1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <errno.h>
#include <fcntl.h>
#include <linux/magic.h>
#include <linux/unistd.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/resource.h>
#include <sys/statfs.h>
#include <sys/syscall.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/strings/escaping.h"
#include "absl/strings/str_split.h"
#include "test/util/cleanup.h"
#include "test/util/file_descriptor.h"
#include "test/util/fs_util.h"
#include "test/util/memory_util.h"
#include "test/util/multiprocess_util.h"
#include "test/util/temp_path.h"
#include "test/util/test_util.h"
using ::testing::Gt;
namespace gvisor {
namespace testing {
namespace {
PosixErrorOr<int64_t> VirtualMemorySize() {
ASSIGN_OR_RETURN_ERRNO(auto contents, GetContents("/proc/self/statm"));
std::vector<std::string> parts = absl::StrSplit(contents, ' ');
if (parts.empty()) {
return PosixError(EINVAL, "Unable to parse /proc/self/statm");
}
ASSIGN_OR_RETURN_ERRNO(auto pages, Atoi<int64_t>(parts[0]));
return pages * getpagesize();
}
class MMapTest : public ::testing::Test {
protected:
// Unmap mapping, if one was made.
void TearDown() override {
if (addr_) {
EXPECT_THAT(Unmap(), SyscallSucceeds());
}
}
// Remembers mapping, so it can be automatically unmapped.
uintptr_t Map(uintptr_t addr, size_t length, int prot, int flags, int fd,
off_t offset) {
void* ret =
mmap(reinterpret_cast<void*>(addr), length, prot, flags, fd, offset);
if (ret != MAP_FAILED) {
addr_ = ret;
length_ = length;
}
return reinterpret_cast<uintptr_t>(ret);
}
// Unmap previous mapping
int Unmap() {
if (!addr_) {
return -1;
}
int ret = munmap(addr_, length_);
addr_ = nullptr;
length_ = 0;
return ret;
}
// Msync the mapping.
int Msync() { return msync(addr_, length_, MS_SYNC); }
// Mlock the mapping.
int Mlock() { return mlock(addr_, length_); }
// Munlock the mapping.
int Munlock() { return munlock(addr_, length_); }
int Protect(uintptr_t addr, size_t length, int prot) {
return mprotect(reinterpret_cast<void*>(addr), length, prot);
}
void* addr_ = nullptr;
size_t length_ = 0;
};
// Matches if arg contains the same contents as string str.
MATCHER_P(EqualsMemory, str, "") {
if (0 == memcmp(arg, str.c_str(), str.size())) {
return true;
}
*result_listener << "Memory did not match. Got:\n"
<< absl::BytesToHexString(
std::string(static_cast<char*>(arg), str.size()))
<< "Want:\n"
<< absl::BytesToHexString(str);
return false;
}
// We can't map pipes, but for different reasons.
TEST_F(MMapTest, MapPipe) {
int fds[2];
ASSERT_THAT(pipe(fds), SyscallSucceeds());
EXPECT_THAT(Map(0, kPageSize, PROT_READ, MAP_PRIVATE, fds[0], 0),
SyscallFailsWithErrno(ENODEV));
EXPECT_THAT(Map(0, kPageSize, PROT_READ, MAP_PRIVATE, fds[1], 0),
SyscallFailsWithErrno(EACCES));
ASSERT_THAT(close(fds[0]), SyscallSucceeds());
ASSERT_THAT(close(fds[1]), SyscallSucceeds());
}
// It's very common to mmap /dev/zero because anonymous mappings aren't part
// of POSIX although they are widely supported. So a zero initialized memory
// region would actually come from a "file backed" /dev/zero mapping.
TEST_F(MMapTest, MapDevZeroShared) {
// This test will verify that we're able to map a page backed by /dev/zero
// as MAP_SHARED.
const FileDescriptor dev_zero =
ASSERT_NO_ERRNO_AND_VALUE(Open("/dev/zero", O_RDWR));
// Test that we can create a RW SHARED mapping of /dev/zero.
ASSERT_THAT(
Map(0, kPageSize, PROT_READ | PROT_WRITE, MAP_SHARED, dev_zero.get(), 0),
SyscallSucceeds());
}
TEST_F(MMapTest, MapDevZeroPrivate) {
// This test will verify that we're able to map a page backed by /dev/zero
// as MAP_PRIVATE.
const FileDescriptor dev_zero =
ASSERT_NO_ERRNO_AND_VALUE(Open("/dev/zero", O_RDWR));
// Test that we can create a RW SHARED mapping of /dev/zero.
ASSERT_THAT(
Map(0, kPageSize, PROT_READ | PROT_WRITE, MAP_PRIVATE, dev_zero.get(), 0),
SyscallSucceeds());
}
TEST_F(MMapTest, MapDevZeroNoPersistence) {
// This test will verify that two independent mappings of /dev/zero do not
// appear to reference the same "backed file."
const FileDescriptor dev_zero1 =
ASSERT_NO_ERRNO_AND_VALUE(Open("/dev/zero", O_RDWR));
const FileDescriptor dev_zero2 =
ASSERT_NO_ERRNO_AND_VALUE(Open("/dev/zero", O_RDWR));
ASSERT_THAT(
Map(0, kPageSize, PROT_READ | PROT_WRITE, MAP_SHARED, dev_zero1.get(), 0),
SyscallSucceeds());
// Create a second mapping via the second /dev/zero fd.
void* psec_map = mmap(nullptr, kPageSize, PROT_READ | PROT_WRITE, MAP_SHARED,
dev_zero2.get(), 0);
ASSERT_THAT(reinterpret_cast<intptr_t>(psec_map), SyscallSucceeds());
// Always unmap.
auto cleanup_psec_map = Cleanup(
[&] { EXPECT_THAT(munmap(psec_map, kPageSize), SyscallSucceeds()); });
// Verify that we have independently addressed pages.
ASSERT_NE(psec_map, addr_);
std::string buf_zero(kPageSize, 0x00);
std::string buf_ones(kPageSize, 0xFF);
// Verify the first is actually all zeros after mmap.
EXPECT_THAT(addr_, EqualsMemory(buf_zero));
// Let's fill in the first mapping with 0xFF.
memcpy(addr_, buf_ones.data(), kPageSize);
// Verify that the memcpy actually stuck in the page.
EXPECT_THAT(addr_, EqualsMemory(buf_ones));
// Verify that it didn't affect the second page which should be all zeros.
EXPECT_THAT(psec_map, EqualsMemory(buf_zero));
}
TEST_F(MMapTest, MapDevZeroSharedMultiplePages) {
// This will test that we're able to map /dev/zero over multiple pages.
const FileDescriptor dev_zero =
ASSERT_NO_ERRNO_AND_VALUE(Open("/dev/zero", O_RDWR));
// Test that we can create a RW SHARED mapping of /dev/zero.
ASSERT_THAT(Map(0, kPageSize * 2, PROT_READ | PROT_WRITE, MAP_PRIVATE,
dev_zero.get(), 0),
SyscallSucceeds());
std::string buf_zero(kPageSize * 2, 0x00);
std::string buf_ones(kPageSize * 2, 0xFF);
// Verify the two pages are actually all zeros after mmap.
EXPECT_THAT(addr_, EqualsMemory(buf_zero));
// Fill out the pages with all ones.
memcpy(addr_, buf_ones.data(), kPageSize * 2);
// Verify that the memcpy actually stuck in the pages.
EXPECT_THAT(addr_, EqualsMemory(buf_ones));
}
TEST_F(MMapTest, MapDevZeroSharedFdNoPersistence) {
// This test will verify that two independent mappings of /dev/zero do not
// appear to reference the same "backed file" even when mapped from the
// same initial fd.
const FileDescriptor dev_zero =
ASSERT_NO_ERRNO_AND_VALUE(Open("/dev/zero", O_RDWR));
ASSERT_THAT(
Map(0, kPageSize, PROT_READ | PROT_WRITE, MAP_SHARED, dev_zero.get(), 0),
SyscallSucceeds());
// Create a second mapping via the same fd.
void* psec_map = mmap(nullptr, kPageSize, PROT_READ | PROT_WRITE, MAP_SHARED,
dev_zero.get(), 0);
ASSERT_THAT(reinterpret_cast<int64_t>(psec_map), SyscallSucceeds());
// Always unmap.
auto cleanup_psec_map = Cleanup(
[&] { ASSERT_THAT(munmap(psec_map, kPageSize), SyscallSucceeds()); });
// Verify that we have independently addressed pages.
ASSERT_NE(psec_map, addr_);
std::string buf_zero(kPageSize, 0x00);
std::string buf_ones(kPageSize, 0xFF);
// Verify the first is actually all zeros after mmap.
EXPECT_THAT(addr_, EqualsMemory(buf_zero));
// Let's fill in the first mapping with 0xFF.
memcpy(addr_, buf_ones.data(), kPageSize);
// Verify that the memcpy actually stuck in the page.
EXPECT_THAT(addr_, EqualsMemory(buf_ones));
// Verify that it didn't affect the second page which should be all zeros.
EXPECT_THAT(psec_map, EqualsMemory(buf_zero));
}
TEST_F(MMapTest, MapDevZeroSegfaultAfterUnmap) {
SetupGvisorDeathTest();
// This test will verify that we're able to map a page backed by /dev/zero
// as MAP_SHARED and after it's unmapped any access results in a SIGSEGV.
// This test is redundant but given the special nature of /dev/zero mappings
// it doesn't hurt.
const FileDescriptor dev_zero =
ASSERT_NO_ERRNO_AND_VALUE(Open("/dev/zero", O_RDWR));
const auto rest = [&] {
// Test that we can create a RW SHARED mapping of /dev/zero.
TEST_PCHECK(Map(0, kPageSize, PROT_READ | PROT_WRITE, MAP_SHARED,
dev_zero.get(),
0) != reinterpret_cast<uintptr_t>(MAP_FAILED));
// Confirm that accesses after the unmap result in a SIGSEGV.
//
// N.B. We depend on this process being single-threaded to ensure there
// can't be another mmap to map addr before the dereference below.
void* addr_saved = addr_; // Unmap resets addr_.
TEST_PCHECK(Unmap() == 0);
*reinterpret_cast<volatile int*>(addr_saved) = 0xFF;
};
EXPECT_THAT(InForkedProcess(rest),
IsPosixErrorOkAndHolds(W_EXITCODE(0, SIGSEGV)));
}
TEST_F(MMapTest, MapDevZeroUnaligned) {
const FileDescriptor dev_zero =
ASSERT_NO_ERRNO_AND_VALUE(Open("/dev/zero", O_RDWR));
const size_t size = kPageSize + kPageSize / 2;
const std::string buf_zero(size, 0x00);
ASSERT_THAT(
Map(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, dev_zero.get(), 0),
SyscallSucceeds());
EXPECT_THAT(addr_, EqualsMemory(buf_zero));
ASSERT_THAT(Unmap(), SyscallSucceeds());
ASSERT_THAT(
Map(0, size, PROT_READ | PROT_WRITE, MAP_PRIVATE, dev_zero.get(), 0),
SyscallSucceeds());
EXPECT_THAT(addr_, EqualsMemory(buf_zero));
}
// We can't map _some_ character devices.
TEST_F(MMapTest, MapCharDevice) {
const FileDescriptor cdevfd =
ASSERT_NO_ERRNO_AND_VALUE(Open("/dev/random", 0, 0));
EXPECT_THAT(Map(0, kPageSize, PROT_READ, MAP_PRIVATE, cdevfd.get(), 0),
SyscallFailsWithErrno(ENODEV));
}
// We can't map directories.
TEST_F(MMapTest, MapDirectory) {
const FileDescriptor dirfd =
ASSERT_NO_ERRNO_AND_VALUE(Open(GetAbsoluteTestTmpdir(), 0, 0));
EXPECT_THAT(Map(0, kPageSize, PROT_READ, MAP_PRIVATE, dirfd.get(), 0),
SyscallFailsWithErrno(ENODEV));
}
// We can map *something*
TEST_F(MMapTest, MapAnything) {
EXPECT_THAT(Map(0, kPageSize, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0),
SyscallSucceedsWithValue(Gt(0)));
}
// Map length < PageSize allowed
TEST_F(MMapTest, SmallMap) {
EXPECT_THAT(Map(0, 128, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0),
SyscallSucceeds());
}
// Hint address doesn't break anything.
// Note: there is no requirement we actually get the hint address
TEST_F(MMapTest, HintAddress) {
EXPECT_THAT(
Map(0x30000000, kPageSize, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0),
SyscallSucceeds());
}
// MAP_FIXED gives us exactly the requested address
TEST_F(MMapTest, MapFixed) {
EXPECT_THAT(Map(0x30000000, kPageSize, PROT_NONE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0),
SyscallSucceedsWithValue(0x30000000));
}
// 64-bit addresses work too
#if defined(__x86_64__) || defined(__aarch64__)
TEST_F(MMapTest, MapFixed64) {
EXPECT_THAT(Map(0x300000000000, kPageSize, PROT_NONE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0),
SyscallSucceedsWithValue(0x300000000000));
}
#endif
// MAP_STACK allowed.
// There isn't a good way to verify it did anything.
TEST_F(MMapTest, MapStack) {
EXPECT_THAT(Map(0, kPageSize, PROT_NONE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_STACK, -1, 0),
SyscallSucceeds());
}
// MAP_LOCKED allowed.
// There isn't a good way to verify it did anything.
TEST_F(MMapTest, MapLocked) {
EXPECT_THAT(Map(0, kPageSize, PROT_NONE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_LOCKED, -1, 0),
SyscallSucceeds());
}
// MAP_PRIVATE or MAP_SHARED must be passed
TEST_F(MMapTest, NotPrivateOrShared) {
EXPECT_THAT(Map(0, kPageSize, PROT_NONE, MAP_ANONYMOUS, -1, 0),
SyscallFailsWithErrno(EINVAL));
}
// Only one of MAP_PRIVATE or MAP_SHARED may be passed
TEST_F(MMapTest, PrivateAndShared) {
EXPECT_THAT(Map(0, kPageSize, PROT_NONE,
MAP_PRIVATE | MAP_SHARED | MAP_ANONYMOUS, -1, 0),
SyscallFailsWithErrno(EINVAL));
}
TEST_F(MMapTest, FixedAlignment) {
// Addr must be page aligned (MAP_FIXED)
EXPECT_THAT(Map(0x30000001, kPageSize, PROT_NONE,
MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS, -1, 0),
SyscallFailsWithErrno(EINVAL));
}
// Non-MAP_FIXED address does not need to be page aligned
TEST_F(MMapTest, NonFixedAlignment) {
EXPECT_THAT(
Map(0x30000001, kPageSize, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0),
SyscallSucceeds());
}
// Length = 0 results in EINVAL.
TEST_F(MMapTest, InvalidLength) {
EXPECT_THAT(Map(0, 0, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0),
SyscallFailsWithErrno(EINVAL));
}
// Bad fd not allowed.
TEST_F(MMapTest, BadFd) {
EXPECT_THAT(Map(0, kPageSize, PROT_NONE, MAP_PRIVATE, 999, 0),
SyscallFailsWithErrno(EBADF));
}
// Mappings are writable.
TEST_F(MMapTest, ProtWrite) {
uint64_t addr;
constexpr uint8_t kFirstWord[] = {42, 42, 42, 42};
EXPECT_THAT(addr = Map(0, kPageSize, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0),
SyscallSucceeds());
// This shouldn't cause a SIGSEGV.
memset(reinterpret_cast<void*>(addr), 42, kPageSize);
// The written data should actually be there.
EXPECT_EQ(
0, memcmp(reinterpret_cast<void*>(addr), kFirstWord, sizeof(kFirstWord)));
}
// "Write-only" mappings are writable *and* readable.
TEST_F(MMapTest, ProtWriteOnly) {
uint64_t addr;
constexpr uint8_t kFirstWord[] = {42, 42, 42, 42};
EXPECT_THAT(
addr = Map(0, kPageSize, PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0),
SyscallSucceeds());
// This shouldn't cause a SIGSEGV.
memset(reinterpret_cast<void*>(addr), 42, kPageSize);
// The written data should actually be there.
EXPECT_EQ(
0, memcmp(reinterpret_cast<void*>(addr), kFirstWord, sizeof(kFirstWord)));
}
// "Write-only" mappings are readable.
//
// This is distinct from above to ensure the page is accessible even if the
// initial fault is a write fault.
TEST_F(MMapTest, ProtWriteOnlyReadable) {
uint64_t addr;
constexpr uint64_t kFirstWord = 0;
EXPECT_THAT(
addr = Map(0, kPageSize, PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0),
SyscallSucceeds());
EXPECT_EQ(0, memcmp(reinterpret_cast<void*>(addr), &kFirstWord,
sizeof(kFirstWord)));
}
// Mappings are writable after mprotect from PROT_NONE to PROT_READ|PROT_WRITE.
TEST_F(MMapTest, ProtectProtWrite) {
uint64_t addr;
constexpr uint8_t kFirstWord[] = {42, 42, 42, 42};
EXPECT_THAT(
addr = Map(0, kPageSize, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0),
SyscallSucceeds());
ASSERT_THAT(Protect(addr, kPageSize, PROT_READ | PROT_WRITE),
SyscallSucceeds());
// This shouldn't cause a SIGSEGV.
memset(reinterpret_cast<void*>(addr), 42, kPageSize);
// The written data should actually be there.
EXPECT_EQ(
0, memcmp(reinterpret_cast<void*>(addr), kFirstWord, sizeof(kFirstWord)));
}
// SIGSEGV raised when reading PROT_NONE memory
TEST_F(MMapTest, ProtNoneDeath) {
SetupGvisorDeathTest();
uintptr_t addr;
ASSERT_THAT(
addr = Map(0, kPageSize, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0),
SyscallSucceeds());
EXPECT_EXIT(*reinterpret_cast<volatile int*>(addr),
::testing::KilledBySignal(SIGSEGV), "");
}
// SIGSEGV raised when writing PROT_READ only memory
TEST_F(MMapTest, ReadOnlyDeath) {
SetupGvisorDeathTest();
uintptr_t addr;
ASSERT_THAT(
addr = Map(0, kPageSize, PROT_READ, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0),
SyscallSucceeds());
EXPECT_EXIT(*reinterpret_cast<volatile int*>(addr) = 42,
::testing::KilledBySignal(SIGSEGV), "");
}
// Writable mapping mprotect'd to read-only should not be writable.
TEST_F(MMapTest, MprotectReadOnlyDeath) {
SetupGvisorDeathTest();
uintptr_t addr;
ASSERT_THAT(addr = Map(0, kPageSize, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0),
SyscallSucceeds());
volatile int* val = reinterpret_cast<int*>(addr);
// Copy to ensure page is mapped in.
*val = 42;
ASSERT_THAT(Protect(addr, kPageSize, PROT_READ), SyscallSucceeds());
// Now it shouldn't be writable.
EXPECT_EXIT(*val = 0, ::testing::KilledBySignal(SIGSEGV), "");
}
// Verify that calling mprotect an address that's not page aligned fails.
TEST_F(MMapTest, MprotectNotPageAligned) {
uintptr_t addr;
ASSERT_THAT(addr = Map(0, kPageSize, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0),
SyscallSucceeds());
ASSERT_THAT(Protect(addr + 1, kPageSize - 1, PROT_READ),
SyscallFailsWithErrno(EINVAL));
}
// Verify that calling mprotect with an absurdly huge length fails.
TEST_F(MMapTest, MprotectHugeLength) {
uintptr_t addr;
ASSERT_THAT(addr = Map(0, kPageSize, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0),
SyscallSucceeds());
ASSERT_THAT(Protect(addr, static_cast<size_t>(-1), PROT_READ),
SyscallFailsWithErrno(ENOMEM));
}
#if defined(__x86_64__) || defined(__i386__)
// This code is equivalent in 32 and 64-bit mode
const uint8_t machine_code[] = {
0xb8, 0x2a, 0x00, 0x00, 0x00, // movl $42, %eax
0xc3, // retq
};
#elif defined(__aarch64__)
const uint8_t machine_code[] = {
0x40, 0x05, 0x80, 0x52, // mov w0, #42
0xc0, 0x03, 0x5f, 0xd6, // ret
};
#endif
// PROT_EXEC allows code execution
TEST_F(MMapTest, ProtExec) {
uintptr_t addr;
uint32_t (*func)(void);
EXPECT_THAT(addr = Map(0, kPageSize, PROT_EXEC | PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0),
SyscallSucceeds());
memcpy(reinterpret_cast<void*>(addr), machine_code, sizeof(machine_code));
#if defined(__aarch64__)
// We use this as a memory barrier for Arm64.
ASSERT_THAT(Protect(addr, kPageSize, PROT_READ | PROT_EXEC), SyscallSucceeds());
#endif
func = reinterpret_cast<uint32_t (*)(void)>(addr);
EXPECT_EQ(42, func());
}
// No PROT_EXEC disallows code execution
TEST_F(MMapTest, NoProtExecDeath) {
SetupGvisorDeathTest();
uintptr_t addr;
uint32_t (*func)(void);
EXPECT_THAT(addr = Map(0, kPageSize, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0),
SyscallSucceeds());
memcpy(reinterpret_cast<void*>(addr), machine_code, sizeof(machine_code));
func = reinterpret_cast<uint32_t (*)(void)>(addr);
EXPECT_EXIT(func(), ::testing::KilledBySignal(SIGSEGV), "");
}
TEST_F(MMapTest, NoExceedLimitData) {
void* prevbrk;
void* target_brk;
struct rlimit setlim;
prevbrk = sbrk(0);
ASSERT_NE(-1, reinterpret_cast<intptr_t>(prevbrk));
target_brk = reinterpret_cast<char*>(prevbrk) + 1;
setlim.rlim_cur = RLIM_INFINITY;
setlim.rlim_max = RLIM_INFINITY;
ASSERT_THAT(setrlimit(RLIMIT_DATA, &setlim), SyscallSucceeds());
EXPECT_THAT(brk(target_brk), SyscallSucceedsWithValue(0));
}
TEST_F(MMapTest, ExceedLimitData) {
// To unit test this more precisely, we'd need access to the mm's start_brk
// and end_brk, which we don't have direct access to :/
void* prevbrk;
void* target_brk;
struct rlimit setlim;
prevbrk = sbrk(0);
ASSERT_NE(-1, reinterpret_cast<intptr_t>(prevbrk));
target_brk = reinterpret_cast<char*>(prevbrk) + 8192;
setlim.rlim_cur = 0;
setlim.rlim_max = RLIM_INFINITY;
// Set RLIMIT_DATA very low so any subsequent brk() calls fail.
// Reset RLIMIT_DATA during teardown step.
ASSERT_THAT(setrlimit(RLIMIT_DATA, &setlim), SyscallSucceeds());
EXPECT_THAT(brk(target_brk), SyscallFailsWithErrno(ENOMEM));
// Teardown step...
setlim.rlim_cur = RLIM_INFINITY;
ASSERT_THAT(setrlimit(RLIMIT_DATA, &setlim), SyscallSucceeds());
}
TEST_F(MMapTest, ExceedLimitDataPrlimit) {
// To unit test this more precisely, we'd need access to the mm's start_brk
// and end_brk, which we don't have direct access to :/
void* prevbrk;
void* target_brk;
struct rlimit setlim;
prevbrk = sbrk(0);
ASSERT_NE(-1, reinterpret_cast<intptr_t>(prevbrk));
target_brk = reinterpret_cast<char*>(prevbrk) + 8192;
setlim.rlim_cur = 0;
setlim.rlim_max = RLIM_INFINITY;
// Set RLIMIT_DATA very low so any subsequent brk() calls fail.
// Reset RLIMIT_DATA during teardown step.
ASSERT_THAT(prlimit(0, RLIMIT_DATA, &setlim, nullptr), SyscallSucceeds());
EXPECT_THAT(brk(target_brk), SyscallFailsWithErrno(ENOMEM));
// Teardown step...
setlim.rlim_cur = RLIM_INFINITY;
ASSERT_THAT(setrlimit(RLIMIT_DATA, &setlim), SyscallSucceeds());
}
TEST_F(MMapTest, ExceedLimitDataPrlimitPID) {
// To unit test this more precisely, we'd need access to the mm's start_brk
// and end_brk, which we don't have direct access to :/
void* prevbrk;
void* target_brk;
struct rlimit setlim;
prevbrk = sbrk(0);
ASSERT_NE(-1, reinterpret_cast<intptr_t>(prevbrk));
target_brk = reinterpret_cast<char*>(prevbrk) + 8192;
setlim.rlim_cur = 0;
setlim.rlim_max = RLIM_INFINITY;
// Set RLIMIT_DATA very low so any subsequent brk() calls fail.
// Reset RLIMIT_DATA during teardown step.
ASSERT_THAT(prlimit(syscall(__NR_gettid), RLIMIT_DATA, &setlim, nullptr),
SyscallSucceeds());
EXPECT_THAT(brk(target_brk), SyscallFailsWithErrno(ENOMEM));
// Teardown step...
setlim.rlim_cur = RLIM_INFINITY;
ASSERT_THAT(setrlimit(RLIMIT_DATA, &setlim), SyscallSucceeds());
}
TEST_F(MMapTest, NoExceedLimitAS) {
constexpr uint64_t kAllocBytes = 200 << 20;
// Add some headroom to the AS limit in case of e.g. unexpected stack
// expansion.
constexpr uint64_t kExtraASBytes = kAllocBytes + (20 << 20);
static_assert(kAllocBytes < kExtraASBytes,
"test depends on allocation not exceeding AS limit");
auto vss = ASSERT_NO_ERRNO_AND_VALUE(VirtualMemorySize());
struct rlimit setlim;
setlim.rlim_cur = vss + kExtraASBytes;
setlim.rlim_max = RLIM_INFINITY;
ASSERT_THAT(setrlimit(RLIMIT_AS, &setlim), SyscallSucceeds());
EXPECT_THAT(
Map(0, kAllocBytes, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0),
SyscallSucceedsWithValue(Gt(0)));
}
TEST_F(MMapTest, ExceedLimitAS) {
constexpr uint64_t kAllocBytes = 200 << 20;
// Add some headroom to the AS limit in case of e.g. unexpected stack
// expansion.
constexpr uint64_t kExtraASBytes = 20 << 20;
static_assert(kAllocBytes > kExtraASBytes,
"test depends on allocation exceeding AS limit");
auto vss = ASSERT_NO_ERRNO_AND_VALUE(VirtualMemorySize());
struct rlimit setlim;
setlim.rlim_cur = vss + kExtraASBytes;
setlim.rlim_max = RLIM_INFINITY;
ASSERT_THAT(setrlimit(RLIMIT_AS, &setlim), SyscallSucceeds());
EXPECT_THAT(
Map(0, kAllocBytes, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0),
SyscallFailsWithErrno(ENOMEM));
}
// Tests that setting an anonymous mmap to PROT_NONE doesn't free the memory.
TEST_F(MMapTest, SettingProtNoneDoesntFreeMemory) {
uintptr_t addr;
constexpr uint8_t kFirstWord[] = {42, 42, 42, 42};
EXPECT_THAT(addr = Map(0, kPageSize, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0),
SyscallSucceedsWithValue(Gt(0)));
memset(reinterpret_cast<void*>(addr), 42, kPageSize);
ASSERT_THAT(Protect(addr, kPageSize, PROT_NONE), SyscallSucceeds());
ASSERT_THAT(Protect(addr, kPageSize, PROT_READ | PROT_WRITE),
SyscallSucceeds());
// The written data should still be there.
EXPECT_EQ(
0, memcmp(reinterpret_cast<void*>(addr), kFirstWord, sizeof(kFirstWord)));
}
constexpr char kFileContents[] = "Hello World!";
class MMapFileTest : public MMapTest {
protected:
FileDescriptor fd_;
std::string filename_;
// Open a file for read/write
void SetUp() override {
MMapTest::SetUp();
filename_ = NewTempAbsPath();
fd_ = ASSERT_NO_ERRNO_AND_VALUE(Open(filename_, O_CREAT | O_RDWR, 0644));
// Extend file so it can be written once mapped. Deliberately make the file
// only half a page in size, so we can test what happens when we access the
// second half.
// Use ftruncate(2) once the sentry supports it.
char zero = 0;
size_t count = 0;
do {
const DisableSave ds; // saving 2048 times is slow and useless.
Write(&zero, 1), SyscallSucceedsWithValue(1);
} while (++count < (kPageSize / 2));
ASSERT_THAT(lseek(fd_.get(), 0, SEEK_SET), SyscallSucceedsWithValue(0));
}
// Close and delete file
void TearDown() override {
MMapTest::TearDown();
fd_.reset(); // Make sure the files is closed before we unlink it.
ASSERT_THAT(unlink(filename_.c_str()), SyscallSucceeds());
}
ssize_t Read(char* buf, size_t count) {
ssize_t len = 0;
do {
ssize_t ret = read(fd_.get(), buf, count);
if (ret < 0) {
return ret;
} else if (ret == 0) {
return len;
}
len += ret;
buf += ret;
} while (len < static_cast<ssize_t>(count));
return len;
}
ssize_t Write(const char* buf, size_t count) {
ssize_t len = 0;
do {
ssize_t ret = write(fd_.get(), buf, count);
if (ret < 0) {
return ret;
} else if (ret == 0) {
return len;
}
len += ret;
buf += ret;
} while (len < static_cast<ssize_t>(count));
return len;
}
};
class MMapFileParamTest
: public MMapFileTest,
public ::testing::WithParamInterface<std::tuple<int, int>> {
protected:
int prot() const { return std::get<0>(GetParam()); }
int flags() const { return std::get<1>(GetParam()); }
};
// MAP_POPULATE allowed.
// There isn't a good way to verify it actually did anything.
TEST_P(MMapFileParamTest, MapPopulate) {
ASSERT_THAT(Map(0, kPageSize, prot(), flags() | MAP_POPULATE, fd_.get(), 0),
SyscallSucceeds());
}
// MAP_POPULATE on a short file.
TEST_P(MMapFileParamTest, MapPopulateShort) {
ASSERT_THAT(
Map(0, 2 * kPageSize, prot(), flags() | MAP_POPULATE, fd_.get(), 0),
SyscallSucceeds());
}
// Read contents from mapped file.
TEST_F(MMapFileTest, Read) {
size_t len = strlen(kFileContents);
ASSERT_EQ(len, Write(kFileContents, len));
uintptr_t addr;
ASSERT_THAT(addr = Map(0, kPageSize, PROT_READ, MAP_PRIVATE, fd_.get(), 0),
SyscallSucceeds());
EXPECT_THAT(reinterpret_cast<char*>(addr),
EqualsMemory(std::string(kFileContents)));
}
// Map at an offset.
TEST_F(MMapFileTest, MapOffset) {
ASSERT_THAT(lseek(fd_.get(), kPageSize, SEEK_SET), SyscallSucceeds());
size_t len = strlen(kFileContents);
ASSERT_EQ(len, Write(kFileContents, len));
uintptr_t addr;
ASSERT_THAT(
addr = Map(0, kPageSize, PROT_READ, MAP_PRIVATE, fd_.get(), kPageSize),
SyscallSucceeds());
EXPECT_THAT(reinterpret_cast<char*>(addr),
EqualsMemory(std::string(kFileContents)));
}
TEST_F(MMapFileTest, MapOffsetBeyondEnd) {
SetupGvisorDeathTest();
uintptr_t addr;
ASSERT_THAT(addr = Map(0, kPageSize, PROT_READ | PROT_WRITE, MAP_PRIVATE,
fd_.get(), 10 * kPageSize),
SyscallSucceeds());
// Touching the memory causes SIGBUS.
size_t len = strlen(kFileContents);
EXPECT_EXIT(std::copy(kFileContents, kFileContents + len,
reinterpret_cast<volatile char*>(addr)),
::testing::KilledBySignal(SIGBUS), "");
}
// Verify mmap fails when sum of length and offset overflows.
TEST_F(MMapFileTest, MapLengthPlusOffsetOverflows) {
const size_t length = static_cast<size_t>(-kPageSize);
const off_t offset = kPageSize;
ASSERT_THAT(Map(0, length, PROT_READ, MAP_PRIVATE, fd_.get(), offset),
SyscallFailsWithErrno(ENOMEM));
}
// MAP_PRIVATE PROT_WRITE is allowed on read-only FDs.
TEST_F(MMapFileTest, WritePrivateOnReadOnlyFd) {
const FileDescriptor fd =
ASSERT_NO_ERRNO_AND_VALUE(Open(filename_, O_RDONLY));
uintptr_t addr;
EXPECT_THAT(addr = Map(0, kPageSize, PROT_READ | PROT_WRITE, MAP_PRIVATE,
fd.get(), 0),
SyscallSucceeds());
// Touch the page to ensure the kernel didn't lie about writability.
size_t len = strlen(kFileContents);
std::copy(kFileContents, kFileContents + len,
reinterpret_cast<volatile char*>(addr));
}
// MAP_SHARED PROT_WRITE not allowed on read-only FDs.
TEST_F(MMapFileTest, WriteSharedOnReadOnlyFd) {
const FileDescriptor fd =
ASSERT_NO_ERRNO_AND_VALUE(Open(filename_, O_RDONLY));
uintptr_t addr;
EXPECT_THAT(
addr = Map(0, kPageSize, PROT_READ | PROT_WRITE, MAP_SHARED, fd.get(), 0),
SyscallFailsWithErrno(EACCES));
}
// The FD must be readable.
TEST_P(MMapFileParamTest, WriteOnlyFd) {
const FileDescriptor fd =
ASSERT_NO_ERRNO_AND_VALUE(Open(filename_, O_WRONLY));
uintptr_t addr;
EXPECT_THAT(addr = Map(0, kPageSize, prot(), flags(), fd.get(), 0),
SyscallFailsWithErrno(EACCES));
}
// Overwriting the contents of a file mapped MAP_SHARED PROT_READ
// should cause the new data to be reflected in the mapping.
TEST_F(MMapFileTest, ReadSharedConsistentWithOverwrite) {
// Start from scratch.
EXPECT_THAT(ftruncate(fd_.get(), 0), SyscallSucceeds());
// Expand the file to two pages and dirty them.
std::string bufA(kPageSize, 'a');
ASSERT_THAT(Write(bufA.c_str(), bufA.size()),
SyscallSucceedsWithValue(bufA.size()));
std::string bufB(kPageSize, 'b');
ASSERT_THAT(Write(bufB.c_str(), bufB.size()),
SyscallSucceedsWithValue(bufB.size()));
// Map the page.
uintptr_t addr;
ASSERT_THAT(addr = Map(0, 2 * kPageSize, PROT_READ, MAP_SHARED, fd_.get(), 0),
SyscallSucceeds());
// Check that the mapping contains the right file data.
EXPECT_EQ(0, memcmp(reinterpret_cast<void*>(addr), bufA.c_str(), kPageSize));
EXPECT_EQ(0, memcmp(reinterpret_cast<void*>(addr + kPageSize), bufB.c_str(),
kPageSize));
// Start at the beginning of the file.
ASSERT_THAT(lseek(fd_.get(), 0, SEEK_SET), SyscallSucceedsWithValue(0));
// Swap the write pattern.
ASSERT_THAT(Write(bufB.c_str(), bufB.size()),
SyscallSucceedsWithValue(bufB.size()));
ASSERT_THAT(Write(bufA.c_str(), bufA.size()),
SyscallSucceedsWithValue(bufA.size()));
// Check that the mapping got updated.
EXPECT_EQ(0, memcmp(reinterpret_cast<void*>(addr), bufB.c_str(), kPageSize));
EXPECT_EQ(0, memcmp(reinterpret_cast<void*>(addr + kPageSize), bufA.c_str(),
kPageSize));
}
// Partially overwriting a file mapped MAP_SHARED PROT_READ should be reflected
// in the mapping.
TEST_F(MMapFileTest, ReadSharedConsistentWithPartialOverwrite) {
// Start from scratch.
EXPECT_THAT(ftruncate(fd_.get(), 0), SyscallSucceeds());
// Expand the file to two pages and dirty them.
std::string bufA(kPageSize, 'a');
ASSERT_THAT(Write(bufA.c_str(), bufA.size()),
SyscallSucceedsWithValue(bufA.size()));
std::string bufB(kPageSize, 'b');
ASSERT_THAT(Write(bufB.c_str(), bufB.size()),
SyscallSucceedsWithValue(bufB.size()));
// Map the page.
uintptr_t addr;
ASSERT_THAT(addr = Map(0, 2 * kPageSize, PROT_READ, MAP_SHARED, fd_.get(), 0),
SyscallSucceeds());
// Check that the mapping contains the right file data.
EXPECT_EQ(0, memcmp(reinterpret_cast<void*>(addr), bufA.c_str(), kPageSize));
EXPECT_EQ(0, memcmp(reinterpret_cast<void*>(addr + kPageSize), bufB.c_str(),
kPageSize));
// Start at the beginning of the file.
ASSERT_THAT(lseek(fd_.get(), 0, SEEK_SET), SyscallSucceedsWithValue(0));
// Do a partial overwrite, spanning both pages.
std::string bufC(kPageSize + (kPageSize / 2), 'c');
ASSERT_THAT(Write(bufC.c_str(), bufC.size()),
SyscallSucceedsWithValue(bufC.size()));
// Check that the mapping got updated.
EXPECT_EQ(0, memcmp(reinterpret_cast<void*>(addr), bufC.c_str(),
kPageSize + (kPageSize / 2)));
EXPECT_EQ(0,
memcmp(reinterpret_cast<void*>(addr + kPageSize + (kPageSize / 2)),
bufB.c_str(), kPageSize / 2));
}
// Overwriting a file mapped MAP_SHARED PROT_READ should be reflected in the
// mapping and the file.
TEST_F(MMapFileTest, ReadSharedConsistentWithWriteAndFile) {
// Start from scratch.
EXPECT_THAT(ftruncate(fd_.get(), 0), SyscallSucceeds());
// Expand the file to two full pages and dirty it.
std::string bufA(2 * kPageSize, 'a');
ASSERT_THAT(Write(bufA.c_str(), bufA.size()),
SyscallSucceedsWithValue(bufA.size()));
// Map only the first page.
uintptr_t addr;
ASSERT_THAT(addr = Map(0, kPageSize, PROT_READ, MAP_SHARED, fd_.get(), 0),
SyscallSucceeds());
// Prepare to overwrite the file contents.
ASSERT_THAT(lseek(fd_.get(), 0, SEEK_SET), SyscallSucceedsWithValue(0));
// Overwrite everything, beyond the mapped portion.
std::string bufB(2 * kPageSize, 'b');
ASSERT_THAT(Write(bufB.c_str(), bufB.size()),
SyscallSucceedsWithValue(bufB.size()));
// What the mapped portion should now look like.
std::string bufMapped(kPageSize, 'b');
// Expect that the mapped portion is consistent.
EXPECT_EQ(
0, memcmp(reinterpret_cast<void*>(addr), bufMapped.c_str(), kPageSize));
// Prepare to read the entire file contents.
ASSERT_THAT(lseek(fd_.get(), 0, SEEK_SET), SyscallSucceedsWithValue(0));
// Expect that the file was fully updated.
std::vector<char> bufFile(2 * kPageSize);
ASSERT_THAT(Read(bufFile.data(), bufFile.size()),
SyscallSucceedsWithValue(bufFile.size()));
// Cast to void* to avoid EXPECT_THAT assuming bufFile.data() is a
// NUL-terminated C std::string. EXPECT_THAT will try to print a char* as a C
// std::string, possibly overruning the buffer.
EXPECT_THAT(reinterpret_cast<void*>(bufFile.data()), EqualsMemory(bufB));
}
// Write data to mapped file.
TEST_F(MMapFileTest, WriteShared) {
uintptr_t addr;
ASSERT_THAT(addr = Map(0, kPageSize, PROT_READ | PROT_WRITE, MAP_SHARED,
fd_.get(), 0),
SyscallSucceeds());
size_t len = strlen(kFileContents);
memcpy(reinterpret_cast<void*>(addr), kFileContents, len);
// The file may not actually be updated until munmap is called.
ASSERT_THAT(Unmap(), SyscallSucceeds());
std::vector<char> buf(len);
ASSERT_THAT(Read(buf.data(), buf.size()),
SyscallSucceedsWithValue(buf.size()));
// Cast to void* to avoid EXPECT_THAT assuming buf.data() is a
// NUL-terminated C string. EXPECT_THAT will try to print a char* as a C
// string, possibly overruning the buffer.
EXPECT_THAT(reinterpret_cast<void*>(buf.data()),
EqualsMemory(std::string(kFileContents)));
}
// Write data to portion of mapped page beyond the end of the file.
// These writes are not reflected in the file.
TEST_F(MMapFileTest, WriteSharedBeyondEnd) {
// The file is only half of a page. We map an entire page. Writes to the
// end of the mapping must not be reflected in the file.
uintptr_t addr;
ASSERT_THAT(addr = Map(0, kPageSize, PROT_READ | PROT_WRITE, MAP_SHARED,
fd_.get(), 0),
SyscallSucceeds());
// First half; this is reflected in the file.
std::string first(kPageSize / 2, 'A');
memcpy(reinterpret_cast<void*>(addr), first.c_str(), first.size());
// Second half; this is not reflected in the file.
std::string second(kPageSize / 2, 'B');
memcpy(reinterpret_cast<void*>(addr + kPageSize / 2), second.c_str(),
second.size());
// The file may not actually be updated until munmap is called.
ASSERT_THAT(Unmap(), SyscallSucceeds());
// Big enough to fit the entire page, if the writes are mistakenly written to
// the file.
std::vector<char> buf(kPageSize);
// Only the first half is in the file.
ASSERT_THAT(Read(buf.data(), buf.size()),
SyscallSucceedsWithValue(first.size()));
// Cast to void* to avoid EXPECT_THAT assuming buf.data() is a
// NUL-terminated C string. EXPECT_THAT will try to print a char* as a C
// NUL-terminated C std::string. EXPECT_THAT will try to print a char* as a C
// std::string, possibly overruning the buffer.
EXPECT_THAT(reinterpret_cast<void*>(buf.data()), EqualsMemory(first));
}
// The portion of a mapped page that becomes part of the file after a truncate
// is reflected in the file.
TEST_F(MMapFileTest, WriteSharedTruncateUp) {
// The file is only half of a page. We map an entire page. Writes to the
// end of the mapping must not be reflected in the file.
uintptr_t addr;
ASSERT_THAT(addr = Map(0, kPageSize, PROT_READ | PROT_WRITE, MAP_SHARED,
fd_.get(), 0),
SyscallSucceeds());
// First half; this is reflected in the file.
std::string first(kPageSize / 2, 'A');
memcpy(reinterpret_cast<void*>(addr), first.c_str(), first.size());
// Second half; this is not reflected in the file now (see
// WriteSharedBeyondEnd), but will be after the truncate.
std::string second(kPageSize / 2, 'B');
memcpy(reinterpret_cast<void*>(addr + kPageSize / 2), second.c_str(),
second.size());
// Extend the file to a full page. The second half of the page will be
// reflected in the file.
EXPECT_THAT(ftruncate(fd_.get(), kPageSize), SyscallSucceeds());
// The file may not actually be updated until munmap is called.
ASSERT_THAT(Unmap(), SyscallSucceeds());
// The whole page is in the file.
std::vector<char> buf(kPageSize);
ASSERT_THAT(Read(buf.data(), buf.size()),
SyscallSucceedsWithValue(buf.size()));
// Cast to void* to avoid EXPECT_THAT assuming buf.data() is a
// NUL-terminated C string. EXPECT_THAT will try to print a char* as a C
// string, possibly overruning the buffer.
EXPECT_THAT(reinterpret_cast<void*>(buf.data()), EqualsMemory(first));
EXPECT_THAT(reinterpret_cast<void*>(buf.data() + kPageSize / 2),
EqualsMemory(second));
}
TEST_F(MMapFileTest, ReadSharedTruncateDownThenUp) {
// Start from scratch.
EXPECT_THAT(ftruncate(fd_.get(), 0), SyscallSucceeds());
// Expand the file to a full page and dirty it.
std::string buf(kPageSize, 'a');
ASSERT_THAT(Write(buf.c_str(), buf.size()),
SyscallSucceedsWithValue(buf.size()));
// Map the page.
uintptr_t addr;
ASSERT_THAT(addr = Map(0, kPageSize, PROT_READ, MAP_SHARED, fd_.get(), 0),
SyscallSucceeds());
// Check that the memory contains the file data.
EXPECT_EQ(0, memcmp(reinterpret_cast<void*>(addr), buf.c_str(), kPageSize));
// Truncate down, then up.
EXPECT_THAT(ftruncate(fd_.get(), 0), SyscallSucceeds());
EXPECT_THAT(ftruncate(fd_.get(), kPageSize), SyscallSucceeds());
// Check that the memory was zeroed.
std::string zeroed(kPageSize, '\0');
EXPECT_EQ(0,
memcmp(reinterpret_cast<void*>(addr), zeroed.c_str(), kPageSize));
// The file may not actually be updated until msync is called.
ASSERT_THAT(Msync(), SyscallSucceeds());
// Prepare to read the entire file contents.
ASSERT_THAT(lseek(fd_.get(), 0, SEEK_SET), SyscallSucceedsWithValue(0));
// Expect that the file is fully updated.
std::vector<char> bufFile(kPageSize);
ASSERT_THAT(Read(bufFile.data(), bufFile.size()),
SyscallSucceedsWithValue(bufFile.size()));
EXPECT_EQ(0, memcmp(bufFile.data(), zeroed.c_str(), kPageSize));
}
TEST_F(MMapFileTest, WriteSharedTruncateDownThenUp) {
// The file is only half of a page. We map an entire page. Writes to the
// end of the mapping must not be reflected in the file.
uintptr_t addr;
ASSERT_THAT(addr = Map(0, kPageSize, PROT_READ | PROT_WRITE, MAP_SHARED,
fd_.get(), 0),
SyscallSucceeds());
// First half; this will be deleted by truncate(0).
std::string first(kPageSize / 2, 'A');
memcpy(reinterpret_cast<void*>(addr), first.c_str(), first.size());
// Truncate down, then up.
EXPECT_THAT(ftruncate(fd_.get(), 0), SyscallSucceeds());
EXPECT_THAT(ftruncate(fd_.get(), kPageSize), SyscallSucceeds());
// The whole page is zeroed in memory.
std::string zeroed(kPageSize, '\0');
EXPECT_EQ(0,
memcmp(reinterpret_cast<void*>(addr), zeroed.c_str(), kPageSize));
// The file may not actually be updated until munmap is called.
ASSERT_THAT(Unmap(), SyscallSucceeds());
// The whole file is also zeroed.
std::vector<char> buf(kPageSize);
ASSERT_THAT(Read(buf.data(), buf.size()),
SyscallSucceedsWithValue(buf.size()));
// Cast to void* to avoid EXPECT_THAT assuming buf.data() is a
// NUL-terminated C string. EXPECT_THAT will try to print a char* as a C
// string, possibly overruning the buffer.
EXPECT_THAT(reinterpret_cast<void*>(buf.data()), EqualsMemory(zeroed));
}
TEST_F(MMapFileTest, ReadSharedTruncateSIGBUS) {
SetupGvisorDeathTest();
// Start from scratch.
EXPECT_THAT(ftruncate(fd_.get(), 0), SyscallSucceeds());
// Expand the file to a full page and dirty it.
std::string buf(kPageSize, 'a');
ASSERT_THAT(Write(buf.c_str(), buf.size()),
SyscallSucceedsWithValue(buf.size()));
// Map the page.
uintptr_t addr;
ASSERT_THAT(addr = Map(0, kPageSize, PROT_READ, MAP_SHARED, fd_.get(), 0),
SyscallSucceeds());
// Check that the mapping contains the file data.
EXPECT_EQ(0, memcmp(reinterpret_cast<void*>(addr), buf.c_str(), kPageSize));
// Truncate down.
EXPECT_THAT(ftruncate(fd_.get(), 0), SyscallSucceeds());
// Accessing the truncated region should cause a SIGBUS.
std::vector<char> in(kPageSize);
EXPECT_EXIT(
std::copy(reinterpret_cast<volatile char*>(addr),
reinterpret_cast<volatile char*>(addr) + kPageSize, in.data()),
::testing::KilledBySignal(SIGBUS), "");
}
TEST_F(MMapFileTest, WriteSharedTruncateSIGBUS) {
SetupGvisorDeathTest();
uintptr_t addr;
ASSERT_THAT(addr = Map(0, kPageSize, PROT_READ | PROT_WRITE, MAP_SHARED,
fd_.get(), 0),
SyscallSucceeds());
// Touch the memory to be sure it really is mapped.
size_t len = strlen(kFileContents);
memcpy(reinterpret_cast<void*>(addr), kFileContents, len);
// Truncate down.
EXPECT_THAT(ftruncate(fd_.get(), 0), SyscallSucceeds());
// Accessing the truncated file should cause a SIGBUS.
EXPECT_EXIT(std::copy(kFileContents, kFileContents + len,
reinterpret_cast<volatile char*>(addr)),
::testing::KilledBySignal(SIGBUS), "");
}
TEST_F(MMapFileTest, ReadSharedTruncatePartialPage) {
// Start from scratch.
EXPECT_THAT(ftruncate(fd_.get(), 0), SyscallSucceeds());
// Dirty the file.
std::string buf(kPageSize, 'a');
ASSERT_THAT(Write(buf.c_str(), buf.size()),
SyscallSucceedsWithValue(buf.size()));
// Map a page.
uintptr_t addr;
ASSERT_THAT(addr = Map(0, kPageSize, PROT_READ, MAP_SHARED, fd_.get(), 0),
SyscallSucceeds());
// Truncate to half of the page.
EXPECT_THAT(ftruncate(fd_.get(), kPageSize / 2), SyscallSucceeds());
// First half of the page untouched.
EXPECT_EQ(0,
memcmp(reinterpret_cast<void*>(addr), buf.data(), kPageSize / 2));
// Second half is zeroed.
std::string zeroed(kPageSize / 2, '\0');
EXPECT_EQ(0, memcmp(reinterpret_cast<void*>(addr + kPageSize / 2),
zeroed.c_str(), kPageSize / 2));
}
// Page can still be accessed and contents are intact after truncating a partial
// page.
TEST_F(MMapFileTest, WriteSharedTruncatePartialPage) {
// Expand the file to a full page.
EXPECT_THAT(ftruncate(fd_.get(), kPageSize), SyscallSucceeds());
uintptr_t addr;
ASSERT_THAT(addr = Map(0, kPageSize, PROT_READ | PROT_WRITE, MAP_SHARED,
fd_.get(), 0),
SyscallSucceeds());
// Fill the entire page.
std::string contents(kPageSize, 'A');
memcpy(reinterpret_cast<void*>(addr), contents.c_str(), contents.size());
// Truncate half of the page.
EXPECT_THAT(ftruncate(fd_.get(), kPageSize / 2), SyscallSucceeds());
// First half of the page untouched.
EXPECT_EQ(0, memcmp(reinterpret_cast<void*>(addr), contents.c_str(),
kPageSize / 2));
// Second half zeroed.
std::string zeroed(kPageSize / 2, '\0');
EXPECT_EQ(0, memcmp(reinterpret_cast<void*>(addr + kPageSize / 2),
zeroed.c_str(), kPageSize / 2));
}
// MAP_PRIVATE writes are not carried through to the underlying file.
TEST_F(MMapFileTest, WritePrivate) {
uintptr_t addr;
ASSERT_THAT(addr = Map(0, kPageSize, PROT_READ | PROT_WRITE, MAP_PRIVATE,
fd_.get(), 0),
SyscallSucceeds());
size_t len = strlen(kFileContents);
memcpy(reinterpret_cast<void*>(addr), kFileContents, len);
// The file should not be updated, but if it mistakenly is, it may not be
// until after munmap is called.
ASSERT_THAT(Unmap(), SyscallSucceeds());
std::vector<char> buf(len);
ASSERT_THAT(Read(buf.data(), buf.size()),
SyscallSucceedsWithValue(buf.size()));
// Cast to void* to avoid EXPECT_THAT assuming buf.data() is a
// NUL-terminated C string. EXPECT_THAT will try to print a char* as a C
// string, possibly overruning the buffer.
EXPECT_THAT(reinterpret_cast<void*>(buf.data()),
EqualsMemory(std::string(len, '\0')));
}
// SIGBUS raised when reading or writing past end of a mapped file.
TEST_P(MMapFileParamTest, SigBusDeath) {
SetupGvisorDeathTest();
uintptr_t addr;
ASSERT_THAT(addr = Map(0, 2 * kPageSize, prot(), flags(), fd_.get(), 0),
SyscallSucceeds());
auto* start = reinterpret_cast<volatile char*>(addr + kPageSize);
// MMapFileTest makes a file kPageSize/2 long. The entire first page should be
// accessible, but anything beyond it should not.
if (prot() & PROT_WRITE) {
// Write beyond first page.
size_t len = strlen(kFileContents);
EXPECT_EXIT(std::copy(kFileContents, kFileContents + len, start),
::testing::KilledBySignal(SIGBUS), "");
} else {
// Read beyond first page.
std::vector<char> in(kPageSize);
EXPECT_EXIT(std::copy(start, start + kPageSize, in.data()),
::testing::KilledBySignal(SIGBUS), "");
}
}
// Tests that SIGBUS is not raised when reading or writing to a file-mapped
// page before EOF, even if part of the mapping extends beyond EOF.
//
// See b/27877699.
TEST_P(MMapFileParamTest, NoSigBusOnPagesBeforeEOF) {
uintptr_t addr;
ASSERT_THAT(addr = Map(0, 2 * kPageSize, prot(), flags(), fd_.get(), 0),
SyscallSucceeds());
// The test passes if this survives.
auto* start = reinterpret_cast<volatile char*>(addr + (kPageSize / 2) + 1);
size_t len = strlen(kFileContents);
if (prot() & PROT_WRITE) {
std::copy(kFileContents, kFileContents + len, start);
} else {
std::vector<char> in(len);
std::copy(start, start + len, in.data());
}
}
// Tests that SIGBUS is not raised when reading or writing from a file-mapped
// page containing EOF, *after* the EOF.
TEST_P(MMapFileParamTest, NoSigBusOnPageContainingEOF) {
uintptr_t addr;
ASSERT_THAT(addr = Map(0, 2 * kPageSize, prot(), flags(), fd_.get(), 0),
SyscallSucceeds());
// The test passes if this survives. (Technically addr+kPageSize/2 is already
// beyond EOF, but +1 to check for fencepost errors.)
auto* start = reinterpret_cast<volatile char*>(addr + (kPageSize / 2) + 1);
size_t len = strlen(kFileContents);
if (prot() & PROT_WRITE) {
std::copy(kFileContents, kFileContents + len, start);
} else {
std::vector<char> in(len);
std::copy(start, start + len, in.data());
}
}
// Tests that reading from writable shared file-mapped pages succeeds.
//
// On most platforms this is trivial, but when the file is mapped via the sentry
// page cache (which does not yet support writing to shared mappings), a bug
// caused reads to fail unnecessarily on such mappings. See b/28913513.
TEST_F(MMapFileTest, ReadingWritableSharedFilePageSucceeds) {
uintptr_t addr;
size_t len = strlen(kFileContents);
ASSERT_THAT(addr = Map(0, 2 * kPageSize, PROT_READ | PROT_WRITE, MAP_SHARED,
fd_.get(), 0),
SyscallSucceeds());
std::vector<char> buf(kPageSize);
// The test passes if this survives.
std::copy(reinterpret_cast<volatile char*>(addr),
reinterpret_cast<volatile char*>(addr) + len, buf.data());
}
// Tests that EFAULT is returned when invoking a syscall that requires the OS to
// read past end of file (resulting in a fault in sentry context in the gVisor
// case). See b/28913513.
TEST_F(MMapFileTest, InternalSigBus) {
uintptr_t addr;
ASSERT_THAT(addr = Map(0, 2 * kPageSize, PROT_READ | PROT_WRITE, MAP_PRIVATE,
fd_.get(), 0),
SyscallSucceeds());
// This depends on the fact that gVisor implements pipes internally.
int pipefd[2];
ASSERT_THAT(pipe(pipefd), SyscallSucceeds());
EXPECT_THAT(
write(pipefd[1], reinterpret_cast<void*>(addr + kPageSize), kPageSize),
SyscallFailsWithErrno(EFAULT));
EXPECT_THAT(close(pipefd[0]), SyscallSucceeds());
EXPECT_THAT(close(pipefd[1]), SyscallSucceeds());
}
// Like InternalSigBus, but test the WriteZerosAt path by reading from
// /dev/zero to a shared mapping (so that the SIGBUS isn't caught during
// copy-on-write breaking).
TEST_F(MMapFileTest, InternalSigBusZeroing) {
uintptr_t addr;
ASSERT_THAT(addr = Map(0, 2 * kPageSize, PROT_READ | PROT_WRITE, MAP_SHARED,
fd_.get(), 0),
SyscallSucceeds());
const FileDescriptor dev_zero =
ASSERT_NO_ERRNO_AND_VALUE(Open("/dev/zero", O_RDONLY));
EXPECT_THAT(read(dev_zero.get(), reinterpret_cast<void*>(addr + kPageSize),
kPageSize),
SyscallFailsWithErrno(EFAULT));
}
// Checks that mmaps with a length of uint64_t(-PAGE_SIZE + 1) or greater do not
// induce a sentry panic (due to "rounding up" to 0).
TEST_F(MMapTest, HugeLength) {
EXPECT_THAT(Map(0, static_cast<uint64_t>(-kPageSize + 1), PROT_NONE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0),
SyscallFailsWithErrno(ENOMEM));
}
// Tests for a specific gVisor MM caching bug.
TEST_F(MMapTest, AccessCOWInvalidatesCachedSegments) {
auto f = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFile());
auto fd = ASSERT_NO_ERRNO_AND_VALUE(Open(f.path(), O_RDWR));
auto zero_fd = ASSERT_NO_ERRNO_AND_VALUE(Open("/dev/zero", O_RDONLY));
// Get a two-page private mapping and fill it with 1s.
uintptr_t addr;
ASSERT_THAT(addr = Map(0, 2 * kPageSize, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0),
SyscallSucceeds());
memset(addr_, 1, 2 * kPageSize);
MaybeSave();
// Fork to make the mapping copy-on-write.
pid_t const pid = fork();
if (pid == 0) {
// The child process waits for the parent to SIGKILL it.
while (true) {
pause();
}
}
ASSERT_THAT(pid, SyscallSucceeds());
auto cleanup_child = Cleanup([&] {
EXPECT_THAT(kill(pid, SIGKILL), SyscallSucceeds());
int status;
EXPECT_THAT(waitpid(pid, &status, 0), SyscallSucceedsWithValue(pid));
});
// Induce a read-only Access of the first page of the mapping, which will not
// cause a copy. The usermem.Segment should be cached.
ASSERT_THAT(PwriteFd(fd.get(), addr_, kPageSize, 0),
SyscallSucceedsWithValue(kPageSize));
// Induce a writable Access of both pages of the mapping. This should
// invalidate the cached Segment.
ASSERT_THAT(PreadFd(zero_fd.get(), addr_, 2 * kPageSize, 0),
SyscallSucceedsWithValue(2 * kPageSize));
// Induce a read-only Access of the first page of the mapping again. It should
// read the 0s that were stored in the mapping by the read from /dev/zero. If
// the read failed to invalidate the cached Segment, it will instead read the
// 1s in the stale page.
ASSERT_THAT(PwriteFd(fd.get(), addr_, kPageSize, 0),
SyscallSucceedsWithValue(kPageSize));
std::vector<char> buf(kPageSize);
ASSERT_THAT(PreadFd(fd.get(), buf.data(), kPageSize, 0),
SyscallSucceedsWithValue(kPageSize));
for (size_t i = 0; i < kPageSize; i++) {
ASSERT_EQ(0, buf[i]) << "at offset " << i;
}
}
TEST_F(MMapTest, NoReserve) {
const size_t kSize = 10 * 1 << 20; // 10M
uintptr_t addr;
ASSERT_THAT(addr = Map(0, kSize, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE, -1, 0),
SyscallSucceeds());
EXPECT_GT(addr, 0);
// Check that every page can be read/written. Technically, writing to memory
// could SIGSEGV in case there is no more memory available. In gVisor it
// would never happen though because NORESERVE is ignored. In Linux, it's
// possible to fail, but allocation is small enough that it's highly likely
// to succeed.
for (size_t j = 0; j < kSize; j += kPageSize) {
EXPECT_EQ(0, reinterpret_cast<char*>(addr)[j]);
reinterpret_cast<char*>(addr)[j] = j;
}
}
// Map more than the gVisor page-cache map unit (64k) and ensure that
// it is consistent with reading from the file.
TEST_F(MMapFileTest, Bug38498194) {
// Choose a sufficiently large map unit.
constexpr int kSize = 4 * 1024 * 1024;
EXPECT_THAT(ftruncate(fd_.get(), kSize), SyscallSucceeds());
// Map a large enough region so that multiple internal segments
// are created to back the mapping.
uintptr_t addr;
ASSERT_THAT(
addr = Map(0, kSize, PROT_READ | PROT_WRITE, MAP_SHARED, fd_.get(), 0),
SyscallSucceeds());
std::vector<char> expect(kSize, 'a');
std::copy(expect.data(), expect.data() + expect.size(),
reinterpret_cast<volatile char*>(addr));
// Trigger writeback for gVisor. In Linux pages stay cached until
// it can't hold onto them anymore.
ASSERT_THAT(Unmap(), SyscallSucceeds());
std::vector<char> buf(kSize);
ASSERT_THAT(Read(buf.data(), buf.size()),
SyscallSucceedsWithValue(buf.size()));
EXPECT_EQ(buf, expect) << std::string(buf.data(), buf.size());
}
// Tests that reading from a file to a memory mapping of the same file does not
// deadlock. See b/34813270.
TEST_F(MMapFileTest, SelfRead) {
uintptr_t addr;
ASSERT_THAT(addr = Map(0, kPageSize, PROT_READ | PROT_WRITE, MAP_SHARED,
fd_.get(), 0),
SyscallSucceeds());
EXPECT_THAT(Read(reinterpret_cast<char*>(addr), kPageSize / 2),
SyscallSucceedsWithValue(kPageSize / 2));
// The resulting file contents are poorly-specified and irrelevant.
}
// Tests that writing to a file from a memory mapping of the same file does not
// deadlock. Regression test for b/34813270.
TEST_F(MMapFileTest, SelfWrite) {
uintptr_t addr;
ASSERT_THAT(addr = Map(0, kPageSize, PROT_READ, MAP_SHARED, fd_.get(), 0),
SyscallSucceeds());
EXPECT_THAT(Write(reinterpret_cast<char*>(addr), kPageSize / 2),
SyscallSucceedsWithValue(kPageSize / 2));
// The resulting file contents are poorly-specified and irrelevant.
}
TEST(MMapDeathTest, TruncateAfterCOWBreak) {
SetupGvisorDeathTest();
// Create and map a single-page file.
auto const temp_file = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFile());
auto const fd = ASSERT_NO_ERRNO_AND_VALUE(Open(temp_file.path(), O_RDWR));
ASSERT_THAT(ftruncate(fd.get(), kPageSize), SyscallSucceeds());
auto const mapping = ASSERT_NO_ERRNO_AND_VALUE(Mmap(
nullptr, kPageSize, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd.get(), 0));
// Write to this mapping, causing the page to be copied for write.
memset(mapping.ptr(), 'a', mapping.len());
MaybeSave(); // Trigger a co-operative save cycle.
// Truncate the file and expect it to invalidate the copied page.
ASSERT_THAT(ftruncate(fd.get(), 0), SyscallSucceeds());
EXPECT_EXIT(*reinterpret_cast<volatile char*>(mapping.ptr()),
::testing::KilledBySignal(SIGBUS), "");
}
// Regression test for #147.
TEST(MMapNoFixtureTest, MapReadOnlyAfterCreateWriteOnly) {
std::string filename = NewTempAbsPath();
// We have to create the file O_RDONLY to reproduce the bug because
// fsgofer.localFile.Create() silently upgrades O_WRONLY to O_RDWR, causing
// the cached "write-only" FD to be read/write and therefore usable by mmap().
auto const ro_fd = ASSERT_NO_ERRNO_AND_VALUE(
Open(filename, O_RDONLY | O_CREAT | O_EXCL, 0666));
// Get a write-only FD for the same file, which should be ignored by mmap()
// (but isn't in #147).
auto const wo_fd = ASSERT_NO_ERRNO_AND_VALUE(Open(filename, O_WRONLY));
ASSERT_THAT(ftruncate(wo_fd.get(), kPageSize), SyscallSucceeds());
auto const mapping = ASSERT_NO_ERRNO_AND_VALUE(
Mmap(nullptr, kPageSize, PROT_READ, MAP_SHARED, ro_fd.get(), 0));
std::vector<char> buf(kPageSize);
// The test passes if this survives.
std::copy(static_cast<char*>(mapping.ptr()),
static_cast<char*>(mapping.endptr()), buf.data());
}
// Conditional on MAP_32BIT.
// This flag is supported only on x86-64, for 64-bit programs.
#ifdef __x86_64__
TEST(MMapNoFixtureTest, Map32Bit) {
auto const mapping = ASSERT_NO_ERRNO_AND_VALUE(
MmapAnon(kPageSize, PROT_NONE, MAP_PRIVATE | MAP_32BIT));
EXPECT_LT(mapping.addr(), static_cast<uintptr_t>(1) << 32);
EXPECT_LE(mapping.endaddr(), static_cast<uintptr_t>(1) << 32);
}
#endif // defined(__x86_64__)
INSTANTIATE_TEST_SUITE_P(
ReadWriteSharedPrivate, MMapFileParamTest,
::testing::Combine(::testing::ValuesIn({
PROT_READ,
PROT_WRITE,
PROT_READ | PROT_WRITE,
}),
::testing::ValuesIn({MAP_SHARED, MAP_PRIVATE})));
} // namespace
} // namespace testing
} // namespace gvisor
|