1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <signal.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <sys/types.h>
#include <time.h>
#include <atomic>
#include <functional>
#include <iostream>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/strings/string_view.h"
#include "absl/time/clock.h"
#include "absl/time/time.h"
#include "test/util/file_descriptor.h"
#include "test/util/logging.h"
#include "test/util/multiprocess_util.h"
#include "test/util/posix_error.h"
#include "test/util/signal_util.h"
#include "test/util/test_util.h"
#include "test/util/thread_util.h"
#include "test/util/timer_util.h"
namespace gvisor {
namespace testing {
namespace {
constexpr char kSIGALRMToMainThread[] = "--itimer_sigarlm_to_main_thread";
constexpr char kSIGPROFFairnessActive[] = "--itimer_sigprof_fairness_active";
constexpr char kSIGPROFFairnessIdle[] = "--itimer_sigprof_fairness_idle";
// Time period to be set for the itimers.
constexpr absl::Duration kPeriod = absl::Milliseconds(25);
// Total amount of time to spend per thread.
constexpr absl::Duration kTestDuration = absl::Seconds(20);
// Amount of spin iterations to perform as the minimum work item per thread.
// Chosen to be sub-millisecond range.
constexpr int kIterations = 10000000;
// Allow deviation in the number of samples.
constexpr double kNumSamplesDeviationRatio = 0.2;
TEST(ItimerTest, ItimervalUpdatedBeforeExpiration) {
constexpr int kSleepSecs = 10;
constexpr int kAlarmSecs = 15;
static_assert(
kSleepSecs < kAlarmSecs,
"kSleepSecs must be less than kAlarmSecs for the test to be meaningful");
constexpr int kMaxRemainingSecs = kAlarmSecs - kSleepSecs;
// Install a no-op handler for SIGALRM.
struct sigaction sa = {};
sigfillset(&sa.sa_mask);
sa.sa_handler = +[](int signo) {};
auto const cleanup_sa =
ASSERT_NO_ERRNO_AND_VALUE(ScopedSigaction(SIGALRM, sa));
// Set an itimer-based alarm for kAlarmSecs from now.
struct itimerval itv = {};
itv.it_value.tv_sec = kAlarmSecs;
auto const cleanup_itimer =
ASSERT_NO_ERRNO_AND_VALUE(ScopedItimer(ITIMER_REAL, itv));
// After sleeping for kSleepSecs, the itimer value should reflect the elapsed
// time even if it hasn't expired.
absl::SleepFor(absl::Seconds(kSleepSecs));
ASSERT_THAT(getitimer(ITIMER_REAL, &itv), SyscallSucceeds());
EXPECT_TRUE(
itv.it_value.tv_sec < kMaxRemainingSecs ||
(itv.it_value.tv_sec == kMaxRemainingSecs && itv.it_value.tv_usec == 0))
<< "Remaining time: " << itv.it_value.tv_sec << " seconds + "
<< itv.it_value.tv_usec << " microseconds";
}
ABSL_CONST_INIT static thread_local std::atomic_int signal_test_num_samples =
ATOMIC_VAR_INIT(0);
void SignalTestSignalHandler(int /*signum*/) { signal_test_num_samples++; }
struct SignalTestResult {
int expected_total;
int main_thread_samples;
std::vector<int> worker_samples;
};
std::ostream& operator<<(std::ostream& os, const SignalTestResult& r) {
os << "{expected_total: " << r.expected_total
<< ", main_thread_samples: " << r.main_thread_samples
<< ", worker_samples: [";
bool first = true;
for (int sample : r.worker_samples) {
if (!first) {
os << ", ";
}
os << sample;
first = false;
}
os << "]}";
return os;
}
// Starts two worker threads and itimer id and measures the number of signal
// delivered to each thread.
SignalTestResult ItimerSignalTest(int id, clock_t main_clock,
clock_t worker_clock, int signal,
absl::Duration sleep) {
signal_test_num_samples = 0;
struct sigaction sa = {};
sa.sa_handler = &SignalTestSignalHandler;
sa.sa_flags = SA_RESTART;
sigemptyset(&sa.sa_mask);
auto sigaction_cleanup = ScopedSigaction(signal, sa).ValueOrDie();
int socketfds[2];
TEST_PCHECK(socketpair(AF_UNIX, SOCK_STREAM, 0, socketfds) == 0);
// Do the spinning in the workers.
std::function<void*(int)> work = [&](int socket_fd) {
FileDescriptor fd(socket_fd);
absl::Time finish = Now(worker_clock) + kTestDuration;
while (Now(worker_clock) < finish) {
// Blocked on read.
char c;
RetryEINTR(read)(fd.get(), &c, 1);
for (int i = 0; i < kIterations; i++) {
// Ensure compiler won't optimize this loop away.
asm("");
}
if (sleep != absl::ZeroDuration()) {
// Sleep so that the entire process is idle for a while.
absl::SleepFor(sleep);
}
// Unblock the other thread.
RetryEINTR(write)(fd.get(), &c, 1);
}
return reinterpret_cast<void*>(signal_test_num_samples.load());
};
ScopedThread th1(
static_cast<std::function<void*()>>(std::bind(work, socketfds[0])));
ScopedThread th2(
static_cast<std::function<void*()>>(std::bind(work, socketfds[1])));
absl::Time start = Now(main_clock);
// Start the timer.
struct itimerval timer = {};
timer.it_value = absl::ToTimeval(kPeriod);
timer.it_interval = absl::ToTimeval(kPeriod);
auto cleanup_itimer = ScopedItimer(id, timer).ValueOrDie();
// Unblock th1.
//
// N.B. th2 owns socketfds[1] but can't close it until it unblocks.
char c = 0;
TEST_CHECK(write(socketfds[1], &c, 1) == 1);
SignalTestResult result;
// Wait for the workers to be done and collect their sample counts.
result.worker_samples.push_back(reinterpret_cast<int64>(th1.Join()));
result.worker_samples.push_back(reinterpret_cast<int64>(th2.Join()));
cleanup_itimer.Release()();
result.expected_total = (Now(main_clock) - start) / kPeriod;
result.main_thread_samples = signal_test_num_samples.load();
return result;
}
int TestSIGALRMToMainThread() {
SignalTestResult result =
ItimerSignalTest(ITIMER_REAL, CLOCK_REALTIME, CLOCK_REALTIME, SIGALRM,
absl::ZeroDuration());
std::cerr << "result: " << result << std::endl;
// ITIMER_REAL-generated SIGALRMs prefer to deliver to the thread group leader
// (but don't guarantee it), so we expect to see most samples on the main
// thread.
//
// The number of SIGALRMs delivered to a worker should not exceed 20%
// of the number of total signals expected (this is somewhat arbitrary).
const int worker_threshold = result.expected_total / 5;
//
// Linux only guarantees timers will never expire before the requested time.
// Thus, we only check the upper bound and also it at least have one sample.
TEST_CHECK(result.main_thread_samples <= result.expected_total);
TEST_CHECK(result.main_thread_samples > 0);
for (int num : result.worker_samples) {
TEST_CHECK_MSG(num <= worker_threshold, "worker received too many samples");
}
return 0;
}
// Random save/restore is disabled as it introduces additional latency and
// unpredictable distribution patterns.
TEST(ItimerTest, DeliversSIGALRMToMainThread_NoRandomSave) {
pid_t child;
int execve_errno;
auto kill = ASSERT_NO_ERRNO_AND_VALUE(
ForkAndExec("/proc/self/exe", {"/proc/self/exe", kSIGALRMToMainThread},
{}, &child, &execve_errno));
EXPECT_EQ(0, execve_errno);
int status;
EXPECT_THAT(RetryEINTR(waitpid)(child, &status, 0),
SyscallSucceedsWithValue(child));
// Not required anymore.
kill.Release();
EXPECT_TRUE(WIFEXITED(status) && WEXITSTATUS(status) == 0) << status;
}
// Signals are delivered to threads fairly.
//
// sleep indicates how long to sleep worker threads each iteration to make the
// entire process idle.
int TestSIGPROFFairness(absl::Duration sleep) {
SignalTestResult result =
ItimerSignalTest(ITIMER_PROF, CLOCK_PROCESS_CPUTIME_ID,
CLOCK_THREAD_CPUTIME_ID, SIGPROF, sleep);
std::cerr << "result: " << result << std::endl;
// The number of samples on the main thread should be very low as it did
// nothing.
TEST_CHECK(result.main_thread_samples < 60);
// Both workers should get roughly equal number of samples.
TEST_CHECK(result.worker_samples.size() == 2);
TEST_CHECK(result.expected_total > 0);
// In an ideal world each thread would get exactly 50% of the signals,
// but since that's unlikely to happen we allow for them to get no less than
// kNumSamplesDeviationRatio of the total observed samples.
TEST_CHECK_MSG(std::abs(result.worker_samples[0] - result.worker_samples[1]) <
((result.worker_samples[0] + result.worker_samples[1]) *
kNumSamplesDeviationRatio),
"one worker received disproportionate share of samples");
return 0;
}
// Random save/restore is disabled as it introduces additional latency and
// unpredictable distribution patterns.
TEST(ItimerTest, DeliversSIGPROFToThreadsRoughlyFairlyActive_NoRandomSave) {
// TODO(b/143247272): CPU time accounting is inaccurate for the KVM platform.
SKIP_IF(GvisorPlatform() == Platform::kKVM);
pid_t child;
int execve_errno;
auto kill = ASSERT_NO_ERRNO_AND_VALUE(
ForkAndExec("/proc/self/exe", {"/proc/self/exe", kSIGPROFFairnessActive},
{}, &child, &execve_errno));
EXPECT_EQ(0, execve_errno);
int status;
EXPECT_THAT(RetryEINTR(waitpid)(child, &status, 0),
SyscallSucceedsWithValue(child));
// Not required anymore.
kill.Release();
EXPECT_TRUE(WIFEXITED(status) && WEXITSTATUS(status) == 0)
<< "Exited with code: " << status;
}
// Random save/restore is disabled as it introduces additional latency and
// unpredictable distribution patterns.
TEST(ItimerTest, DeliversSIGPROFToThreadsRoughlyFairlyIdle_NoRandomSave) {
// TODO(b/143247272): CPU time accounting is inaccurate for the KVM platform.
SKIP_IF(GvisorPlatform() == Platform::kKVM);
pid_t child;
int execve_errno;
auto kill = ASSERT_NO_ERRNO_AND_VALUE(
ForkAndExec("/proc/self/exe", {"/proc/self/exe", kSIGPROFFairnessIdle},
{}, &child, &execve_errno));
EXPECT_EQ(0, execve_errno);
int status;
EXPECT_THAT(RetryEINTR(waitpid)(child, &status, 0),
SyscallSucceedsWithValue(child));
// Not required anymore.
kill.Release();
EXPECT_TRUE(WIFEXITED(status) && WEXITSTATUS(status) == 0)
<< "Exited with code: " << status;
}
} // namespace
} // namespace testing
} // namespace gvisor
namespace {
void MaskSIGPIPE() {
// Always mask SIGPIPE as it's common and tests aren't expected to handle it.
// We don't take the TestInit() path so we must do this manually.
struct sigaction sa = {};
sa.sa_handler = SIG_IGN;
TEST_CHECK(sigaction(SIGPIPE, &sa, nullptr) == 0);
}
} // namespace
int main(int argc, char** argv) {
// These tests require no background threads, so check for them before
// TestInit.
for (int i = 0; i < argc; i++) {
absl::string_view arg(argv[i]);
if (arg == gvisor::testing::kSIGALRMToMainThread) {
MaskSIGPIPE();
return gvisor::testing::TestSIGALRMToMainThread();
}
if (arg == gvisor::testing::kSIGPROFFairnessActive) {
MaskSIGPIPE();
return gvisor::testing::TestSIGPROFFairness(absl::ZeroDuration());
}
if (arg == gvisor::testing::kSIGPROFFairnessIdle) {
MaskSIGPIPE();
// Sleep time > ClockTick (10ms) exercises sleeping gVisor's
// kernel.cpuClockTicker.
return gvisor::testing::TestSIGPROFFairness(absl::Milliseconds(25));
}
}
gvisor::testing::TestInit(&argc, &argv);
return RUN_ALL_TESTS();
}
|