1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
|
// Copyright 2020 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <linux/capability.h>
#include <sys/socket.h>
#include "gtest/gtest.h"
#include "test/syscalls/linux/iptables.h"
#include "test/syscalls/linux/socket_test_util.h"
#include "test/util/capability_util.h"
#include "test/util/file_descriptor.h"
#include "test/util/test_util.h"
namespace gvisor {
namespace testing {
namespace {
constexpr char kNatTablename[] = "nat";
constexpr char kErrorTarget[] = "ERROR";
constexpr size_t kEmptyStandardEntrySize =
sizeof(struct ip6t_entry) + sizeof(struct xt_standard_target);
constexpr size_t kEmptyErrorEntrySize =
sizeof(struct ip6t_entry) + sizeof(struct xt_error_target);
TEST(IP6TablesBasic, FailSockoptNonRaw) {
// Even if the user has CAP_NET_RAW, they shouldn't be able to use the
// ip6tables sockopts with a non-raw socket.
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW)));
int sock;
ASSERT_THAT(sock = socket(AF_INET6, SOCK_DGRAM, 0), SyscallSucceeds());
struct ipt_getinfo info = {};
snprintf(info.name, XT_TABLE_MAXNAMELEN, "%s", kNatTablename);
socklen_t info_size = sizeof(info);
EXPECT_THAT(getsockopt(sock, SOL_IPV6, IP6T_SO_GET_INFO, &info, &info_size),
SyscallFailsWithErrno(ENOPROTOOPT));
EXPECT_THAT(close(sock), SyscallSucceeds());
}
TEST(IP6TablesBasic, GetInfoErrorPrecedence) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW)));
int sock;
ASSERT_THAT(sock = socket(AF_INET6, SOCK_DGRAM, 0), SyscallSucceeds());
// When using the wrong type of socket and a too-short optlen, we should get
// EINVAL.
struct ipt_getinfo info = {};
snprintf(info.name, XT_TABLE_MAXNAMELEN, "%s", kNatTablename);
socklen_t info_size = sizeof(info) - 1;
EXPECT_THAT(getsockopt(sock, SOL_IPV6, IP6T_SO_GET_INFO, &info, &info_size),
SyscallFailsWithErrno(EINVAL));
}
TEST(IP6TablesBasic, GetEntriesErrorPrecedence) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW)));
int sock;
ASSERT_THAT(sock = socket(AF_INET6, SOCK_DGRAM, 0), SyscallSucceeds());
// When using the wrong type of socket and a too-short optlen, we should get
// EINVAL.
struct ip6t_get_entries entries = {};
socklen_t entries_size = sizeof(struct ip6t_get_entries) - 1;
snprintf(entries.name, XT_TABLE_MAXNAMELEN, "%s", kNatTablename);
EXPECT_THAT(
getsockopt(sock, SOL_IPV6, IP6T_SO_GET_ENTRIES, &entries, &entries_size),
SyscallFailsWithErrno(EINVAL));
}
TEST(IP6TablesBasic, GetRevision) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW)));
int sock;
ASSERT_THAT(sock = socket(AF_INET6, SOCK_RAW, IPPROTO_RAW),
SyscallSucceeds());
struct xt_get_revision rev = {
.name = "REDIRECT",
.revision = 0,
};
socklen_t rev_len = sizeof(rev);
// Revision 0 exists.
EXPECT_THAT(
getsockopt(sock, SOL_IPV6, IP6T_SO_GET_REVISION_TARGET, &rev, &rev_len),
SyscallSucceeds());
EXPECT_EQ(rev.revision, 0);
// Revisions > 0 don't exist.
rev.revision = 1;
EXPECT_THAT(
getsockopt(sock, SOL_IPV6, IP6T_SO_GET_REVISION_TARGET, &rev, &rev_len),
SyscallFailsWithErrno(EPROTONOSUPPORT));
}
// This tests the initial state of a machine with empty ip6tables via
// getsockopt(IP6T_SO_GET_INFO). We don't have a guarantee that the iptables are
// empty when running in native, but we can test that gVisor has the same
// initial state that a newly-booted Linux machine would have.
TEST(IP6TablesTest, InitialInfo) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW)));
FileDescriptor sock =
ASSERT_NO_ERRNO_AND_VALUE(Socket(AF_INET6, SOCK_RAW, IPPROTO_RAW));
// Get info via sockopt.
struct ipt_getinfo info = {};
snprintf(info.name, XT_TABLE_MAXNAMELEN, "%s", kNatTablename);
socklen_t info_size = sizeof(info);
ASSERT_THAT(
getsockopt(sock.get(), SOL_IPV6, IP6T_SO_GET_INFO, &info, &info_size),
SyscallSucceeds());
// The nat table supports PREROUTING, and OUTPUT.
unsigned int valid_hooks =
(1 << NF_IP6_PRE_ROUTING) | (1 << NF_IP6_LOCAL_OUT) |
(1 << NF_IP6_POST_ROUTING) | (1 << NF_IP6_LOCAL_IN);
EXPECT_EQ(info.valid_hooks, valid_hooks);
// Each chain consists of an empty entry with a standard target..
EXPECT_EQ(info.hook_entry[NF_IP6_PRE_ROUTING], 0);
EXPECT_EQ(info.hook_entry[NF_IP6_LOCAL_IN], kEmptyStandardEntrySize);
EXPECT_EQ(info.hook_entry[NF_IP6_LOCAL_OUT], kEmptyStandardEntrySize * 2);
EXPECT_EQ(info.hook_entry[NF_IP6_POST_ROUTING], kEmptyStandardEntrySize * 3);
// The underflow points are the same as the entry points.
EXPECT_EQ(info.underflow[NF_IP6_PRE_ROUTING], 0);
EXPECT_EQ(info.underflow[NF_IP6_LOCAL_IN], kEmptyStandardEntrySize);
EXPECT_EQ(info.underflow[NF_IP6_LOCAL_OUT], kEmptyStandardEntrySize * 2);
EXPECT_EQ(info.underflow[NF_IP6_POST_ROUTING], kEmptyStandardEntrySize * 3);
// One entry for each chain, plus an error entry at the end.
EXPECT_EQ(info.num_entries, 5);
EXPECT_EQ(info.size, 4 * kEmptyStandardEntrySize + kEmptyErrorEntrySize);
EXPECT_EQ(strcmp(info.name, kNatTablename), 0);
}
// This tests the initial state of a machine with empty ip6tables via
// getsockopt(IP6T_SO_GET_ENTRIES). We don't have a guarantee that the iptables
// are empty when running in native, but we can test that gVisor has the same
// initial state that a newly-booted Linux machine would have.
TEST(IP6TablesTest, InitialEntries) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW)));
FileDescriptor sock =
ASSERT_NO_ERRNO_AND_VALUE(Socket(AF_INET6, SOCK_RAW, IPPROTO_RAW));
// Get info via sockopt.
struct ipt_getinfo info = {};
snprintf(info.name, XT_TABLE_MAXNAMELEN, "%s", kNatTablename);
socklen_t info_size = sizeof(info);
ASSERT_THAT(
getsockopt(sock.get(), SOL_IPV6, IP6T_SO_GET_INFO, &info, &info_size),
SyscallSucceeds());
// Use info to get entries.
socklen_t entries_size = sizeof(struct ip6t_get_entries) + info.size;
struct ip6t_get_entries* entries =
static_cast<struct ip6t_get_entries*>(malloc(entries_size));
snprintf(entries->name, XT_TABLE_MAXNAMELEN, "%s", kNatTablename);
entries->size = info.size;
ASSERT_THAT(getsockopt(sock.get(), SOL_IPV6, IP6T_SO_GET_ENTRIES, entries,
&entries_size),
SyscallSucceeds());
// Verify the name and size.
ASSERT_EQ(info.size, entries->size);
ASSERT_EQ(strcmp(entries->name, kNatTablename), 0);
// Verify that the entrytable is 4 entries with accept targets and no matches
// followed by a single error target.
size_t entry_offset = 0;
while (entry_offset < entries->size) {
struct ip6t_entry* entry = reinterpret_cast<struct ip6t_entry*>(
reinterpret_cast<char*>(entries->entrytable) + entry_offset);
// ipv6 should be zeroed.
struct ip6t_ip6 zeroed = {};
ASSERT_EQ(memcmp(static_cast<void*>(&zeroed),
static_cast<void*>(&entry->ipv6), sizeof(zeroed)),
0);
// target_offset should be zero.
EXPECT_EQ(entry->target_offset, sizeof(ip6t_entry));
if (entry_offset < kEmptyStandardEntrySize * 4) {
// The first 4 entries are standard targets
struct xt_standard_target* target =
reinterpret_cast<struct xt_standard_target*>(entry->elems);
EXPECT_EQ(entry->next_offset, kEmptyStandardEntrySize);
EXPECT_EQ(target->target.u.user.target_size, sizeof(*target));
EXPECT_EQ(strcmp(target->target.u.user.name, ""), 0);
EXPECT_EQ(target->target.u.user.revision, 0);
// This is what's returned for an accept verdict. I don't know why.
EXPECT_EQ(target->verdict, -NF_ACCEPT - 1);
} else {
// The last entry is an error target
struct xt_error_target* target =
reinterpret_cast<struct xt_error_target*>(entry->elems);
EXPECT_EQ(entry->next_offset, kEmptyErrorEntrySize);
EXPECT_EQ(target->target.u.user.target_size, sizeof(*target));
EXPECT_EQ(strcmp(target->target.u.user.name, kErrorTarget), 0);
EXPECT_EQ(target->target.u.user.revision, 0);
EXPECT_EQ(strcmp(target->errorname, kErrorTarget), 0);
}
entry_offset += entry->next_offset;
break;
}
free(entries);
}
} // namespace
} // namespace testing
} // namespace gvisor
|