1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <pthread.h>
#include <sys/time.h>
#include <cerrno>
#include <cstdint>
#include <ctime>
#include <list>
#include <memory>
#include <string>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/time/clock.h"
#include "absl/time/time.h"
#include "test/util/test_util.h"
#include "test/util/thread_util.h"
namespace gvisor {
namespace testing {
namespace {
int64_t clock_gettime_nsecs(clockid_t id) {
struct timespec ts;
TEST_PCHECK(clock_gettime(id, &ts) == 0);
return (ts.tv_sec * 1000000000 + ts.tv_nsec);
}
// Spin on the CPU for at least ns nanoseconds, based on
// CLOCK_THREAD_CPUTIME_ID.
void spin_ns(int64_t ns) {
int64_t start = clock_gettime_nsecs(CLOCK_THREAD_CPUTIME_ID);
int64_t end = start + ns;
do {
constexpr int kLoopCount = 1000000; // large and arbitrary
// volatile to prevent the compiler from skipping this loop.
for (volatile int i = 0; i < kLoopCount; i++) {
}
} while (clock_gettime_nsecs(CLOCK_THREAD_CPUTIME_ID) < end);
}
// Test that CLOCK_PROCESS_CPUTIME_ID is a superset of CLOCK_THREAD_CPUTIME_ID.
TEST(ClockGettime, CputimeId) {
// TODO(b/128871825,golang.org/issue/10958): Test times out when there is a
// single core because one goroutine starves the others.
SKIP_IF(std::thread::hardware_concurrency() == 1);
constexpr int kNumThreads = 13; // arbitrary
absl::Duration spin_time = absl::Seconds(1);
// Start off the worker threads and compute the aggregate time spent by
// the workers. Note that we test CLOCK_PROCESS_CPUTIME_ID by having the
// workers execute in parallel and verifying that CLOCK_PROCESS_CPUTIME_ID
// accumulates the runtime of all threads.
int64_t start = clock_gettime_nsecs(CLOCK_PROCESS_CPUTIME_ID);
// Create a kNumThreads threads.
std::list<ScopedThread> threads;
for (int i = 0; i < kNumThreads; i++) {
threads.emplace_back(
[spin_time] { spin_ns(absl::ToInt64Nanoseconds(spin_time)); });
}
for (auto& t : threads) {
t.Join();
}
int64_t end = clock_gettime_nsecs(CLOCK_PROCESS_CPUTIME_ID);
// The aggregate time spent in the worker threads must be at least
// 'kNumThreads' times the time each thread spun.
ASSERT_GE(end - start, kNumThreads * absl::ToInt64Nanoseconds(spin_time));
}
TEST(ClockGettime, JavaThreadTime) {
clockid_t clockid;
ASSERT_EQ(0, pthread_getcpuclockid(pthread_self(), &clockid));
struct timespec tp;
ASSERT_THAT(clock_getres(clockid, &tp), SyscallSucceeds());
EXPECT_TRUE(tp.tv_sec > 0 || tp.tv_nsec > 0);
// A thread cputime is updated each 10msec and there is no approximation
// if a task is running.
do {
ASSERT_THAT(clock_gettime(clockid, &tp), SyscallSucceeds());
} while (tp.tv_sec == 0 && tp.tv_nsec == 0);
EXPECT_TRUE(tp.tv_sec > 0 || tp.tv_nsec > 0);
}
// There is not much to test here, since CLOCK_REALTIME may be discontiguous.
TEST(ClockGettime, RealtimeWorks) {
struct timespec tp;
EXPECT_THAT(clock_gettime(CLOCK_REALTIME, &tp), SyscallSucceeds());
}
class MonotonicClockTest : public ::testing::TestWithParam<clockid_t> {};
TEST_P(MonotonicClockTest, IsMonotonic) {
auto end = absl::Now() + absl::Seconds(5);
struct timespec tp;
EXPECT_THAT(clock_gettime(GetParam(), &tp), SyscallSucceeds());
auto prev = absl::TimeFromTimespec(tp);
while (absl::Now() < end) {
EXPECT_THAT(clock_gettime(GetParam(), &tp), SyscallSucceeds());
auto now = absl::TimeFromTimespec(tp);
EXPECT_GE(now, prev);
prev = now;
}
}
std::string PrintClockId(::testing::TestParamInfo<clockid_t> info) {
switch (info.param) {
case CLOCK_MONOTONIC:
return "CLOCK_MONOTONIC";
case CLOCK_MONOTONIC_COARSE:
return "CLOCK_MONOTONIC_COARSE";
case CLOCK_MONOTONIC_RAW:
return "CLOCK_MONOTONIC_RAW";
default:
return absl::StrCat(info.param);
}
}
INSTANTIATE_TEST_SUITE_P(ClockGettime, MonotonicClockTest,
::testing::Values(CLOCK_MONOTONIC,
CLOCK_MONOTONIC_COARSE,
CLOCK_MONOTONIC_RAW),
PrintClockId);
TEST(ClockGettime, UnimplementedReturnsEINVAL) {
SKIP_IF(!IsRunningOnGvisor());
struct timespec tp;
EXPECT_THAT(clock_gettime(CLOCK_BOOTTIME, &tp),
SyscallFailsWithErrno(EINVAL));
EXPECT_THAT(clock_gettime(CLOCK_REALTIME_ALARM, &tp),
SyscallFailsWithErrno(EINVAL));
EXPECT_THAT(clock_gettime(CLOCK_BOOTTIME_ALARM, &tp),
SyscallFailsWithErrno(EINVAL));
}
TEST(ClockGettime, InvalidClockIDReturnsEINVAL) {
struct timespec tp;
EXPECT_THAT(clock_gettime(-1, &tp), SyscallFailsWithErrno(EINVAL));
}
} // namespace
} // namespace testing
} // namespace gvisor
|