1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <elf.h>
#include <errno.h>
#include <signal.h>
#include <sys/ptrace.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <sys/user.h>
#include <unistd.h>
#include <algorithm>
#include <functional>
#include <iterator>
#include <tuple>
#include <utility>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/string_view.h"
#include "test/util/cleanup.h"
#include "test/util/file_descriptor.h"
#include "test/util/fs_util.h"
#include "test/util/multiprocess_util.h"
#include "test/util/posix_error.h"
#include "test/util/proc_util.h"
#include "test/util/temp_path.h"
#include "test/util/test_util.h"
namespace gvisor {
namespace testing {
namespace {
using ::testing::AnyOf;
using ::testing::Eq;
#ifndef __x86_64__
// The assembly stub and ELF internal details must be ported to other arches.
#error "Test only supported on x86-64"
#endif // __x86_64__
// amd64 stub that calls PTRACE_TRACEME and sends itself SIGSTOP.
const char kPtraceCode[] = {
// movq $101, %rax /* ptrace */
'\x48',
'\xc7',
'\xc0',
'\x65',
'\x00',
'\x00',
'\x00',
// movq $0, %rsi /* PTRACE_TRACEME */
'\x48',
'\xc7',
'\xc6',
'\x00',
'\x00',
'\x00',
'\x00',
// movq $0, %rdi
'\x48',
'\xc7',
'\xc7',
'\x00',
'\x00',
'\x00',
'\x00',
// movq $0, %rdx
'\x48',
'\xc7',
'\xc2',
'\x00',
'\x00',
'\x00',
'\x00',
// movq $0, %r10
'\x49',
'\xc7',
'\xc2',
'\x00',
'\x00',
'\x00',
'\x00',
// syscall
'\x0f',
'\x05',
// movq $39, %rax /* getpid */
'\x48',
'\xc7',
'\xc0',
'\x27',
'\x00',
'\x00',
'\x00',
// syscall
'\x0f',
'\x05',
// movq %rax, %rdi /* pid */
'\x48',
'\x89',
'\xc7',
// movq $62, %rax /* kill */
'\x48',
'\xc7',
'\xc0',
'\x3e',
'\x00',
'\x00',
'\x00',
// movq $19, %rsi /* SIGSTOP */
'\x48',
'\xc7',
'\xc6',
'\x13',
'\x00',
'\x00',
'\x00',
// syscall
'\x0f',
'\x05',
};
// Size of a syscall instruction.
constexpr int kSyscallSize = 2;
// This test suite tests executable loading in the kernel (ELF and interpreter
// scripts).
// Parameterized ELF types for 64 and 32 bit.
template <int Size>
struct ElfTypes;
template <>
struct ElfTypes<64> {
typedef Elf64_Ehdr ElfEhdr;
typedef Elf64_Phdr ElfPhdr;
};
template <>
struct ElfTypes<32> {
typedef Elf32_Ehdr ElfEhdr;
typedef Elf32_Phdr ElfPhdr;
};
template <int Size>
struct ElfBinary {
using ElfEhdr = typename ElfTypes<Size>::ElfEhdr;
using ElfPhdr = typename ElfTypes<Size>::ElfPhdr;
ElfEhdr header = {};
std::vector<ElfPhdr> phdrs;
std::vector<char> data;
// UpdateOffsets updates p_offset, p_vaddr in all phdrs to account for the
// space taken by the header and phdrs.
//
// It also updates header.e_phnum and adds the offset to header.e_entry to
// account for the headers residing in the first PT_LOAD segment.
//
// Before calling UpdateOffsets each of those fields should be the appropriate
// offset into data.
void UpdateOffsets() {
size_t offset = sizeof(header) + phdrs.size() * sizeof(ElfPhdr);
header.e_entry += offset;
header.e_phnum = phdrs.size();
for (auto& p : phdrs) {
p.p_offset += offset;
p.p_vaddr += offset;
}
}
// AddInterpreter adds a PT_INTERP segment with the passed contents.
//
// A later call to UpdateOffsets is required to make the new phdr valid.
void AddInterpreter(std::vector<char> contents) {
const int start = data.size();
data.insert(data.end(), contents.begin(), contents.end());
const int size = data.size() - start;
ElfPhdr phdr = {};
phdr.p_type = PT_INTERP;
phdr.p_offset = start;
phdr.p_filesz = size;
phdr.p_memsz = size;
// "If [PT_INTERP] is present, it must precede any loadable segment entry."
phdrs.insert(phdrs.begin(), phdr);
}
// Writes the header, phdrs, and data to fd.
PosixError Write(int fd) const {
int ret = WriteFd(fd, &header, sizeof(header));
if (ret < 0) {
return PosixError(errno, "failed to write header");
} else if (ret != sizeof(header)) {
return PosixError(EIO, absl::StrCat("short write of header: ", ret));
}
for (auto const& p : phdrs) {
ret = WriteFd(fd, &p, sizeof(p));
if (ret < 0) {
return PosixError(errno, "failed to write phdr");
} else if (ret != sizeof(p)) {
return PosixError(EIO, absl::StrCat("short write of phdr: ", ret));
}
}
ret = WriteFd(fd, data.data(), data.size());
if (ret < 0) {
return PosixError(errno, "failed to write data");
} else if (ret != static_cast<int>(data.size())) {
return PosixError(EIO, absl::StrCat("short write of data: ", ret));
}
return NoError();
}
};
// Creates a new temporary executable ELF file in parent with elf as the
// contents.
template <int Size>
PosixErrorOr<TempPath> CreateElfWith(absl::string_view parent,
ElfBinary<Size> const& elf) {
ASSIGN_OR_RETURN_ERRNO(
auto file, TempPath::CreateFileWith(parent, absl::string_view(), 0755));
ASSIGN_OR_RETURN_ERRNO(auto fd, Open(file.path(), O_RDWR));
RETURN_IF_ERRNO(elf.Write(fd.get()));
return std::move(file);
}
// Creates a new temporary executable ELF file with elf as the contents.
template <int Size>
PosixErrorOr<TempPath> CreateElfWith(ElfBinary<Size> const& elf) {
return CreateElfWith(GetAbsoluteTestTmpdir(), elf);
}
// Wait for pid to stop, and assert that it stopped via SIGSTOP.
PosixError WaitStopped(pid_t pid) {
int status;
int ret = RetryEINTR(waitpid)(pid, &status, 0);
MaybeSave();
if (ret < 0) {
return PosixError(errno, "wait failed");
} else if (ret != pid) {
return PosixError(ESRCH, absl::StrCat("wait got ", ret, " want ", pid));
}
if (!WIFSTOPPED(status) || WSTOPSIG(status) != SIGSTOP) {
return PosixError(EINVAL,
absl::StrCat("pid did not SIGSTOP; status = ", status));
}
return NoError();
}
// Returns a valid ELF that PTRACE_TRACEME and SIGSTOPs itself.
//
// UpdateOffsets must be called before writing this ELF.
ElfBinary<64> StandardElf() {
ElfBinary<64> elf;
elf.header.e_ident[EI_MAG0] = ELFMAG0;
elf.header.e_ident[EI_MAG1] = ELFMAG1;
elf.header.e_ident[EI_MAG2] = ELFMAG2;
elf.header.e_ident[EI_MAG3] = ELFMAG3;
elf.header.e_ident[EI_CLASS] = ELFCLASS64;
elf.header.e_ident[EI_DATA] = ELFDATA2LSB;
elf.header.e_ident[EI_VERSION] = EV_CURRENT;
elf.header.e_type = ET_EXEC;
elf.header.e_machine = EM_X86_64;
elf.header.e_version = EV_CURRENT;
elf.header.e_phoff = sizeof(elf.header);
elf.header.e_phentsize = sizeof(decltype(elf)::ElfPhdr);
// TODO(gvisor.dev/issue/153): Always include a PT_GNU_STACK segment to
// disable executable stacks. With this omitted the stack (and all PROT_READ)
// mappings should be executable, but gVisor doesn't support that.
decltype(elf)::ElfPhdr phdr = {};
phdr.p_type = PT_GNU_STACK;
phdr.p_flags = PF_R | PF_W;
elf.phdrs.push_back(phdr);
phdr = {};
phdr.p_type = PT_LOAD;
phdr.p_flags = PF_R | PF_X;
phdr.p_offset = 0;
phdr.p_vaddr = 0x40000;
phdr.p_filesz = sizeof(kPtraceCode);
phdr.p_memsz = phdr.p_filesz;
elf.phdrs.push_back(phdr);
elf.header.e_entry = phdr.p_vaddr;
elf.data.assign(kPtraceCode, kPtraceCode + sizeof(kPtraceCode));
return elf;
}
// Test that a trivial binary executes.
TEST(ElfTest, Execute) {
ElfBinary<64> elf = StandardElf();
elf.UpdateOffsets();
TempPath file = ASSERT_NO_ERRNO_AND_VALUE(CreateElfWith(elf));
pid_t child;
int execve_errno;
auto cleanup = ASSERT_NO_ERRNO_AND_VALUE(
ForkAndExec(file.path(), {file.path()}, {}, &child, &execve_errno));
ASSERT_EQ(execve_errno, 0);
// Ensure it made it to SIGSTOP.
ASSERT_NO_ERRNO(WaitStopped(child));
struct user_regs_struct regs;
ASSERT_THAT(ptrace(PTRACE_GETREGS, child, 0, ®s), SyscallSucceeds());
// RIP is just beyond the final syscall instruction.
EXPECT_EQ(regs.rip, elf.header.e_entry + sizeof(kPtraceCode));
EXPECT_THAT(child, ContainsMappings(std::vector<ProcMapsEntry>({
{0x40000, 0x41000, true, false, true, true, 0, 0, 0, 0,
file.path().c_str()},
})));
}
// StandardElf without data completes execve, but faults once running.
TEST(ElfTest, MissingText) {
ElfBinary<64> elf = StandardElf();
elf.data.clear();
elf.UpdateOffsets();
TempPath file = ASSERT_NO_ERRNO_AND_VALUE(CreateElfWith(elf));
pid_t child;
int execve_errno;
auto cleanup = ASSERT_NO_ERRNO_AND_VALUE(
ForkAndExec(file.path(), {file.path()}, {}, &child, &execve_errno));
ASSERT_EQ(execve_errno, 0);
int status;
ASSERT_THAT(RetryEINTR(waitpid)(child, &status, 0),
SyscallSucceedsWithValue(child));
// It runs off the end of the zeroes filling the end of the page.
EXPECT_TRUE(WIFSIGNALED(status) && WTERMSIG(status) == SIGSEGV) << status;
}
// Typical ELF with a data + bss segment
TEST(ElfTest, DataSegment) {
ElfBinary<64> elf = StandardElf();
// Create a standard ELF, but extend to 1.5 pages. The second page will be the
// beginning of a multi-page data + bss segment.
elf.data.resize(kPageSize + kPageSize / 2);
decltype(elf)::ElfPhdr phdr = {};
phdr.p_type = PT_LOAD;
phdr.p_flags = PF_R | PF_W;
phdr.p_offset = kPageSize;
phdr.p_vaddr = 0x41000;
phdr.p_filesz = kPageSize / 2;
// The header is going to push vaddr up by a few hundred bytes. Keep p_memsz a
// bit less than 2 pages so this mapping doesn't extend beyond 0x43000.
phdr.p_memsz = 2 * kPageSize - kPageSize / 2;
elf.phdrs.push_back(phdr);
elf.UpdateOffsets();
TempPath file = ASSERT_NO_ERRNO_AND_VALUE(CreateElfWith(elf));
pid_t child;
int execve_errno;
auto cleanup = ASSERT_NO_ERRNO_AND_VALUE(
ForkAndExec(file.path(), {file.path()}, {}, &child, &execve_errno));
ASSERT_EQ(execve_errno, 0);
ASSERT_NO_ERRNO(WaitStopped(child));
EXPECT_THAT(
child, ContainsMappings(std::vector<ProcMapsEntry>({
// text page.
{0x40000, 0x41000, true, false, true, true, 0, 0, 0, 0,
file.path().c_str()},
// data + bss page from file.
{0x41000, 0x42000, true, true, false, true, kPageSize, 0, 0, 0,
file.path().c_str()},
// bss page from anon.
{0x42000, 0x43000, true, true, false, true, 0, 0, 0, 0, ""},
})));
}
// Additonal pages beyond filesz honor (only) execute protections.
//
// N.B. Linux changed this in 4.11 (16e72e9b30986 "powerpc: do not make the
// entire heap executable"). Previously, extra pages were always RW.
TEST(ElfTest, ExtraMemPages) {
// gVisor has the newer behavior.
if (!IsRunningOnGvisor()) {
auto version = ASSERT_NO_ERRNO_AND_VALUE(GetKernelVersion());
SKIP_IF(version.major < 4 || (version.major == 4 && version.minor < 11));
}
ElfBinary<64> elf = StandardElf();
// Create a standard ELF, but extend to 1.5 pages. The second page will be the
// beginning of a multi-page data + bss segment.
elf.data.resize(kPageSize + kPageSize / 2);
decltype(elf)::ElfPhdr phdr = {};
phdr.p_type = PT_LOAD;
// RWX segment. The extra anon page will also be RWX.
//
// N.B. Linux uses clear_user to clear the end of the file-mapped page, which
// respects the mapping protections. Thus if we map this RO with memsz >
// (unaligned) filesz, then execve will fail with EFAULT. See padzero(elf_bss)
// in fs/binfmt_elf.c:load_elf_binary.
//
// N.N.B.B. The above only applies to the last segment. For earlier segments,
// the clear_user error is ignored.
phdr.p_flags = PF_R | PF_W | PF_X;
phdr.p_offset = kPageSize;
phdr.p_vaddr = 0x41000;
phdr.p_filesz = kPageSize / 2;
// The header is going to push vaddr up by a few hundred bytes. Keep p_memsz a
// bit less than 2 pages so this mapping doesn't extend beyond 0x43000.
phdr.p_memsz = 2 * kPageSize - kPageSize / 2;
elf.phdrs.push_back(phdr);
elf.UpdateOffsets();
TempPath file = ASSERT_NO_ERRNO_AND_VALUE(CreateElfWith(elf));
pid_t child;
int execve_errno;
auto cleanup = ASSERT_NO_ERRNO_AND_VALUE(
ForkAndExec(file.path(), {file.path()}, {}, &child, &execve_errno));
ASSERT_EQ(execve_errno, 0);
ASSERT_NO_ERRNO(WaitStopped(child));
EXPECT_THAT(child,
ContainsMappings(std::vector<ProcMapsEntry>({
// text page.
{0x40000, 0x41000, true, false, true, true, 0, 0, 0, 0,
file.path().c_str()},
// data + bss page from file.
{0x41000, 0x42000, true, true, true, true, kPageSize, 0, 0, 0,
file.path().c_str()},
// extra page from anon.
{0x42000, 0x43000, true, true, true, true, 0, 0, 0, 0, ""},
})));
}
// An aligned segment with filesz == 0, memsz > 0 is anon-only.
TEST(ElfTest, AnonOnlySegment) {
ElfBinary<64> elf = StandardElf();
decltype(elf)::ElfPhdr phdr = {};
phdr.p_type = PT_LOAD;
// RO segment. The extra anon page will be RW anyways.
phdr.p_flags = PF_R;
phdr.p_offset = 0;
phdr.p_vaddr = 0x41000;
phdr.p_filesz = 0;
phdr.p_memsz = kPageSize;
elf.phdrs.push_back(phdr);
elf.UpdateOffsets();
// UpdateOffsets adjusts p_vaddr and p_offset by the header size, but we need
// a page-aligned p_vaddr to get a truly anon-only page.
elf.phdrs[2].p_vaddr = 0x41000;
// N.B. p_offset is now unaligned, but Linux doesn't care since this is
// anon-only.
TempPath file = ASSERT_NO_ERRNO_AND_VALUE(CreateElfWith(elf));
pid_t child;
int execve_errno;
auto cleanup = ASSERT_NO_ERRNO_AND_VALUE(
ForkAndExec(file.path(), {file.path()}, {}, &child, &execve_errno));
ASSERT_EQ(execve_errno, 0);
ASSERT_NO_ERRNO(WaitStopped(child));
EXPECT_THAT(child,
ContainsMappings(std::vector<ProcMapsEntry>({
// text page.
{0x40000, 0x41000, true, false, true, true, 0, 0, 0, 0,
file.path().c_str()},
// anon page.
{0x41000, 0x42000, true, true, false, true, 0, 0, 0, 0, ""},
})));
}
// p_offset must have the same alignment as p_vaddr.
TEST(ElfTest, UnalignedOffset) {
ElfBinary<64> elf = StandardElf();
// Unaligned offset.
elf.phdrs[1].p_offset += 1;
elf.UpdateOffsets();
TempPath file = ASSERT_NO_ERRNO_AND_VALUE(CreateElfWith(elf));
pid_t child;
int execve_errno;
auto cleanup = ASSERT_NO_ERRNO_AND_VALUE(
ForkAndExec(file.path(), {file.path()}, {}, &child, &execve_errno));
// execve(2) return EINVAL, but behavior varies between Linux and gVisor.
//
// On Linux, the new mm is committed before attempting to map into it. By the
// time we hit EINVAL in the segment mmap, the old mm is gone. Linux returns
// to an empty mm, which immediately segfaults.
//
// OTOH, gVisor maps into the new mm before committing it. Thus when it hits
// failure, the caller is still intact to receive the error.
if (IsRunningOnGvisor()) {
ASSERT_EQ(execve_errno, EINVAL);
} else {
ASSERT_EQ(execve_errno, 0);
int status;
ASSERT_THAT(RetryEINTR(waitpid)(child, &status, 0),
SyscallSucceedsWithValue(child));
EXPECT_TRUE(WIFSIGNALED(status) && WTERMSIG(status) == SIGSEGV) << status;
}
}
// Linux will allow PT_LOAD segments to overlap.
TEST(ElfTest, DirectlyOverlappingSegments) {
// NOTE(b/37289926): see PIEOutOfOrderSegments.
SKIP_IF(IsRunningOnGvisor());
ElfBinary<64> elf = StandardElf();
// Same as the StandardElf mapping.
decltype(elf)::ElfPhdr phdr = {};
phdr.p_type = PT_LOAD;
// Add PF_W so we can differentiate this mapping from the first.
phdr.p_flags = PF_R | PF_W | PF_X;
phdr.p_offset = 0;
phdr.p_vaddr = 0x40000;
phdr.p_filesz = sizeof(kPtraceCode);
phdr.p_memsz = phdr.p_filesz;
elf.phdrs.push_back(phdr);
elf.UpdateOffsets();
TempPath file = ASSERT_NO_ERRNO_AND_VALUE(CreateElfWith(elf));
pid_t child;
int execve_errno;
auto cleanup = ASSERT_NO_ERRNO_AND_VALUE(
ForkAndExec(file.path(), {file.path()}, {}, &child, &execve_errno));
ASSERT_EQ(execve_errno, 0);
ASSERT_NO_ERRNO(WaitStopped(child));
EXPECT_THAT(child, ContainsMappings(std::vector<ProcMapsEntry>({
{0x40000, 0x41000, true, true, true, true, 0, 0, 0, 0,
file.path().c_str()},
})));
}
// Linux allows out-of-order PT_LOAD segments.
TEST(ElfTest, OutOfOrderSegments) {
// NOTE(b/37289926): see PIEOutOfOrderSegments.
SKIP_IF(IsRunningOnGvisor());
ElfBinary<64> elf = StandardElf();
decltype(elf)::ElfPhdr phdr = {};
phdr.p_type = PT_LOAD;
phdr.p_flags = PF_R | PF_X;
phdr.p_offset = 0;
phdr.p_vaddr = 0x20000;
phdr.p_filesz = sizeof(kPtraceCode);
phdr.p_memsz = phdr.p_filesz;
elf.phdrs.push_back(phdr);
elf.UpdateOffsets();
TempPath file = ASSERT_NO_ERRNO_AND_VALUE(CreateElfWith(elf));
pid_t child;
int execve_errno;
auto cleanup = ASSERT_NO_ERRNO_AND_VALUE(
ForkAndExec(file.path(), {file.path()}, {}, &child, &execve_errno));
ASSERT_EQ(execve_errno, 0);
ASSERT_NO_ERRNO(WaitStopped(child));
EXPECT_THAT(child, ContainsMappings(std::vector<ProcMapsEntry>({
{0x20000, 0x21000, true, false, true, true, 0, 0, 0, 0,
file.path().c_str()},
{0x40000, 0x41000, true, false, true, true, 0, 0, 0, 0,
file.path().c_str()},
})));
}
// header.e_phoff is bound the end of the file.
TEST(ElfTest, OutOfBoundsPhdrs) {
ElfBinary<64> elf = StandardElf();
elf.header.e_phoff = 0x100000;
elf.UpdateOffsets();
TempPath file = ASSERT_NO_ERRNO_AND_VALUE(CreateElfWith(elf));
pid_t child;
int execve_errno;
auto cleanup = ASSERT_NO_ERRNO_AND_VALUE(
ForkAndExec(file.path(), {file.path()}, {}, &child, &execve_errno));
// On Linux 3.11, this caused EIO. On newer Linux, it causes ENOEXEC.
EXPECT_THAT(execve_errno, AnyOf(Eq(ENOEXEC), Eq(EIO)));
}
// Claim there is a phdr beyond the end of the file, but don't include it.
TEST(ElfTest, MissingPhdr) {
ElfBinary<64> elf = StandardElf();
// Clear data so the file ends immediately after the phdrs.
// N.B. Per ElfTest.MissingData, StandardElf without data completes execve
// without error.
elf.data.clear();
elf.UpdateOffsets();
// Claim that there is another phdr just beyond the end of the file. Of
// course, it isn't accessible.
elf.header.e_phnum++;
TempPath file = ASSERT_NO_ERRNO_AND_VALUE(CreateElfWith(elf));
pid_t child;
int execve_errno;
auto cleanup = ASSERT_NO_ERRNO_AND_VALUE(
ForkAndExec(file.path(), {file.path()}, {}, &child, &execve_errno));
// On Linux 3.11, this caused EIO. On newer Linux, it causes ENOEXEC.
EXPECT_THAT(execve_errno, AnyOf(Eq(ENOEXEC), Eq(EIO)));
}
// No headers at all, just the ELF magic.
TEST(ElfTest, MissingHeader) {
TempPath file = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFileMode(0755));
FileDescriptor fd = ASSERT_NO_ERRNO_AND_VALUE(Open(file.path(), O_RDWR));
const char kElfMagic[] = {0x7f, 'E', 'L', 'F'};
ASSERT_THAT(WriteFd(fd.get(), &kElfMagic, sizeof(kElfMagic)),
SyscallSucceeds());
fd.reset();
pid_t child;
int execve_errno;
auto cleanup = ASSERT_NO_ERRNO_AND_VALUE(
ForkAndExec(file.path(), {file.path()}, {}, &child, &execve_errno));
EXPECT_EQ(execve_errno, ENOEXEC);
}
// Load a PIE ELF with a data + bss segment.
TEST(ElfTest, PIE) {
ElfBinary<64> elf = StandardElf();
elf.header.e_type = ET_DYN;
// Create a standard ELF, but extend to 1.5 pages. The second page will be the
// beginning of a multi-page data + bss segment.
elf.data.resize(kPageSize + kPageSize / 2);
elf.header.e_entry = 0x0;
decltype(elf)::ElfPhdr phdr = {};
phdr.p_type = PT_LOAD;
phdr.p_flags = PF_R | PF_W;
phdr.p_offset = kPageSize;
// Put the data segment at a bit of an offset.
phdr.p_vaddr = 0x20000;
phdr.p_filesz = kPageSize / 2;
// The header is going to push vaddr up by a few hundred bytes. Keep p_memsz a
// bit less than 2 pages so this mapping doesn't extend beyond 0x43000.
phdr.p_memsz = 2 * kPageSize - kPageSize / 2;
elf.phdrs.push_back(phdr);
elf.UpdateOffsets();
// The first segment really needs to start at 0 for a normal PIE binary, and
// thus includes the headers.
const uint64_t offset = elf.phdrs[1].p_offset;
elf.phdrs[1].p_offset = 0x0;
elf.phdrs[1].p_vaddr = 0x0;
elf.phdrs[1].p_filesz += offset;
elf.phdrs[1].p_memsz += offset;
TempPath file = ASSERT_NO_ERRNO_AND_VALUE(CreateElfWith(elf));
pid_t child;
int execve_errno;
auto cleanup = ASSERT_NO_ERRNO_AND_VALUE(
ForkAndExec(file.path(), {file.path()}, {}, &child, &execve_errno));
ASSERT_EQ(execve_errno, 0);
ASSERT_NO_ERRNO(WaitStopped(child));
// RIP tells us which page the first segment was loaded into.
struct user_regs_struct regs;
ASSERT_THAT(ptrace(PTRACE_GETREGS, child, 0, ®s), SyscallSucceeds());
const uint64_t load_addr = regs.rip & ~(kPageSize - 1);
EXPECT_THAT(child, ContainsMappings(std::vector<ProcMapsEntry>({
// text page.
{load_addr, load_addr + 0x1000, true, false, true,
true, 0, 0, 0, 0, file.path().c_str()},
// data + bss page from file.
{load_addr + 0x20000, load_addr + 0x21000, true, true,
false, true, kPageSize, 0, 0, 0, file.path().c_str()},
// bss page from anon.
{load_addr + 0x21000, load_addr + 0x22000, true, true,
false, true, 0, 0, 0, 0, ""},
})));
}
// PIE binary with a non-zero start address.
//
// This is non-standard for a PIE binary, but valid. The binary is still loaded
// at an arbitrary address, not the first PT_LOAD vaddr.
//
// N.B. Linux changed this behavior in d1fd836dcf00d2028c700c7e44d2c23404062c90.
// Previously, with "randomization" enabled, PIE binaries with a non-zero start
// address would be be loaded at the address they specified because mmap was
// passed the load address, which wasn't 0 as expected.
//
// This change is present in kernel v4.1+.
TEST(ElfTest, PIENonZeroStart) {
// gVisor has the newer behavior.
if (!IsRunningOnGvisor()) {
auto version = ASSERT_NO_ERRNO_AND_VALUE(GetKernelVersion());
SKIP_IF(version.major < 4 || (version.major == 4 && version.minor < 1));
}
ElfBinary<64> elf = StandardElf();
elf.header.e_type = ET_DYN;
// Create a standard ELF, but extend to 1.5 pages. The second page will be the
// beginning of a multi-page data + bss segment.
elf.data.resize(kPageSize + kPageSize / 2);
decltype(elf)::ElfPhdr phdr = {};
phdr.p_type = PT_LOAD;
phdr.p_flags = PF_R | PF_W;
phdr.p_offset = kPageSize;
// Put the data segment at a bit of an offset.
phdr.p_vaddr = 0x60000;
phdr.p_filesz = kPageSize / 2;
// The header is going to push vaddr up by a few hundred bytes. Keep p_memsz a
// bit less than 2 pages so this mapping doesn't extend beyond 0x43000.
phdr.p_memsz = 2 * kPageSize - kPageSize / 2;
elf.phdrs.push_back(phdr);
elf.UpdateOffsets();
TempPath file = ASSERT_NO_ERRNO_AND_VALUE(CreateElfWith(elf));
pid_t child;
int execve_errno;
auto cleanup = ASSERT_NO_ERRNO_AND_VALUE(
ForkAndExec(file.path(), {file.path()}, {}, &child, &execve_errno));
ASSERT_EQ(execve_errno, 0);
ASSERT_NO_ERRNO(WaitStopped(child));
// RIP tells us which page the first segment was loaded into.
struct user_regs_struct regs;
ASSERT_THAT(ptrace(PTRACE_GETREGS, child, 0, ®s), SyscallSucceeds());
const uint64_t load_addr = regs.rip & ~(kPageSize - 1);
// The ELF is loaded at an arbitrary address, not the first PT_LOAD vaddr.
//
// N.B. this is technically flaky, but Linux is *extremely* unlikely to pick
// this as the start address, as it searches from the top down.
EXPECT_NE(load_addr, 0x40000);
EXPECT_THAT(child, ContainsMappings(std::vector<ProcMapsEntry>({
// text page.
{load_addr, load_addr + 0x1000, true, false, true,
true, 0, 0, 0, 0, file.path().c_str()},
// data + bss page from file.
{load_addr + 0x20000, load_addr + 0x21000, true, true,
false, true, kPageSize, 0, 0, 0, file.path().c_str()},
// bss page from anon.
{load_addr + 0x21000, load_addr + 0x22000, true, true,
false, true, 0, 0, 0, 0, ""},
})));
}
TEST(ElfTest, PIEOutOfOrderSegments) {
// TODO(b/37289926): This triggers a bug in Linux where it computes the size
// of the binary as 0x20000 - 0x40000 = 0xfffffffffffe0000, which obviously
// fails to map.
//
// We test gVisor's behavior (of rejecting the binary) because I assert that
// Linux is wrong and needs to be fixed.
SKIP_IF(!IsRunningOnGvisor());
ElfBinary<64> elf = StandardElf();
elf.header.e_type = ET_DYN;
// Create a standard ELF, but extend to 1.5 pages. The second page will be the
// beginning of a multi-page data + bss segment.
elf.data.resize(kPageSize + kPageSize / 2);
decltype(elf)::ElfPhdr phdr = {};
phdr.p_type = PT_LOAD;
phdr.p_flags = PF_R | PF_W;
phdr.p_offset = kPageSize;
// Put the data segment *before* the first segment.
phdr.p_vaddr = 0x20000;
phdr.p_filesz = kPageSize / 2;
// The header is going to push vaddr up by a few hundred bytes. Keep p_memsz a
// bit less than 2 pages so this mapping doesn't extend beyond 0x43000.
phdr.p_memsz = 2 * kPageSize - kPageSize / 2;
elf.phdrs.push_back(phdr);
elf.UpdateOffsets();
TempPath file = ASSERT_NO_ERRNO_AND_VALUE(CreateElfWith(elf));
pid_t child;
int execve_errno;
auto cleanup = ASSERT_NO_ERRNO_AND_VALUE(
ForkAndExec(file.path(), {file.path()}, {}, &child, &execve_errno));
EXPECT_EQ(execve_errno, ENOEXEC);
}
// Standard dynamically linked binary with an ELF interpreter.
TEST(ElfTest, ELFInterpreter) {
ElfBinary<64> interpreter = StandardElf();
interpreter.header.e_type = ET_DYN;
interpreter.header.e_entry = 0x0;
interpreter.UpdateOffsets();
// The first segment really needs to start at 0 for a normal PIE binary, and
// thus includes the headers.
uint64_t const offset = interpreter.phdrs[1].p_offset;
interpreter.phdrs[1].p_offset = 0x0;
interpreter.phdrs[1].p_vaddr = 0x0;
interpreter.phdrs[1].p_filesz += offset;
interpreter.phdrs[1].p_memsz += offset;
TempPath interpreter_file =
ASSERT_NO_ERRNO_AND_VALUE(CreateElfWith(interpreter));
ElfBinary<64> binary = StandardElf();
// Append the interpreter path.
int const interp_data_start = binary.data.size();
for (char const c : interpreter_file.path()) {
binary.data.push_back(c);
}
// NUL-terminate.
binary.data.push_back(0);
int const interp_data_size = binary.data.size() - interp_data_start;
decltype(binary)::ElfPhdr phdr = {};
phdr.p_type = PT_INTERP;
phdr.p_offset = interp_data_start;
phdr.p_filesz = interp_data_size;
phdr.p_memsz = interp_data_size;
// "If [PT_INTERP] is present, it must precede any loadable segment entry."
//
// However, Linux allows it anywhere, so we just stick it at the end to make
// sure out-of-order PT_INTERP is OK.
binary.phdrs.push_back(phdr);
binary.UpdateOffsets();
TempPath binary_file = ASSERT_NO_ERRNO_AND_VALUE(CreateElfWith(binary));
pid_t child;
int execve_errno;
auto cleanup = ASSERT_NO_ERRNO_AND_VALUE(ForkAndExec(
binary_file.path(), {binary_file.path()}, {}, &child, &execve_errno));
ASSERT_EQ(execve_errno, 0);
ASSERT_NO_ERRNO(WaitStopped(child));
// RIP tells us which page the first segment of the interpreter was loaded
// into.
struct user_regs_struct regs;
ASSERT_THAT(ptrace(PTRACE_GETREGS, child, 0, ®s), SyscallSucceeds());
const uint64_t interp_load_addr = regs.rip & ~(kPageSize - 1);
EXPECT_THAT(child,
ContainsMappings(std::vector<ProcMapsEntry>({
// Main binary
{0x40000, 0x41000, true, false, true, true, 0, 0, 0, 0,
binary_file.path().c_str()},
// Interpreter
{interp_load_addr, interp_load_addr + 0x1000, true, false,
true, true, 0, 0, 0, 0, interpreter_file.path().c_str()},
})));
}
// Test parameter to ElfInterpterStaticTest cases. The first item is a suffix to
// add to the end of the interpreter path in the PT_INTERP segment and the
// second is the expected execve(2) errno.
using ElfInterpreterStaticParam = std::tuple<std::vector<char>, int>;
class ElfInterpreterStaticTest
: public ::testing::TestWithParam<ElfInterpreterStaticParam> {};
// Statically linked ELF with a statically linked ELF interpreter.
TEST_P(ElfInterpreterStaticTest, Test) {
const std::vector<char> segment_suffix = std::get<0>(GetParam());
const int expected_errno = std::get<1>(GetParam());
ElfBinary<64> interpreter = StandardElf();
interpreter.UpdateOffsets();
TempPath interpreter_file =
ASSERT_NO_ERRNO_AND_VALUE(CreateElfWith(interpreter));
ElfBinary<64> binary = StandardElf();
// The PT_LOAD segment conflicts with the interpreter's PT_LOAD segment. The
// interpreter's will be mapped directly over the binary's.
// Interpreter path plus the parameterized suffix in the PT_INTERP segment.
const std::string path = interpreter_file.path();
std::vector<char> segment(path.begin(), path.end());
segment.insert(segment.end(), segment_suffix.begin(), segment_suffix.end());
binary.AddInterpreter(segment);
binary.UpdateOffsets();
TempPath binary_file = ASSERT_NO_ERRNO_AND_VALUE(CreateElfWith(binary));
pid_t child;
int execve_errno;
auto cleanup = ASSERT_NO_ERRNO_AND_VALUE(ForkAndExec(
binary_file.path(), {binary_file.path()}, {}, &child, &execve_errno));
ASSERT_EQ(execve_errno, expected_errno);
if (expected_errno == 0) {
ASSERT_NO_ERRNO(WaitStopped(child));
EXPECT_THAT(child, ContainsMappings(std::vector<ProcMapsEntry>({
// Interpreter.
{0x40000, 0x41000, true, false, true, true, 0, 0, 0,
0, interpreter_file.path().c_str()},
})));
}
}
INSTANTIATE_TEST_SUITE_P(
Cases, ElfInterpreterStaticTest,
::testing::ValuesIn({
// Simple NUL-terminator to run the interpreter as normal.
std::make_tuple(std::vector<char>({'\0'}), 0),
// Add some garbage to the segment followed by a NUL-terminator. This is
// ignored.
std::make_tuple(std::vector<char>({'\0', 'b', '\0'}), 0),
// Add some garbage to the segment without a NUL-terminator. Linux will
// reject
// this.
std::make_tuple(std::vector<char>({'\0', 'b'}), ENOEXEC),
}));
// Test parameter to ElfInterpterBadPathTest cases. The first item is the
// contents of the PT_INTERP segment and the second is the expected execve(2)
// errno.
using ElfInterpreterBadPathParam = std::tuple<std::vector<char>, int>;
class ElfInterpreterBadPathTest
: public ::testing::TestWithParam<ElfInterpreterBadPathParam> {};
TEST_P(ElfInterpreterBadPathTest, Test) {
const std::vector<char> segment = std::get<0>(GetParam());
const int expected_errno = std::get<1>(GetParam());
ElfBinary<64> binary = StandardElf();
binary.AddInterpreter(segment);
binary.UpdateOffsets();
TempPath binary_file = ASSERT_NO_ERRNO_AND_VALUE(CreateElfWith(binary));
int execve_errno;
auto cleanup = ASSERT_NO_ERRNO_AND_VALUE(ForkAndExec(
binary_file.path(), {binary_file.path()}, {}, nullptr, &execve_errno));
EXPECT_EQ(execve_errno, expected_errno);
}
INSTANTIATE_TEST_SUITE_P(
Cases, ElfInterpreterBadPathTest,
::testing::ValuesIn({
// NUL-terminated fake path in the PT_INTERP segment.
std::make_tuple(std::vector<char>({'/', 'f', '/', 'b', '\0'}), ENOENT),
// ELF interpreter not NUL-terminated.
std::make_tuple(std::vector<char>({'/', 'f', '/', 'b'}), ENOEXEC),
// ELF interpreter path omitted entirely.
//
// fs/binfmt_elf.c:load_elf_binary returns ENOEXEC if p_filesz is < 2
// bytes.
std::make_tuple(std::vector<char>({'\0'}), ENOEXEC),
// ELF interpreter path = "\0".
//
// fs/binfmt_elf.c:load_elf_binary returns ENOEXEC if p_filesz is < 2
// bytes, so add an extra byte to pass that check.
//
// load_elf_binary -> open_exec -> do_open_execat fails to check that
// name != '\0' before calling do_filp_open, which thus opens the
// working directory. do_open_execat returns EACCES because the
// directory is not a regular file.
std::make_tuple(std::vector<char>({'\0', '\0'}), EACCES),
}));
// Relative path to ELF interpreter.
TEST(ElfTest, ELFInterpreterRelative) {
ElfBinary<64> interpreter = StandardElf();
interpreter.header.e_type = ET_DYN;
interpreter.header.e_entry = 0x0;
interpreter.UpdateOffsets();
// The first segment really needs to start at 0 for a normal PIE binary, and
// thus includes the headers.
uint64_t const offset = interpreter.phdrs[1].p_offset;
interpreter.phdrs[1].p_offset = 0x0;
interpreter.phdrs[1].p_vaddr = 0x0;
interpreter.phdrs[1].p_filesz += offset;
interpreter.phdrs[1].p_memsz += offset;
TempPath interpreter_file =
ASSERT_NO_ERRNO_AND_VALUE(CreateElfWith(interpreter));
auto cwd = ASSERT_NO_ERRNO_AND_VALUE(GetCWD());
auto interpreter_relative =
ASSERT_NO_ERRNO_AND_VALUE(GetRelativePath(cwd, interpreter_file.path()));
ElfBinary<64> binary = StandardElf();
// NUL-terminated path in the PT_INTERP segment.
std::vector<char> segment(interpreter_relative.begin(),
interpreter_relative.end());
segment.push_back(0);
binary.AddInterpreter(segment);
binary.UpdateOffsets();
TempPath binary_file = ASSERT_NO_ERRNO_AND_VALUE(CreateElfWith(binary));
pid_t child;
int execve_errno;
auto cleanup = ASSERT_NO_ERRNO_AND_VALUE(ForkAndExec(
binary_file.path(), {binary_file.path()}, {}, &child, &execve_errno));
ASSERT_EQ(execve_errno, 0);
ASSERT_NO_ERRNO(WaitStopped(child));
// RIP tells us which page the first segment of the interpreter was loaded
// into.
struct user_regs_struct regs;
ASSERT_THAT(ptrace(PTRACE_GETREGS, child, 0, ®s), SyscallSucceeds());
const uint64_t interp_load_addr = regs.rip & ~(kPageSize - 1);
EXPECT_THAT(child,
ContainsMappings(std::vector<ProcMapsEntry>({
// Main binary
{0x40000, 0x41000, true, false, true, true, 0, 0, 0, 0,
binary_file.path().c_str()},
// Interpreter
{interp_load_addr, interp_load_addr + 0x1000, true, false,
true, true, 0, 0, 0, 0, interpreter_file.path().c_str()},
})));
}
// ELF interpreter architecture doesn't match the binary.
TEST(ElfTest, ELFInterpreterWrongArch) {
ElfBinary<64> interpreter = StandardElf();
interpreter.header.e_machine = EM_PPC64;
interpreter.header.e_type = ET_DYN;
interpreter.header.e_entry = 0x0;
interpreter.UpdateOffsets();
// The first segment really needs to start at 0 for a normal PIE binary, and
// thus includes the headers.
uint64_t const offset = interpreter.phdrs[1].p_offset;
interpreter.phdrs[1].p_offset = 0x0;
interpreter.phdrs[1].p_vaddr = 0x0;
interpreter.phdrs[1].p_filesz += offset;
interpreter.phdrs[1].p_memsz += offset;
TempPath interpreter_file =
ASSERT_NO_ERRNO_AND_VALUE(CreateElfWith(interpreter));
ElfBinary<64> binary = StandardElf();
// NUL-terminated path in the PT_INTERP segment.
const std::string path = interpreter_file.path();
std::vector<char> segment(path.begin(), path.end());
segment.push_back(0);
binary.AddInterpreter(segment);
binary.UpdateOffsets();
TempPath binary_file = ASSERT_NO_ERRNO_AND_VALUE(CreateElfWith(binary));
pid_t child;
int execve_errno;
auto cleanup = ASSERT_NO_ERRNO_AND_VALUE(ForkAndExec(
binary_file.path(), {binary_file.path()}, {}, &child, &execve_errno));
ASSERT_EQ(execve_errno, ELIBBAD);
}
// No execute permissions on the binary.
TEST(ElfTest, NoExecute) {
ElfBinary<64> elf = StandardElf();
elf.UpdateOffsets();
TempPath file = ASSERT_NO_ERRNO_AND_VALUE(CreateElfWith(elf));
ASSERT_THAT(chmod(file.path().c_str(), 0644), SyscallSucceeds());
pid_t child;
int execve_errno;
auto cleanup = ASSERT_NO_ERRNO_AND_VALUE(
ForkAndExec(file.path(), {file.path()}, {}, &child, &execve_errno));
EXPECT_EQ(execve_errno, EACCES);
}
// Execute, but no read permissions on the binary works just fine.
TEST(ElfTest, NoRead) {
// TODO(gvisor.dev/issue/160): gVisor's backing filesystem may prevent the
// sentry from reading the executable.
SKIP_IF(IsRunningOnGvisor());
ElfBinary<64> elf = StandardElf();
elf.UpdateOffsets();
TempPath file = ASSERT_NO_ERRNO_AND_VALUE(CreateElfWith(elf));
ASSERT_THAT(chmod(file.path().c_str(), 0111), SyscallSucceeds());
pid_t child;
int execve_errno;
auto cleanup = ASSERT_NO_ERRNO_AND_VALUE(
ForkAndExec(file.path(), {file.path()}, {}, &child, &execve_errno));
ASSERT_EQ(execve_errno, 0);
ASSERT_NO_ERRNO(WaitStopped(child));
// TODO(gvisor.dev/issue/160): A task with a non-readable executable is marked
// non-dumpable, preventing access to proc files. gVisor does not implement
// this behavior.
}
// No execute permissions on the ELF interpreter.
TEST(ElfTest, ElfInterpreterNoExecute) {
ElfBinary<64> interpreter = StandardElf();
interpreter.header.e_type = ET_DYN;
interpreter.header.e_entry = 0x0;
interpreter.UpdateOffsets();
// The first segment really needs to start at 0 for a normal PIE binary, and
// thus includes the headers.
uint64_t const offset = interpreter.phdrs[1].p_offset;
interpreter.phdrs[1].p_offset = 0x0;
interpreter.phdrs[1].p_vaddr = 0x0;
interpreter.phdrs[1].p_filesz += offset;
interpreter.phdrs[1].p_memsz += offset;
TempPath interpreter_file =
ASSERT_NO_ERRNO_AND_VALUE(CreateElfWith(interpreter));
ElfBinary<64> binary = StandardElf();
// NUL-terminated path in the PT_INTERP segment.
const std::string path = interpreter_file.path();
std::vector<char> segment(path.begin(), path.end());
segment.push_back(0);
binary.AddInterpreter(segment);
binary.UpdateOffsets();
TempPath binary_file = ASSERT_NO_ERRNO_AND_VALUE(CreateElfWith(binary));
ASSERT_THAT(chmod(interpreter_file.path().c_str(), 0644), SyscallSucceeds());
pid_t child;
int execve_errno;
auto cleanup = ASSERT_NO_ERRNO_AND_VALUE(
ForkAndExec(interpreter_file.path(), {interpreter_file.path()}, {},
&child, &execve_errno));
EXPECT_EQ(execve_errno, EACCES);
}
// Execute a basic interpreter script.
TEST(InterpreterScriptTest, Execute) {
ElfBinary<64> elf = StandardElf();
elf.UpdateOffsets();
// Use /tmp explicitly to ensure the path is short enough.
TempPath binary = ASSERT_NO_ERRNO_AND_VALUE(CreateElfWith("/tmp", elf));
TempPath script = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFileWith(
GetAbsoluteTestTmpdir(), absl::StrCat("#!", binary.path()), 0755));
pid_t child;
int execve_errno;
auto cleanup = ASSERT_NO_ERRNO_AND_VALUE(
ForkAndExec(script.path(), {script.path()}, {}, &child, &execve_errno));
ASSERT_EQ(execve_errno, 0);
EXPECT_NO_ERRNO(WaitStopped(child));
}
// Whitespace after #!.
TEST(InterpreterScriptTest, Whitespace) {
ElfBinary<64> elf = StandardElf();
elf.UpdateOffsets();
// Use /tmp explicitly to ensure the path is short enough.
TempPath binary = ASSERT_NO_ERRNO_AND_VALUE(CreateElfWith("/tmp", elf));
TempPath script = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFileWith(
GetAbsoluteTestTmpdir(), absl::StrCat("#! \t \t", binary.path()), 0755));
pid_t child;
int execve_errno;
auto cleanup = ASSERT_NO_ERRNO_AND_VALUE(
ForkAndExec(script.path(), {script.path()}, {}, &child, &execve_errno));
ASSERT_EQ(execve_errno, 0);
EXPECT_NO_ERRNO(WaitStopped(child));
}
// Interpreter script is missing execute permission.
TEST(InterpreterScriptTest, InterpreterScriptNoExecute) {
ElfBinary<64> elf = StandardElf();
elf.UpdateOffsets();
// Use /tmp explicitly to ensure the path is short enough.
TempPath binary = ASSERT_NO_ERRNO_AND_VALUE(CreateElfWith("/tmp", elf));
TempPath script = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFileWith(
GetAbsoluteTestTmpdir(), absl::StrCat("#!", binary.path()), 0644));
pid_t child;
int execve_errno;
auto cleanup = ASSERT_NO_ERRNO_AND_VALUE(
ForkAndExec(script.path(), {script.path()}, {}, &child, &execve_errno));
ASSERT_EQ(execve_errno, EACCES);
}
// Binary interpreter script refers to is missing execute permission.
TEST(InterpreterScriptTest, BinaryNoExecute) {
ElfBinary<64> elf = StandardElf();
elf.UpdateOffsets();
// Use /tmp explicitly to ensure the path is short enough.
TempPath binary = ASSERT_NO_ERRNO_AND_VALUE(CreateElfWith("/tmp", elf));
ASSERT_THAT(chmod(binary.path().c_str(), 0644), SyscallSucceeds());
TempPath script = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFileWith(
GetAbsoluteTestTmpdir(), absl::StrCat("#!", binary.path()), 0755));
pid_t child;
int execve_errno;
auto cleanup = ASSERT_NO_ERRNO_AND_VALUE(
ForkAndExec(script.path(), {script.path()}, {}, &child, &execve_errno));
ASSERT_EQ(execve_errno, EACCES);
}
// Linux will load interpreter scripts five levels deep, but no more.
TEST(InterpreterScriptTest, MaxRecursion) {
ElfBinary<64> elf = StandardElf();
elf.UpdateOffsets();
// Use /tmp explicitly to ensure the path is short enough.
TempPath binary = ASSERT_NO_ERRNO_AND_VALUE(CreateElfWith("/tmp", elf));
TempPath script1 = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFileWith(
"/tmp", absl::StrCat("#!", binary.path()), 0755));
TempPath script2 = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFileWith(
"/tmp", absl::StrCat("#!", script1.path()), 0755));
TempPath script3 = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFileWith(
"/tmp", absl::StrCat("#!", script2.path()), 0755));
TempPath script4 = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFileWith(
"/tmp", absl::StrCat("#!", script3.path()), 0755));
TempPath script5 = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFileWith(
"/tmp", absl::StrCat("#!", script4.path()), 0755));
TempPath script6 = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFileWith(
"/tmp", absl::StrCat("#!", script5.path()), 0755));
pid_t child;
int execve_errno;
auto cleanup = ASSERT_NO_ERRNO_AND_VALUE(
ForkAndExec(script6.path(), {script6.path()}, {}, &child, &execve_errno));
// Too many levels of recursion.
EXPECT_EQ(execve_errno, ELOOP);
// The next level up is OK.
auto cleanup2 = ASSERT_NO_ERRNO_AND_VALUE(
ForkAndExec(script5.path(), {script5.path()}, {}, &child, &execve_errno));
ASSERT_EQ(execve_errno, 0);
EXPECT_NO_ERRNO(WaitStopped(child));
}
// Interpreter script with a relative path.
TEST(InterpreterScriptTest, RelativePath) {
ElfBinary<64> elf = StandardElf();
elf.UpdateOffsets();
TempPath binary = ASSERT_NO_ERRNO_AND_VALUE(CreateElfWith("/tmp", elf));
auto cwd = ASSERT_NO_ERRNO_AND_VALUE(GetCWD());
auto binary_relative =
ASSERT_NO_ERRNO_AND_VALUE(GetRelativePath(cwd, binary.path()));
TempPath script = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFileWith(
GetAbsoluteTestTmpdir(), absl::StrCat("#!", binary_relative), 0755));
pid_t child;
int execve_errno;
auto cleanup = ASSERT_NO_ERRNO_AND_VALUE(
ForkAndExec(script.path(), {script.path()}, {}, &child, &execve_errno));
ASSERT_EQ(execve_errno, 0);
EXPECT_NO_ERRNO(WaitStopped(child));
}
// Interpreter script with .. in a path component.
TEST(InterpreterScriptTest, UncleanPath) {
ElfBinary<64> elf = StandardElf();
elf.UpdateOffsets();
// Use /tmp explicitly to ensure the path is short enough.
TempPath binary = ASSERT_NO_ERRNO_AND_VALUE(CreateElfWith("/tmp", elf));
TempPath script = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFileWith(
GetAbsoluteTestTmpdir(), absl::StrCat("#!/tmp/../", binary.path()),
0755));
pid_t child;
int execve_errno;
auto cleanup = ASSERT_NO_ERRNO_AND_VALUE(
ForkAndExec(script.path(), {script.path()}, {}, &child, &execve_errno));
ASSERT_EQ(execve_errno, 0);
EXPECT_NO_ERRNO(WaitStopped(child));
}
// Passed interpreter script is a symlink.
TEST(InterpreterScriptTest, Symlink) {
ElfBinary<64> elf = StandardElf();
elf.UpdateOffsets();
// Use /tmp explicitly to ensure the path is short enough.
TempPath binary = ASSERT_NO_ERRNO_AND_VALUE(CreateElfWith("/tmp", elf));
TempPath script = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFileWith(
GetAbsoluteTestTmpdir(), absl::StrCat("#!", binary.path()), 0755));
TempPath link = ASSERT_NO_ERRNO_AND_VALUE(
TempPath::CreateSymlinkTo(GetAbsoluteTestTmpdir(), script.path()));
pid_t child;
int execve_errno;
auto cleanup = ASSERT_NO_ERRNO_AND_VALUE(
ForkAndExec(link.path(), {link.path()}, {}, &child, &execve_errno));
ASSERT_EQ(execve_errno, 0);
EXPECT_NO_ERRNO(WaitStopped(child));
}
// Interpreter script points to a symlink loop.
TEST(InterpreterScriptTest, SymlinkLoop) {
std::string const link1 = NewTempAbsPathInDir("/tmp");
std::string const link2 = NewTempAbsPathInDir("/tmp");
ASSERT_THAT(symlink(link2.c_str(), link1.c_str()), SyscallSucceeds());
auto remove_link1 = Cleanup(
[&link1] { EXPECT_THAT(unlink(link1.c_str()), SyscallSucceeds()); });
ASSERT_THAT(symlink(link1.c_str(), link2.c_str()), SyscallSucceeds());
auto remove_link2 = Cleanup(
[&link2] { EXPECT_THAT(unlink(link2.c_str()), SyscallSucceeds()); });
TempPath script = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFileWith(
GetAbsoluteTestTmpdir(), absl::StrCat("#!", link1), 0755));
pid_t child;
int execve_errno;
auto cleanup = ASSERT_NO_ERRNO_AND_VALUE(
ForkAndExec(script.path(), {script.path()}, {}, &child, &execve_errno));
EXPECT_EQ(execve_errno, ELOOP);
}
// Binary is a symlink loop.
TEST(ExecveTest, SymlinkLoop) {
std::string const link1 = NewTempAbsPathInDir("/tmp");
std::string const link2 = NewTempAbsPathInDir("/tmp");
ASSERT_THAT(symlink(link2.c_str(), link1.c_str()), SyscallSucceeds());
auto remove_link = Cleanup(
[&link1] { EXPECT_THAT(unlink(link1.c_str()), SyscallSucceeds()); });
ASSERT_THAT(symlink(link1.c_str(), link2.c_str()), SyscallSucceeds());
auto remove_link2 = Cleanup(
[&link2] { EXPECT_THAT(unlink(link2.c_str()), SyscallSucceeds()); });
pid_t child;
int execve_errno;
auto cleanup = ASSERT_NO_ERRNO_AND_VALUE(
ForkAndExec(link1, {link1}, {}, &child, &execve_errno));
EXPECT_EQ(execve_errno, ELOOP);
}
// Binary is a directory.
TEST(ExecveTest, Directory) {
pid_t child;
int execve_errno;
auto cleanup = ASSERT_NO_ERRNO_AND_VALUE(
ForkAndExec("/tmp", {"/tmp"}, {}, &child, &execve_errno));
EXPECT_EQ(execve_errno, EACCES);
}
// Pass a valid binary as a directory (extra / on the end).
TEST(ExecveTest, BinaryAsDirectory) {
ElfBinary<64> elf = StandardElf();
elf.UpdateOffsets();
TempPath file = ASSERT_NO_ERRNO_AND_VALUE(CreateElfWith(elf));
std::string const path = absl::StrCat(file.path(), "/");
pid_t child;
int execve_errno;
auto cleanup = ASSERT_NO_ERRNO_AND_VALUE(
ForkAndExec(path, {path}, {}, &child, &execve_errno));
EXPECT_EQ(execve_errno, ENOTDIR);
}
// The initial brk value is after the page at the end of the binary.
TEST(ExecveTest, BrkAfterBinary) {
ElfBinary<64> elf = StandardElf();
elf.UpdateOffsets();
TempPath file = ASSERT_NO_ERRNO_AND_VALUE(CreateElfWith(elf));
pid_t child;
int execve_errno;
auto cleanup = ASSERT_NO_ERRNO_AND_VALUE(
ForkAndExec(file.path(), {file.path()}, {}, &child, &execve_errno));
ASSERT_EQ(execve_errno, 0);
// Ensure it made it to SIGSTOP.
ASSERT_NO_ERRNO(WaitStopped(child));
struct user_regs_struct regs;
ASSERT_THAT(ptrace(PTRACE_GETREGS, child, 0, ®s), SyscallSucceeds());
// RIP is just beyond the final syscall instruction. Rewind to execute a brk
// syscall.
regs.rip -= kSyscallSize;
regs.rax = __NR_brk;
regs.rdi = 0;
ASSERT_THAT(ptrace(PTRACE_SETREGS, child, 0, ®s), SyscallSucceeds());
// Resume the child, waiting for syscall entry.
ASSERT_THAT(ptrace(PTRACE_SYSCALL, child, 0, 0), SyscallSucceeds());
int status;
ASSERT_THAT(RetryEINTR(waitpid)(child, &status, 0),
SyscallSucceedsWithValue(child));
ASSERT_TRUE(WIFSTOPPED(status) && WSTOPSIG(status) == SIGTRAP)
<< "status = " << status;
// Execute the syscall.
ASSERT_THAT(ptrace(PTRACE_SYSCALL, child, 0, 0), SyscallSucceeds());
ASSERT_THAT(RetryEINTR(waitpid)(child, &status, 0),
SyscallSucceedsWithValue(child));
ASSERT_TRUE(WIFSTOPPED(status) && WSTOPSIG(status) == SIGTRAP)
<< "status = " << status;
ASSERT_THAT(ptrace(PTRACE_GETREGS, child, 0, ®s), SyscallSucceeds());
// brk is after the text page.
//
// The kernel does brk randomization, so we can't be sure what the exact
// address will be, but it is always beyond the final page in the binary.
// i.e., it does not start immediately after memsz in the middle of a page.
// Userspace may expect to use that space.
EXPECT_GE(regs.rax, 0x41000);
}
} // namespace
} // namespace testing
} // namespace gvisor
|