1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
|
// Copyright 2020 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <linux/futex.h>
#include <atomic>
#include <cerrno>
#include <cstdint>
#include <cstdlib>
#include <ctime>
#include "gtest/gtest.h"
#include "absl/time/clock.h"
#include "absl/time/time.h"
#include "benchmark/benchmark.h"
#include "test/util/logging.h"
#include "test/util/thread_util.h"
namespace gvisor {
namespace testing {
namespace {
inline int FutexWait(std::atomic<int32_t>* v, int32_t val) {
return syscall(SYS_futex, v, FUTEX_WAIT_PRIVATE, val, nullptr);
}
inline int FutexWaitMonotonicTimeout(std::atomic<int32_t>* v, int32_t val,
const struct timespec* timeout) {
return syscall(SYS_futex, v, FUTEX_WAIT_PRIVATE, val, timeout);
}
inline int FutexWaitMonotonicDeadline(std::atomic<int32_t>* v, int32_t val,
const struct timespec* deadline) {
return syscall(SYS_futex, v, FUTEX_WAIT_BITSET_PRIVATE, val, deadline,
nullptr, FUTEX_BITSET_MATCH_ANY);
}
inline int FutexWaitRealtimeDeadline(std::atomic<int32_t>* v, int32_t val,
const struct timespec* deadline) {
return syscall(SYS_futex, v, FUTEX_WAIT_BITSET_PRIVATE | FUTEX_CLOCK_REALTIME,
val, deadline, nullptr, FUTEX_BITSET_MATCH_ANY);
}
inline int FutexWake(std::atomic<int32_t>* v, int32_t count) {
return syscall(SYS_futex, v, FUTEX_WAKE_PRIVATE, count);
}
// This just uses FUTEX_WAKE on an address with nothing waiting, very simple.
void BM_FutexWakeNop(benchmark::State& state) {
std::atomic<int32_t> v(0);
for (auto _ : state) {
TEST_PCHECK(FutexWake(&v, 1) == 0);
}
}
BENCHMARK(BM_FutexWakeNop)->MinTime(5);
// This just uses FUTEX_WAIT on an address whose value has changed, i.e., the
// syscall won't wait.
void BM_FutexWaitNop(benchmark::State& state) {
std::atomic<int32_t> v(0);
for (auto _ : state) {
TEST_PCHECK(FutexWait(&v, 1) == -1 && errno == EAGAIN);
}
}
BENCHMARK(BM_FutexWaitNop)->MinTime(5);
// This uses FUTEX_WAIT with a timeout on an address whose value never
// changes, such that it always times out. Timeout overhead can be estimated by
// timer overruns for short timeouts.
void BM_FutexWaitMonotonicTimeout(benchmark::State& state) {
const absl::Duration timeout = absl::Nanoseconds(state.range(0));
std::atomic<int32_t> v(0);
auto ts = absl::ToTimespec(timeout);
for (auto _ : state) {
TEST_PCHECK(FutexWaitMonotonicTimeout(&v, 0, &ts) == -1 &&
errno == ETIMEDOUT);
}
}
BENCHMARK(BM_FutexWaitMonotonicTimeout)
->MinTime(5)
->UseRealTime()
->Arg(1)
->Arg(10)
->Arg(100)
->Arg(1000)
->Arg(10000);
// This uses FUTEX_WAIT_BITSET with a deadline that is in the past. This allows
// estimation of the overhead of setting up a timer for a deadline (as opposed
// to a timeout as specified for FUTEX_WAIT).
void BM_FutexWaitMonotonicDeadline(benchmark::State& state) {
std::atomic<int32_t> v(0);
struct timespec ts = {};
for (auto _ : state) {
TEST_PCHECK(FutexWaitMonotonicDeadline(&v, 0, &ts) == -1 &&
errno == ETIMEDOUT);
}
}
BENCHMARK(BM_FutexWaitMonotonicDeadline)->MinTime(5);
// This is equivalent to BM_FutexWaitMonotonicDeadline, but uses CLOCK_REALTIME
// instead of CLOCK_MONOTONIC for the deadline.
void BM_FutexWaitRealtimeDeadline(benchmark::State& state) {
std::atomic<int32_t> v(0);
struct timespec ts = {};
for (auto _ : state) {
TEST_PCHECK(FutexWaitRealtimeDeadline(&v, 0, &ts) == -1 &&
errno == ETIMEDOUT);
}
}
BENCHMARK(BM_FutexWaitRealtimeDeadline)->MinTime(5);
int64_t GetCurrentMonotonicTimeNanos() {
struct timespec ts;
TEST_CHECK(clock_gettime(CLOCK_MONOTONIC, &ts) != -1);
return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
}
void SpinNanos(int64_t delay_ns) {
if (delay_ns <= 0) {
return;
}
const int64_t end = GetCurrentMonotonicTimeNanos() + delay_ns;
while (GetCurrentMonotonicTimeNanos() < end) {
// spin
}
}
// Each iteration of FutexRoundtripDelayed involves a thread sending a futex
// wakeup to another thread, which spins for delay_us and then sends a futex
// wakeup back. The time per iteration is 2 * (delay_us + kBeforeWakeDelayNs +
// futex/scheduling overhead).
void BM_FutexRoundtripDelayed(benchmark::State& state) {
const int delay_us = state.range(0);
const int64_t delay_ns = delay_us * 1000;
// Spin for an extra kBeforeWakeDelayNs before invoking FUTEX_WAKE to reduce
// the probability that the wakeup comes before the wait, preventing the wait
// from ever taking effect and causing the benchmark to underestimate the
// actual wakeup time.
constexpr int64_t kBeforeWakeDelayNs = 500;
std::atomic<int32_t> v(0);
ScopedThread t([&] {
for (int i = 0; i < state.max_iterations; i++) {
SpinNanos(delay_ns);
while (v.load(std::memory_order_acquire) == 0) {
FutexWait(&v, 0);
}
SpinNanos(kBeforeWakeDelayNs + delay_ns);
v.store(0, std::memory_order_release);
FutexWake(&v, 1);
}
});
for (auto _ : state) {
SpinNanos(kBeforeWakeDelayNs + delay_ns);
v.store(1, std::memory_order_release);
FutexWake(&v, 1);
SpinNanos(delay_ns);
while (v.load(std::memory_order_acquire) == 1) {
FutexWait(&v, 1);
}
}
}
BENCHMARK(BM_FutexRoundtripDelayed)
->MinTime(5)
->UseRealTime()
->Arg(0)
->Arg(10)
->Arg(20)
->Arg(50)
->Arg(100);
} // namespace
} // namespace testing
} // namespace gvisor
|