1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
|
// Copyright 2021 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package mitigate provides libraries for the mitigate command. The
// mitigate command mitigates side channel attacks such as MDS. Mitigate
// shuts down CPUs via /sys/devices/system/cpu/cpu{N}/online.
package mitigate
import (
"fmt"
"io/ioutil"
"os"
"regexp"
"sort"
"strconv"
"strings"
)
const (
// mds is the only bug we care about.
mds = "mds"
// Constants for parsing /proc/cpuinfo.
processorKey = "processor"
vendorIDKey = "vendor_id"
cpuFamilyKey = "cpu family"
modelKey = "model"
physicalIDKey = "physical id"
coreIDKey = "core id"
bugsKey = "bugs"
// Path to shutdown a CPU.
cpuOnlineTemplate = "/sys/devices/system/cpu/cpu%d/online"
)
// CPUSet contains a map of all CPUs on the system, mapped
// by Physical ID and CoreIDs. threads with the same
// Core and Physical ID are Hyperthread pairs.
type CPUSet map[threadID]*ThreadGroup
// NewCPUSet creates a CPUSet from data read from /proc/cpuinfo.
func NewCPUSet(data []byte) (CPUSet, error) {
processors, err := getThreads(string(data))
if err != nil {
return nil, err
}
set := make(CPUSet)
for _, p := range processors {
// Each ID is of the form physicalID:coreID. Hyperthread pairs
// have identical physical and core IDs. We need to match
// Hyperthread pairs so that we can shutdown all but one per
// pair.
core, ok := set[p.id]
if !ok {
core = &ThreadGroup{}
set[p.id] = core
}
core.isVulnerable = core.isVulnerable || p.IsVulnerable()
core.threads = append(core.threads, p)
}
// We need to make sure we shutdown the lowest number processor per
// thread group.
for _, tg := range set {
sort.Slice(tg.threads, func(i, j int) bool {
return tg.threads[i].processorNumber < tg.threads[j].processorNumber
})
}
return set, nil
}
// NewCPUSetFromPossible makes a cpuSet data read from
// /sys/devices/system/cpu/possible. This is used in enable operations
// where the caller simply wants to enable all CPUS.
func NewCPUSetFromPossible(data []byte) (CPUSet, error) {
threads, err := GetThreadsFromPossible(data)
if err != nil {
return nil, err
}
// We don't care if a CPU is vulnerable or not, we just
// want to return a list of all CPUs on the host.
set := CPUSet{
threads[0].id: &ThreadGroup{
threads: threads,
isVulnerable: false,
},
}
return set, nil
}
// String implements the String method for CPUSet.
func (c CPUSet) String() string {
ret := ""
for _, tg := range c {
ret += fmt.Sprintf("%s\n", tg)
}
return ret
}
// GetRemainingList returns the list of threads that will remain active
// after mitigation.
func (c CPUSet) GetRemainingList() []Thread {
threads := make([]Thread, 0, len(c))
for _, core := range c {
// If we're vulnerable, take only one thread from the pair.
if core.isVulnerable {
threads = append(threads, core.threads[0])
continue
}
// Otherwise don't shutdown anything.
threads = append(threads, core.threads...)
}
return threads
}
// GetShutdownList returns the list of threads that will be shutdown on
// mitigation.
func (c CPUSet) GetShutdownList() []Thread {
threads := make([]Thread, 0)
for _, core := range c {
// Only if we're vulnerable do shutdown anything. In this case,
// shutdown all but the first entry.
if core.isVulnerable && len(core.threads) > 1 {
threads = append(threads, core.threads[1:]...)
}
}
return threads
}
// ThreadGroup represents Hyperthread pairs on the same physical/core ID.
type ThreadGroup struct {
threads []Thread
isVulnerable bool
}
// String implements the String method for threadGroup.
func (c ThreadGroup) String() string {
ret := fmt.Sprintf("ThreadGroup:\nIsVulnerable: %t\n", c.isVulnerable)
for _, processor := range c.threads {
ret += fmt.Sprintf("%s\n", processor)
}
return ret
}
// getThreads returns threads structs from reading /proc/cpuinfo.
func getThreads(data string) ([]Thread, error) {
// Each processor entry should start with the
// processor key. Find the beginings of each.
r := buildRegex(processorKey, `\d+`)
indices := r.FindAllStringIndex(data, -1)
if len(indices) < 1 {
return nil, fmt.Errorf("no cpus found for: %q", data)
}
// Add the ending index for last entry.
indices = append(indices, []int{len(data), -1})
// Valid cpus are now defined by strings in between
// indexes (e.g. data[index[i], index[i+1]]).
// There should be len(indicies) - 1 CPUs
// since the last index is the end of the string.
cpus := make([]Thread, 0, len(indices))
// Find each string that represents a CPU. These begin "processor".
for i := 1; i < len(indices); i++ {
start := indices[i-1][0]
end := indices[i][0]
// Parse the CPU entry, which should be between start/end.
c, err := newThread(data[start:end])
if err != nil {
return nil, err
}
cpus = append(cpus, c)
}
return cpus, nil
}
// GetThreadsFromPossible makes threads from data read from /sys/devices/system/cpu/possible.
func GetThreadsFromPossible(data []byte) ([]Thread, error) {
possibleRegex := regexp.MustCompile(`(?m)^(\d+)(-(\d+))?$`)
matches := possibleRegex.FindStringSubmatch(string(data))
if len(matches) != 4 {
return nil, fmt.Errorf("mismatch regex from possible: %q", string(data))
}
// If matches[3] is empty, we only have one cpu entry.
if matches[3] == "" {
matches[3] = matches[1]
}
begin, err := strconv.ParseInt(matches[1], 10, 64)
if err != nil {
return nil, fmt.Errorf("failed to parse begin: %v", err)
}
end, err := strconv.ParseInt(matches[3], 10, 64)
if err != nil {
return nil, fmt.Errorf("failed to parse end: %v", err)
}
if begin > end || begin < 0 || end < 0 {
return nil, fmt.Errorf("invalid cpu bounds from possible: begin: %d end: %d", begin, end)
}
ret := make([]Thread, 0, end-begin)
for i := begin; i <= end; i++ {
ret = append(ret, Thread{
processorNumber: i,
id: threadID{
physicalID: 0, // we don't care about id for enable ops.
coreID: 0,
},
})
}
return ret, nil
}
// threadID for each thread is defined by the physical and
// core IDs. If equal, two threads are Hyperthread pairs.
type threadID struct {
physicalID int64
coreID int64
}
// Thread represents pertinent info about a single hyperthread in a pair.
type Thread struct {
processorNumber int64 // the processor number of this CPU.
vendorID string // the vendorID of CPU (e.g. AuthenticAMD).
cpuFamily int64 // CPU family number (e.g. 6 for CascadeLake/Skylake).
model int64 // CPU model number (e.g. 85 for CascadeLake/Skylake).
id threadID // id for this thread
bugs map[string]struct{} // map of vulnerabilities parsed from the 'bugs' field.
}
// newThread parses a CPU from a single cpu entry from /proc/cpuinfo.
func newThread(data string) (Thread, error) {
empty := Thread{}
processor, err := parseProcessor(data)
if err != nil {
return empty, err
}
vendorID, err := parseVendorID(data)
if err != nil {
return empty, err
}
cpuFamily, err := parseCPUFamily(data)
if err != nil {
return empty, err
}
model, err := parseModel(data)
if err != nil {
return empty, err
}
physicalID, err := parsePhysicalID(data)
if err != nil {
return empty, err
}
coreID, err := parseCoreID(data)
if err != nil {
return empty, err
}
bugs, err := parseBugs(data)
if err != nil {
return empty, err
}
return Thread{
processorNumber: processor,
vendorID: vendorID,
cpuFamily: cpuFamily,
model: model,
id: threadID{
physicalID: physicalID,
coreID: coreID,
},
bugs: bugs,
}, nil
}
// String implements the String method for thread.
func (t Thread) String() string {
template := `CPU: %d
CPU ID: %+v
Vendor: %s
Family/Model: %d/%d
Bugs: %s
`
bugs := make([]string, 0)
for bug := range t.bugs {
bugs = append(bugs, bug)
}
return fmt.Sprintf(template, t.processorNumber, t.id, t.vendorID, t.cpuFamily, t.model, strings.Join(bugs, ","))
}
// Enable turns on the CPU by writing 1 to /sys/devices/cpu/cpu{N}/online.
func (t Thread) Enable() error {
// Linux ensures that "cpu0" is always online.
if t.processorNumber == 0 {
return nil
}
cpuPath := fmt.Sprintf(cpuOnlineTemplate, t.processorNumber)
f, err := os.OpenFile(cpuPath, os.O_WRONLY|os.O_CREATE, 0644)
if err != nil {
return fmt.Errorf("failed to open file %s: %v", cpuPath, err)
}
if _, err = f.Write([]byte{'1'}); err != nil {
return fmt.Errorf("failed to write '1' to %s: %v", cpuPath, err)
}
return nil
}
// Disable turns off the CPU by writing 0 to /sys/devices/cpu/cpu{N}/online.
func (t Thread) Disable() error {
// The core labeled "cpu0" can never be taken offline via this method.
// Linux will return EPERM if the user even creates a file at the /sys
// path above.
if t.processorNumber == 0 {
return fmt.Errorf("invalid shutdown operation: cpu0 cannot be disabled")
}
cpuPath := fmt.Sprintf(cpuOnlineTemplate, t.processorNumber)
return ioutil.WriteFile(cpuPath, []byte{'0'}, 0644)
}
// IsVulnerable checks if a CPU is vulnerable to mds.
func (t Thread) IsVulnerable() bool {
_, ok := t.bugs[mds]
return ok
}
// isActive checks if a CPU is active from /sys/devices/system/cpu/cpu{N}/online
// If the file does not exist (ioutil returns in error), we assume the CPU is on.
func (t Thread) isActive() bool {
cpuPath := fmt.Sprintf(cpuOnlineTemplate, t.processorNumber)
data, err := ioutil.ReadFile(cpuPath)
if err != nil {
return true
}
return len(data) > 0 && data[0] != '0'
}
// SimilarTo checks family/model/bugs fields for equality of two
// processors.
func (t Thread) SimilarTo(other Thread) bool {
if t.vendorID != other.vendorID {
return false
}
if other.cpuFamily != t.cpuFamily {
return false
}
if other.model != t.model {
return false
}
if len(other.bugs) != len(t.bugs) {
return false
}
for bug := range t.bugs {
if _, ok := other.bugs[bug]; !ok {
return false
}
}
return true
}
// parseProcessor grabs the processor field from /proc/cpuinfo output.
func parseProcessor(data string) (int64, error) {
return parseIntegerResult(data, processorKey)
}
// parseVendorID grabs the vendor_id field from /proc/cpuinfo output.
func parseVendorID(data string) (string, error) {
return parseRegex(data, vendorIDKey, `[\w\d]+`)
}
// parseCPUFamily grabs the cpu family field from /proc/cpuinfo output.
func parseCPUFamily(data string) (int64, error) {
return parseIntegerResult(data, cpuFamilyKey)
}
// parseModel grabs the model field from /proc/cpuinfo output.
func parseModel(data string) (int64, error) {
return parseIntegerResult(data, modelKey)
}
// parsePhysicalID parses the physical id field.
func parsePhysicalID(data string) (int64, error) {
return parseIntegerResult(data, physicalIDKey)
}
// parseCoreID parses the core id field.
func parseCoreID(data string) (int64, error) {
return parseIntegerResult(data, coreIDKey)
}
// parseBugs grabs the bugs field from /proc/cpuinfo output.
func parseBugs(data string) (map[string]struct{}, error) {
result, err := parseRegex(data, bugsKey, `[\d\w\s]*`)
if err != nil {
return nil, err
}
bugs := strings.Split(result, " ")
ret := make(map[string]struct{}, len(bugs))
for _, bug := range bugs {
ret[bug] = struct{}{}
}
return ret, nil
}
// parseIntegerResult parses fields expecting an integer.
func parseIntegerResult(data, key string) (int64, error) {
result, err := parseRegex(data, key, `\d+`)
if err != nil {
return 0, err
}
return strconv.ParseInt(result, 0, 64)
}
// buildRegex builds a regex for parsing each CPU field.
func buildRegex(key, match string) *regexp.Regexp {
reg := fmt.Sprintf(`(?m)^%s\s*:\s*(.*)$`, key)
return regexp.MustCompile(reg)
}
// parseRegex parses data with key inserted into a standard regex template.
func parseRegex(data, key, match string) (string, error) {
r := buildRegex(key, match)
matches := r.FindStringSubmatch(data)
if len(matches) < 2 {
return "", fmt.Errorf("failed to match key %q: %q", key, data)
}
return matches[1], nil
}
|