVAL);
});
// Sleep to try and make msgrcv block before sending messages.
absl::SleepFor(absl::Milliseconds(150));
EXPECT_THAT(msgctl(queue.release(), IPC_RMID, nullptr), SyscallSucceeds());
}
// Test a collection of msgsnd/msgrcv operations in different processes.
TEST(MsgqueueTest, MsgOpGeneral) {
Queue queue = ASSERT_NO_ERRNO_AND_VALUE(Msgget(IPC_PRIVATE, 0600));
// Create multiple sending/receiving threads that send messages back and
// forth. There's a matching recv for each send, so by the end of the test,
// all threads should succeed and return.
const std::vector<msgbuf> msgs = {
msgbuf{1, "Message 1."}, msgbuf{2, "Message 2."}, msgbuf{3, "Message 3."},
msgbuf{4, "Message 4."}, msgbuf{5, "Message 5."}};
auto receiver = [&](int i) {
return [i, &msgs, &queue]() {
const msgbuf& target = msgs[i];
msgbuf rcv;
EXPECT_THAT(RetryEINTR(msgrcv)(queue.get(), &rcv,
sizeof(target.mtext) + 1, target.mtype, 0),
SyscallSucceedsWithValue(sizeof(target.mtext)));
EXPECT_EQ(rcv.mtype, target.mtype);
EXPECT_EQ(0, memcmp(rcv.mtext, target.mtext, sizeof(target.mtext)));
};
};
ScopedThread r1(receiver(0));
ScopedThread r2(receiver(1));
ScopedThread r3(receiver(2));
ScopedThread r4(receiver(3));
ScopedThread r5(receiver(4));
ScopedThread r6(receiver(0));
ScopedThread r7(receiver(1));
ScopedThread r8(receiver(2));
ScopedThread r9(receiver(3));
ScopedThread r10(receiver(4));
auto sender = [&](int i) {
return [i, &msgs, &queue]() {
const msgbuf& target = msgs[i];
EXPECT_THAT(
RetryEINTR(msgsnd)(queue.get(), &target, sizeof(target.mtext), 0),
SyscallSucceeds());
};
};
ScopedThread s1(sender(0));
ScopedThread s2(sender(1));
ScopedThread s3(sender(2));
ScopedThread s4(sender(3));
ScopedThread s5(sender(4));
ScopedThread s6(sender(0));
ScopedThread s7(sender(1));
ScopedThread s8(sender(2));
ScopedThread s9(sender(3));
ScopedThread s10(sender(4));
}
void empty_sighandler(int sig, siginfo_t* info, void* context) {}
TEST(MsgqueueTest, InterruptRecv) {
Queue queue = ASSERT_NO_ERRNO_AND_VALUE(Msgget(IPC_PRIVATE, 0600));
char buf[64];
absl::Notification done, exit;
// Thread calling msgrcv with no corresponding send. It would block forever,
// but we'll interrupt with a signal below.
ScopedThread t([&] {
struct sigaction sa = {};
sa.sa_sigaction = empty_sighandler;
sigfillset(&sa.sa_mask);
sa.sa_flags = SA_SIGINFO;
auto cleanup_sigaction =
ASSERT_NO_ERRNO_AND_VALUE(ScopedSigaction(kInterruptSignal, sa));
auto sa_cleanup = ASSERT_NO_ERRNO_AND_VALUE(
ScopedSignalMask(SIG_UNBLOCK, kInterruptSignal));
EXPECT_THAT(msgrcv(queue.get(), &buf, sizeof(buf), 0, 0),
SyscallFailsWithErrno(EINTR));
done.Notify();
exit.WaitForNotification();
});
const DisableSave ds; // Too many syscalls.
// We want the signal to arrive while msgrcv is blocking, but not after the
// thread has exited. Signals that arrive before msgrcv are no-ops.
do {
EXPECT_THAT(kill(getpid(), kInterruptSignal), SyscallSucceeds());
absl::SleepFor(absl::Milliseconds(100)); // Rate limit.
} while (!done.HasBeenNotified());
exit.Notify();
t.Join();
}
TEST(MsgqueueTest, InterruptSend) {
Queue queue = ASSERT_NO_ERRNO_AND_VALUE(Msgget(IPC_PRIVATE, 0600));
msgmax buf{1, ""};
// Number of messages that can be sent without blocking.
const size_t msgCount = msgMnb / msgMax;
// Fill the queue.
for (size_t i = 0; i < msgCount; i++) {
ASSERT_THAT(msgsnd(queue.get(), &buf, sizeof(buf.mtext), 0),
SyscallSucceeds());
}
absl::Notification done, exit;
// Thread calling msgsnd on a full queue. It would block forever, but we'll
// interrupt with a signal below.
ScopedThread t([&] {
struct sigaction sa = {};
sa.sa_sigaction = empty_sighandler;
sigfillset(&sa.sa_mask);
sa.sa_flags = SA_SIGINFO;
auto cleanup_sigaction =
ASSERT_NO_ERRNO_AND_VALUE(ScopedSigaction(kInterruptSignal, sa));
auto sa_cleanup = ASSERT_NO_ERRNO_AND_VALUE(
ScopedSignalMask(SIG_UNBLOCK, kInterruptSignal));
EXPECT_THAT(msgsnd(queue.get(), &buf, sizeof(buf.mtext), 0),
SyscallFailsWithErrno(EINTR));
done.Notify();
exit.WaitForNotification();
});
const DisableSave ds; // Too many syscalls.
// We want the signal to arrive while msgsnd is blocking, but not after the
// thread has exited. Signals that arrive before msgsnd are no-ops.
do {
EXPECT_THAT(kill(getpid(), kInterruptSignal), SyscallSucceeds());
absl::SleepFor(absl::Milliseconds(100)); // Rate limit.
} while (!done.HasBeenNotified());
exit.Notify();
t.Join();
}
// Test msgctl with IPC_STAT option.
TEST(MsgqueueTest, MsgCtlIpcStat) {
auto start = absl::Now();
Queue queue(msgget(IPC_PRIVATE, 0600));
ASSERT_THAT(queue.get(), SyscallSucceeds());
const uid_t uid = getuid();
const gid_t gid = getgid();
const pid_t pid = getpid();
struct msqid_ds ds;
ASSERT_THAT(msgctl(queue.get(), IPC_STAT, &ds), SyscallSucceeds());
EXPECT_EQ(ds.msg_perm.__key, IPC_PRIVATE);
EXPECT_EQ(ds.msg_perm.uid, uid);
EXPECT_EQ(ds.msg_perm.gid, gid);
EXPECT_EQ(ds.msg_perm.cuid, uid);
EXPECT_EQ(ds.msg_perm.cgid, gid);
EXPECT_EQ(ds.msg_perm.mode, 0600);
EXPECT_EQ(ds.msg_stime, 0);
EXPECT_EQ(ds.msg_rtime, 0);
EXPECT_GE(ds.msg_ctime, absl::ToTimeT(start));
EXPECT_EQ(ds.msg_cbytes, 0);
EXPECT_EQ(ds.msg_qnum, 0);
EXPECT_EQ(ds.msg_qbytes, msgMnb);
EXPECT_EQ(ds.msg_lspid, 0);
EXPECT_EQ(ds.msg_lrpid, 0);
// The timestamps only have a resolution of seconds; slow down so we actually
// see the timestamps change.
absl::SleepFor(absl::Seconds(1));
auto pre_send = absl::Now();
msgbuf buf{1, "A message."};
ASSERT_THAT(msgsnd(queue.get(), &buf, sizeof(buf.mtext), 0),
SyscallSucceeds());
ASSERT_THAT(msgctl(queue.get(), IPC_STAT, &ds), SyscallSucceeds());
EXPECT_GE(ds.msg_stime, absl::ToTimeT(pre_send));
EXPECT_EQ(ds.msg_rtime, 0);
EXPECT_GE(ds.msg_ctime, absl::ToTimeT(start));
EXPECT_EQ(ds.msg_cbytes, msgSize);
EXPECT_EQ(ds.msg_qnum, 1);
EXPECT_EQ(ds.msg_qbytes, msgMnb);
EXPECT_EQ(ds.msg_lspid, pid);
EXPECT_EQ(ds.msg_lrpid, 0);
absl::SleepFor(absl::Seconds(1));
auto pre_receive = absl::Now();
ASSERT_THAT(msgrcv(queue.get(), &buf, sizeof(buf.mtext), 0, 0),
SyscallSucceedsWithValue(msgSize));
ASSERT_THAT(msgctl(queue.get(), IPC_STAT, &ds), SyscallSucceeds());
EXPECT_GE(ds.msg_stime, absl::ToTimeT(pre_send));
EXPECT_GE(ds.msg_rtime, absl::ToTimeT(pre_receive));
EXPECT_GE(ds.msg_ctime, absl::ToTimeT(start));
EXPECT_EQ(ds.msg_cbytes, 0);
EXPECT_EQ(ds.msg_qnum, 0);
EXPECT_EQ(ds.msg_qbytes, msgMnb);
EXPECT_EQ(ds.msg_lspid, pid);
EXPECT_EQ(ds.msg_lrpid, pid);
}
// Test msgctl with IPC_STAT option on a write-only queue.
TEST(MsgqueueTest, MsgCtlIpcStatWriteOnly) {
// Drop CAP_IPC_OWNER which allows us to bypass permissions.
AutoCapability cap(CAP_IPC_OWNER, false);
Queue queue(msgget(IPC_PRIVATE, 0200));
ASSERT_THAT(queue.get(), SyscallSucceeds());
struct msqid_ds ds;
ASSERT_THAT(msgctl(queue.get(), IPC_STAT, &ds),
SyscallFailsWithErrno(EACCES));
}
// Test msgctl with IPC_SET option.
TEST(MsgqueueTest, MsgCtlIpcSet) {
Queue queue(msgget(IPC_PRIVATE, 0600));
ASSERT_THAT(queue.get(), SyscallSucceeds());
struct msqid_ds ds;
ASSERT_THAT(msgctl(queue.get(), IPC_STAT, &ds), SyscallSucceeds());
EXPECT_EQ(ds.msg_perm.mode, 0600);
ds.msg_perm.mode = 0777;
ASSERT_THAT(msgctl(queue.get(), IPC_SET, &ds), SyscallSucceeds());
ASSERT_THAT(msgctl(queue.get(), IPC_STAT, &ds), SyscallSucceeds());
EXPECT_EQ(ds.msg_perm.mode, 0777);
}
// Test increasing msg_qbytes beyond limit with IPC_SET.
TEST(MsgqueueTest, MsgCtlIpcSetMaxBytes) {
// Drop CAP_SYS_RESOURCE which allows us to increase msg_qbytes beyond the
// system parameter MSGMNB.
AutoCapability cap(CAP_SYS_RESOURCE, false);
Queue queue(msgget(IPC_PRIVATE, 0600));
ASSERT_THAT(queue.get(), SyscallSucceeds());
struct msqid_ds ds;
ASSERT_THAT(msgctl(queue.get(), IPC_STAT, &ds), SyscallSucceeds());
EXPECT_EQ(ds.msg_qbytes, msgMnb);
ds.msg_qbytes = msgMnb - 10;
ASSERT_THAT(msgctl(queue.get(), IPC_SET, &ds), SyscallSucceeds());
ASSERT_THAT(msgctl(queue.get(), IPC_STAT, &ds), SyscallSucceeds());
EXPECT_EQ(ds.msg_qbytes, msgMnb - 10);
ds.msg_qbytes = msgMnb + 10;
EXPECT_THAT(msgctl(queue.get(), IPC_SET, &ds), SyscallFailsWithErrno(EPERM));
}
// Test msgctl with IPC_INFO option.
TEST(MsgqueueTest, MsgCtlIpcInfo) {
struct msginfo info;
ASSERT_THAT(msgctl(0, IPC_INFO, reinterpret_cast<struct msqid_ds*>(&info)),
SyscallSucceeds());
EXPECT_GT(info.msgmax, 0);
EXPECT_GT(info.msgmni, 0);
EXPECT_GT(info.msgmnb, 0);
EXPECT_EQ(info.msgpool, msgPool);
EXPECT_EQ(info.msgmap, msgMap);
EXPECT_EQ(info.msgssz, msgSsz);
EXPECT_EQ(info.msgtql, msgTql);
}
// Test msgctl with MSG_INFO option.
TEST(MsgqueueTest, MsgCtlMsgInfo) {
struct msginfo info;
ASSERT_THAT(msgctl(0, MSG_INFO, reinterpret_cast<struct msqid_ds*>(&info)),
SyscallSucceeds());
EXPECT_GT(info.msgmax, 0);
EXPECT_GT(info.msgmni, 0);
EXPECT_GT(info.msgmnb, 0);
EXPECT_EQ(info.msgpool, 0); // Number of queues in the system.
EXPECT_EQ(info.msgmap, 0); // Total number of messages in all queues.
EXPECT_EQ(info.msgtql, 0); // Total number of bytes in all messages.
EXPECT_EQ(info.msgssz, msgSsz);
// Add a queue and a message.
Queue queue(msgget(IPC_PRIVATE, 0600));
ASSERT_THAT(queue.get(), SyscallSucceeds());
msgbuf buf{1, "A message."};
ASSERT_THAT(msgsnd(queue.get(), &buf, sizeof(buf.mtext), 0),
SyscallSucceeds());
ASSERT_THAT(msgctl(0, MSG_INFO, reinterpret_cast<struct msqid_ds*>(&info)),
SyscallSucceeds());
EXPECT_GT(info.msgmax, 0);
EXPECT_GT(info.msgmni, 0);
EXPECT_GT(info.msgmnb, 0);
EXPECT_EQ(info.msgpool, 1); // Number of queues in the system.
EXPECT_EQ(info.msgmap, 1); // Total number of messages in all queues.
EXPECT_EQ(info.msgtql, msgSize); // Total number of bytes in all messages.
EXPECT_EQ(info.msgssz, msgSsz);
}
} // namespace
} // namespace testing
} // namespace gvisor
int main(int argc, char** argv) {
// Some tests depend on delivering a signal to the main thread. Block the
// target signal so that any other threads created by TestInit will also have
// the signal blocked.
sigset_t set;
sigemptyset(&set);
sigaddset(&set, gvisor::testing::kInterruptSignal);
TEST_PCHECK(sigprocmask(SIG_BLOCK, &set, nullptr) == 0);
gvisor::testing::TestInit(&argc, &argv);
return gvisor::testing::RunAllTests();
}
|