1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <errno.h>
#include <limits.h>
#include <pthread.h>
#include <signal.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <sys/epoll.h>
#include <sys/eventfd.h>
#include <time.h>
#include <unistd.h>
#include "gtest/gtest.h"
#include "test/util/epoll_util.h"
#include "test/util/eventfd_util.h"
#include "test/util/file_descriptor.h"
#include "test/util/posix_error.h"
#include "test/util/test_util.h"
namespace gvisor {
namespace testing {
namespace {
constexpr int kFDsPerEpoll = 3;
constexpr uint64_t kMagicConstant = 0x0102030405060708;
#ifndef SYS_epoll_pwait2
#define SYS_epoll_pwait2 441
#endif
int epoll_pwait2(int fd, struct epoll_event* events, int maxevents,
const struct timespec* timeout, const sigset_t* sigset) {
return syscall(SYS_epoll_pwait2, fd, events, maxevents, timeout, sigset);
}
TEST(EpollTest, AllWritable) {
auto epollfd = ASSERT_NO_ERRNO_AND_VALUE(NewEpollFD());
std::vector<FileDescriptor> eventfds;
for (int i = 0; i < kFDsPerEpoll; i++) {
eventfds.push_back(ASSERT_NO_ERRNO_AND_VALUE(NewEventFD()));
ASSERT_NO_ERRNO(RegisterEpollFD(epollfd.get(), eventfds[i].get(),
EPOLLIN | EPOLLOUT, kMagicConstant + i));
}
struct epoll_event result[kFDsPerEpoll];
ASSERT_THAT(RetryEINTR(epoll_wait)(epollfd.get(), result, kFDsPerEpoll, -1),
SyscallSucceedsWithValue(kFDsPerEpoll));
for (int i = 0; i < kFDsPerEpoll; i++) {
ASSERT_EQ(result[i].events, EPOLLOUT);
}
}
TEST(EpollTest, LastReadable) {
auto epollfd = ASSERT_NO_ERRNO_AND_VALUE(NewEpollFD());
std::vector<FileDescriptor> eventfds;
for (int i = 0; i < kFDsPerEpoll; i++) {
eventfds.push_back(ASSERT_NO_ERRNO_AND_VALUE(NewEventFD()));
ASSERT_NO_ERRNO(RegisterEpollFD(epollfd.get(), eventfds[i].get(),
EPOLLIN | EPOLLOUT, kMagicConstant + i));
}
uint64_t tmp = 1;
ASSERT_THAT(WriteFd(eventfds[kFDsPerEpoll - 1].get(), &tmp, sizeof(tmp)),
SyscallSucceedsWithValue(sizeof(tmp)));
struct epoll_event result[kFDsPerEpoll];
ASSERT_THAT(RetryEINTR(epoll_wait)(epollfd.get(), result, kFDsPerEpoll, -1),
SyscallSucceedsWithValue(kFDsPerEpoll));
int i;
for (i = 0; i < kFDsPerEpoll - 1; i++) {
EXPECT_EQ(result[i].events, EPOLLOUT);
}
EXPECT_EQ(result[i].events, EPOLLOUT | EPOLLIN);
EXPECT_EQ(result[i].data.u64, kMagicConstant + i);
}
TEST(EpollTest, LastNonWritable) {
auto epollfd = ASSERT_NO_ERRNO_AND_VALUE(NewEpollFD());
std::vector<FileDescriptor> eventfds;
for (int i = 0; i < kFDsPerEpoll; i++) {
eventfds.push_back(ASSERT_NO_ERRNO_AND_VALUE(NewEventFD()));
ASSERT_NO_ERRNO(RegisterEpollFD(epollfd.get(), eventfds[i].get(),
EPOLLIN | EPOLLOUT, kMagicConstant + i));
}
// Write the maximum value to the event fd so that writing to it again would
// block.
uint64_t tmp = ULLONG_MAX - 1;
ASSERT_THAT(WriteFd(eventfds[kFDsPerEpoll - 1].get(), &tmp, sizeof(tmp)),
SyscallSucceedsWithValue(sizeof(tmp)));
struct epoll_event result[kFDsPerEpoll];
ASSERT_THAT(RetryEINTR(epoll_wait)(epollfd.get(), result, kFDsPerEpoll, -1),
SyscallSucceedsWithValue(kFDsPerEpoll));
int i;
for (i = 0; i < kFDsPerEpoll - 1; i++) {
EXPECT_EQ(result[i].events, EPOLLOUT);
}
EXPECT_EQ(result[i].events, EPOLLIN);
EXPECT_THAT(ReadFd(eventfds[kFDsPerEpoll - 1].get(), &tmp, sizeof(tmp)),
sizeof(tmp));
EXPECT_THAT(RetryEINTR(epoll_wait)(epollfd.get(), result, kFDsPerEpoll, -1),
SyscallSucceedsWithValue(kFDsPerEpoll));
for (i = 0; i < kFDsPerEpoll; i++) {
EXPECT_EQ(result[i].events, EPOLLOUT);
}
}
TEST(EpollTest, Timeout) {
auto epollfd = ASSERT_NO_ERRNO_AND_VALUE(NewEpollFD());
std::vector<FileDescriptor> eventfds;
for (int i = 0; i < kFDsPerEpoll; i++) {
eventfds.push_back(ASSERT_NO_ERRNO_AND_VALUE(NewEventFD()));
ASSERT_NO_ERRNO(RegisterEpollFD(epollfd.get(), eventfds[i].get(), EPOLLIN,
kMagicConstant + i));
}
constexpr int kTimeoutMs = 200;
struct timespec begin;
struct timespec end;
struct epoll_event result[kFDsPerEpoll];
{
const DisableSave ds; // Timing-related.
EXPECT_THAT(clock_gettime(CLOCK_MONOTONIC, &begin), SyscallSucceeds());
ASSERT_THAT(
RetryEINTR(epoll_wait)(epollfd.get(), result, kFDsPerEpoll, kTimeoutMs),
SyscallSucceedsWithValue(0));
EXPECT_THAT(clock_gettime(CLOCK_MONOTONIC, &end), SyscallSucceeds());
}
// Check the lower bound on the timeout. Checking for an upper bound is
// fragile because Linux can overrun the timeout due to scheduling delays.
EXPECT_GT(ms_elapsed(begin, end), kTimeoutMs - 1);
}
TEST(EpollTest, EpollPwait2Timeout) {
auto epollfd = ASSERT_NO_ERRNO_AND_VALUE(NewEpollFD());
// 200 milliseconds.
constexpr int kTimeoutNs = 200000000;
struct timespec timeout;
timeout.tv_sec = 0;
timeout.tv_nsec = 0;
struct timespec begin;
struct timespec end;
struct epoll_event result[kFDsPerEpoll];
std::vector<FileDescriptor> eventfds;
for (int i = 0; i < kFDsPerEpoll; i++) {
eventfds.push_back(ASSERT_NO_ERRNO_AND_VALUE(NewEventFD()));
ASSERT_NO_ERRNO(RegisterEpollFD(epollfd.get(), eventfds[i].get(), EPOLLIN,
kMagicConstant + i));
}
// Pass valid arguments so that the syscall won't be blocked indefinitely
// nor return errno EINVAL.
//
// The syscall returns immediately when timeout is zero,
// even if no events are available.
SKIP_IF(!IsRunningOnGvisor() &&
epoll_pwait2(epollfd.get(), result, kFDsPerEpoll, &timeout, nullptr) <
0 &&
errno == ENOSYS);
{
const DisableSave ds; // Timing-related.
EXPECT_THAT(clock_gettime(CLOCK_MONOTONIC, &begin), SyscallSucceeds());
timeout.tv_nsec = kTimeoutNs;
ASSERT_THAT(RetryEINTR(epoll_pwait2)(epollfd.get(), result, kFDsPerEpoll,
&timeout, nullptr),
SyscallSucceedsWithValue(0));
EXPECT_THAT(clock_gettime(CLOCK_MONOTONIC, &end), SyscallSucceeds());
}
// Check the lower bound on the timeout. Checking for an upper bound is
// fragile because Linux can overrun the timeout due to scheduling delays.
EXPECT_GT(ns_elapsed(begin, end), kTimeoutNs - 1);
}
void* writer(void* arg) {
int fd = *reinterpret_cast<int*>(arg);
uint64_t tmp = 1;
usleep(200000);
if (WriteFd(fd, &tmp, sizeof(tmp)) != sizeof(tmp)) {
fprintf(stderr, "writer failed: errno %s\n", strerror(errno));
}
return nullptr;
}
TEST(EpollTest, WaitThenUnblock) {
auto epollfd = ASSERT_NO_ERRNO_AND_VALUE(NewEpollFD());
std::vector<FileDescriptor> eventfds;
for (int i = 0; i < kFDsPerEpoll; i++) {
eventfds.push_back(ASSERT_NO_ERRNO_AND_VALUE(NewEventFD()));
ASSERT_NO_ERRNO(RegisterEpollFD(epollfd.get(), eventfds[i].get(), EPOLLIN,
kMagicConstant + i));
}
// Fire off a thread that will make at least one of the event fds readable.
pthread_t thread;
int make_readable = eventfds[0].get();
ASSERT_THAT(pthread_create(&thread, nullptr, writer, &make_readable),
SyscallSucceedsWithValue(0));
struct epoll_event result[kFDsPerEpoll];
EXPECT_THAT(RetryEINTR(epoll_wait)(epollfd.get(), result, kFDsPerEpoll, -1),
SyscallSucceedsWithValue(1));
EXPECT_THAT(pthread_detach(thread), SyscallSucceeds());
}
#ifndef ANDROID // Android does not support pthread_cancel
void sighandler(int s) {}
void* signaler(void* arg) {
pthread_t* t = reinterpret_cast<pthread_t*>(arg);
// Repeatedly send the real-time signal until we are detached, because it's
// difficult to know exactly when epoll_wait on another thread (which this
// is intending to interrupt) has started blocking.
while (1) {
usleep(200000);
pthread_kill(*t, SIGRTMIN);
}
return nullptr;
}
TEST(EpollTest, UnblockWithSignal) {
auto epollfd = ASSERT_NO_ERRNO_AND_VALUE(NewEpollFD());
std::vector<FileDescriptor> eventfds;
for (int i = 0; i < kFDsPerEpoll; i++) {
eventfds.push_back(ASSERT_NO_ERRNO_AND_VALUE(NewEventFD()));
ASSERT_NO_ERRNO(RegisterEpollFD(epollfd.get(), eventfds[i].get(), EPOLLIN,
kMagicConstant + i));
}
signal(SIGRTMIN, sighandler);
// Unblock the real time signals that InitGoogle blocks :(
sigset_t unblock;
sigemptyset(&unblock);
sigaddset(&unblock, SIGRTMIN);
ASSERT_THAT(sigprocmask(SIG_UNBLOCK, &unblock, nullptr), SyscallSucceeds());
pthread_t thread;
pthread_t cur = pthread_self();
ASSERT_THAT(pthread_create(&thread, nullptr, signaler, &cur),
SyscallSucceedsWithValue(0));
struct epoll_event result[kFDsPerEpoll];
EXPECT_THAT(epoll_wait(epollfd.get(), result, kFDsPerEpoll, -1),
SyscallFailsWithErrno(EINTR));
EXPECT_THAT(pthread_cancel(thread), SyscallSucceeds());
EXPECT_THAT(pthread_detach(thread), SyscallSucceeds());
}
#endif // ANDROID
TEST(EpollTest, TimeoutNoFds) {
auto epollfd = ASSERT_NO_ERRNO_AND_VALUE(NewEpollFD());
struct epoll_event result[kFDsPerEpoll];
EXPECT_THAT(RetryEINTR(epoll_wait)(epollfd.get(), result, kFDsPerEpoll, 100),
SyscallSucceedsWithValue(0));
}
struct addr_ctx {
int epollfd;
int eventfd;
};
void* fd_adder(void* arg) {
struct addr_ctx* actx = reinterpret_cast<struct addr_ctx*>(arg);
struct epoll_event event;
event.events = EPOLLIN | EPOLLOUT;
event.data.u64 = 0xdeadbeeffacefeed;
usleep(200000);
if (epoll_ctl(actx->epollfd, EPOLL_CTL_ADD, actx->eventfd, &event) == -1) {
fprintf(stderr, "epoll_ctl failed: %s\n", strerror(errno));
}
return nullptr;
}
TEST(EpollTest, UnblockWithNewFD) {
auto epollfd = ASSERT_NO_ERRNO_AND_VALUE(NewEpollFD());
auto eventfd = ASSERT_NO_ERRNO_AND_VALUE(NewEventFD());
pthread_t thread;
struct addr_ctx actx = {epollfd.get(), eventfd.get()};
ASSERT_THAT(pthread_create(&thread, nullptr, fd_adder, &actx),
SyscallSucceedsWithValue(0));
struct epoll_event result[kFDsPerEpoll];
// Wait while no FDs are ready, but after 200ms fd_adder will add a ready FD
// to epoll which will wake us up.
EXPECT_THAT(RetryEINTR(epoll_wait)(epollfd.get(), result, kFDsPerEpoll, -1),
SyscallSucceedsWithValue(1));
EXPECT_THAT(pthread_detach(thread), SyscallSucceeds());
EXPECT_EQ(result[0].data.u64, 0xdeadbeeffacefeed);
}
TEST(EpollTest, Oneshot) {
auto epollfd = ASSERT_NO_ERRNO_AND_VALUE(NewEpollFD());
std::vector<FileDescriptor> eventfds;
for (int i = 0; i < kFDsPerEpoll; i++) {
eventfds.push_back(ASSERT_NO_ERRNO_AND_VALUE(NewEventFD()));
ASSERT_NO_ERRNO(RegisterEpollFD(epollfd.get(), eventfds[i].get(), EPOLLIN,
kMagicConstant + i));
}
struct epoll_event event;
event.events = EPOLLOUT | EPOLLONESHOT;
event.data.u64 = kMagicConstant;
ASSERT_THAT(
epoll_ctl(epollfd.get(), EPOLL_CTL_MOD, eventfds[0].get(), &event),
SyscallSucceeds());
struct epoll_event result[kFDsPerEpoll];
// One-shot entry means that the first epoll_wait should succeed.
ASSERT_THAT(RetryEINTR(epoll_wait)(epollfd.get(), result, kFDsPerEpoll, -1),
SyscallSucceedsWithValue(1));
EXPECT_EQ(result[0].data.u64, kMagicConstant);
// One-shot entry means that the second epoll_wait should timeout.
EXPECT_THAT(RetryEINTR(epoll_wait)(epollfd.get(), result, kFDsPerEpoll, 100),
SyscallSucceedsWithValue(0));
}
TEST(EpollTest, EdgeTriggered) {
// Test edge-triggered entry: make it edge-triggered, first wait should
// return it, second one should time out, make it writable again, third wait
// should return it, fourth wait should timeout.
auto epollfd = ASSERT_NO_ERRNO_AND_VALUE(NewEpollFD());
auto eventfd = ASSERT_NO_ERRNO_AND_VALUE(NewEventFD());
ASSERT_NO_ERRNO(RegisterEpollFD(epollfd.get(), eventfd.get(),
EPOLLOUT | EPOLLET, kMagicConstant));
struct epoll_event result[kFDsPerEpoll];
{
const DisableSave ds; // May trigger spurious event.
// Edge-triggered entry means that the first epoll_wait should return the
// event.
ASSERT_THAT(epoll_wait(epollfd.get(), result, kFDsPerEpoll, -1),
SyscallSucceedsWithValue(1));
EXPECT_EQ(result[0].data.u64, kMagicConstant);
// Edge-triggered entry means that the second epoll_wait should time out.
ASSERT_THAT(epoll_wait(epollfd.get(), result, kFDsPerEpoll, 100),
SyscallSucceedsWithValue(0));
}
uint64_t tmp = ULLONG_MAX - 1;
// Make an fd non-writable.
ASSERT_THAT(WriteFd(eventfd.get(), &tmp, sizeof(tmp)),
SyscallSucceedsWithValue(sizeof(tmp)));
// Make the same fd non-writable to trigger a change, which will trigger an
// edge-triggered event.
ASSERT_THAT(ReadFd(eventfd.get(), &tmp, sizeof(tmp)),
SyscallSucceedsWithValue(sizeof(tmp)));
{
const DisableSave ds; // May trigger spurious event.
// An edge-triggered event should now be returned.
ASSERT_THAT(epoll_wait(epollfd.get(), result, kFDsPerEpoll, -1),
SyscallSucceedsWithValue(1));
EXPECT_EQ(result[0].data.u64, kMagicConstant);
// The edge-triggered event had been consumed above, we don't expect to
// get it again.
ASSERT_THAT(epoll_wait(epollfd.get(), result, kFDsPerEpoll, 100),
SyscallSucceedsWithValue(0));
}
}
TEST(EpollTest, OneshotAndEdgeTriggered) {
auto epollfd = ASSERT_NO_ERRNO_AND_VALUE(NewEpollFD());
auto eventfd = ASSERT_NO_ERRNO_AND_VALUE(NewEventFD());
ASSERT_NO_ERRNO(RegisterEpollFD(epollfd.get(), eventfd.get(),
EPOLLOUT | EPOLLET | EPOLLONESHOT,
kMagicConstant));
struct epoll_event result[kFDsPerEpoll];
// First time one shot edge-triggered entry means that epoll_wait should
// return the event.
ASSERT_THAT(RetryEINTR(epoll_wait)(epollfd.get(), result, kFDsPerEpoll, -1),
SyscallSucceedsWithValue(1));
EXPECT_EQ(result[0].data.u64, kMagicConstant);
// Edge-triggered entry means that the second epoll_wait should time out.
ASSERT_THAT(RetryEINTR(epoll_wait)(epollfd.get(), result, kFDsPerEpoll, 100),
SyscallSucceedsWithValue(0));
uint64_t tmp = ULLONG_MAX - 1;
// Make an fd non-writable.
ASSERT_THAT(WriteFd(eventfd.get(), &tmp, sizeof(tmp)),
SyscallSucceedsWithValue(sizeof(tmp)));
// Make the same fd non-writable to trigger a change, which will not trigger
// an edge-triggered event because we've also included EPOLLONESHOT.
ASSERT_THAT(ReadFd(eventfd.get(), &tmp, sizeof(tmp)),
SyscallSucceedsWithValue(sizeof(tmp)));
ASSERT_THAT(RetryEINTR(epoll_wait)(epollfd.get(), result, kFDsPerEpoll, 100),
SyscallSucceedsWithValue(0));
}
TEST(EpollTest, CycleOfOneDisallowed) {
auto epollfd = ASSERT_NO_ERRNO_AND_VALUE(NewEpollFD());
struct epoll_event event;
event.events = EPOLLOUT;
event.data.u64 = kMagicConstant;
ASSERT_THAT(epoll_ctl(epollfd.get(), EPOLL_CTL_ADD, epollfd.get(), &event),
SyscallFailsWithErrno(EINVAL));
}
TEST(EpollTest, CycleOfThreeDisallowed) {
auto epollfd = ASSERT_NO_ERRNO_AND_VALUE(NewEpollFD());
auto epollfd1 = ASSERT_NO_ERRNO_AND_VALUE(NewEpollFD());
auto epollfd2 = ASSERT_NO_ERRNO_AND_VALUE(NewEpollFD());
ASSERT_NO_ERRNO(
RegisterEpollFD(epollfd.get(), epollfd1.get(), EPOLLIN, kMagicConstant));
ASSERT_NO_ERRNO(
RegisterEpollFD(epollfd1.get(), epollfd2.get(), EPOLLIN, kMagicConstant));
struct epoll_event event;
event.events = EPOLLIN;
event.data.u64 = kMagicConstant;
EXPECT_THAT(epoll_ctl(epollfd2.get(), EPOLL_CTL_ADD, epollfd.get(), &event),
SyscallFailsWithErrno(ELOOP));
}
TEST(EpollTest, CloseFile) {
auto epollfd = ASSERT_NO_ERRNO_AND_VALUE(NewEpollFD());
auto eventfd = ASSERT_NO_ERRNO_AND_VALUE(NewEventFD());
ASSERT_NO_ERRNO(
RegisterEpollFD(epollfd.get(), eventfd.get(), EPOLLOUT, kMagicConstant));
struct epoll_event result[kFDsPerEpoll];
ASSERT_THAT(RetryEINTR(epoll_wait)(epollfd.get(), result, kFDsPerEpoll, -1),
SyscallSucceedsWithValue(1));
EXPECT_EQ(result[0].data.u64, kMagicConstant);
// Close the event fd early.
eventfd.reset();
EXPECT_THAT(RetryEINTR(epoll_wait)(epollfd.get(), result, kFDsPerEpoll, 100),
SyscallSucceedsWithValue(0));
}
TEST(EpollTest, PipeReaderHupAfterWriterClosed) {
auto epollfd = ASSERT_NO_ERRNO_AND_VALUE(NewEpollFD());
int pipefds[2];
ASSERT_THAT(pipe(pipefds), SyscallSucceeds());
FileDescriptor rfd(pipefds[0]);
FileDescriptor wfd(pipefds[1]);
ASSERT_NO_ERRNO(RegisterEpollFD(epollfd.get(), rfd.get(), 0, kMagicConstant));
struct epoll_event result[kFDsPerEpoll];
// Initially, rfd should not generate any events of interest.
ASSERT_THAT(epoll_wait(epollfd.get(), result, kFDsPerEpoll, 0),
SyscallSucceedsWithValue(0));
// Close the write end of the pipe.
wfd.reset();
// rfd should now generate EPOLLHUP, which EPOLL_CTL_ADD unconditionally adds
// to the set of events of interest.
ASSERT_THAT(epoll_wait(epollfd.get(), result, kFDsPerEpoll, 0),
SyscallSucceedsWithValue(1));
EXPECT_EQ(result[0].events, EPOLLHUP);
EXPECT_EQ(result[0].data.u64, kMagicConstant);
}
} // namespace
} // namespace testing
} // namespace gvisor
|