1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package unet
import (
"io"
"sync/atomic"
"unsafe"
"golang.org/x/sys/unix"
)
// wait blocks until the socket FD is ready for reading or writing, depending
// on the value of write.
//
// Returns errClosing if the Socket is in the process of closing.
func (s *Socket) wait(write bool) error {
for {
// Checking the FD on each loop is not strictly necessary, it
// just avoids an extra poll call.
fd := atomic.LoadInt32(&s.fd)
if fd < 0 {
return errClosing
}
events := []unix.PollFd{
{
// The actual socket FD.
Fd: fd,
Events: unix.POLLIN,
},
{
// The eventfd, signaled when we are closing.
Fd: int32(s.efd.FD()),
Events: unix.POLLIN,
},
}
if write {
events[0].Events = unix.POLLOUT
}
_, _, e := unix.Syscall6(unix.SYS_PPOLL, uintptr(unsafe.Pointer(&events[0])), 2, 0, 0, 0, 0)
if e == unix.EINTR {
continue
}
if e != 0 {
return e
}
if events[1].Revents&unix.POLLIN == unix.POLLIN {
// eventfd signaled, we're closing.
return errClosing
}
return nil
}
}
// buildIovec builds an iovec slice from the given []byte slice.
//
// iovecs is used as an initial slice, to avoid excessive allocations.
func buildIovec(bufs [][]byte, iovecs []unix.Iovec) ([]unix.Iovec, int) {
var length int
for i := range bufs {
if l := len(bufs[i]); l > 0 {
iovecs = append(iovecs, unix.Iovec{
Base: &bufs[i][0],
Len: uint64(l),
})
length += l
}
}
return iovecs, length
}
// ReadVec reads into the pre-allocated bufs. Returns bytes read.
//
// The pre-allocatted space used by ReadVec is based upon slice lengths.
//
// This function is not guaranteed to read all available data, it
// returns as soon as a single recvmsg call succeeds.
func (r *SocketReader) ReadVec(bufs [][]byte) (int, error) {
iovecs, length := buildIovec(bufs, make([]unix.Iovec, 0, 2))
var msg unix.Msghdr
if len(r.source) != 0 {
msg.Name = &r.source[0]
msg.Namelen = uint32(len(r.source))
}
if len(r.ControlMessage) != 0 {
msg.Control = &r.ControlMessage[0]
msg.Controllen = uint64(len(r.ControlMessage))
}
if len(iovecs) != 0 {
msg.Iov = &iovecs[0]
msg.Iovlen = uint64(len(iovecs))
}
// n is the bytes received.
var n uintptr
fd, ok := r.socket.enterFD()
if !ok {
return 0, unix.EBADF
}
// Leave on returns below.
for {
var e unix.Errno
// Try a non-blocking recv first, so we don't give up the go runtime M.
n, _, e = unix.RawSyscall(unix.SYS_RECVMSG, uintptr(fd), uintptr(unsafe.Pointer(&msg)), unix.MSG_DONTWAIT|unix.MSG_TRUNC)
if e == 0 {
break
}
if e == unix.EINTR {
continue
}
if !r.blocking {
r.socket.gate.Leave()
return 0, e
}
if e != unix.EAGAIN && e != unix.EWOULDBLOCK {
r.socket.gate.Leave()
return 0, e
}
// Wait for the socket to become readable.
err := r.socket.wait(false)
if err == errClosing {
err = unix.EBADF
}
if err != nil {
r.socket.gate.Leave()
return 0, err
}
}
r.socket.gate.Leave()
if msg.Controllen < uint64(len(r.ControlMessage)) {
r.ControlMessage = r.ControlMessage[:msg.Controllen]
}
if msg.Namelen < uint32(len(r.source)) {
r.source = r.source[:msg.Namelen]
}
// All unet sockets are SOCK_STREAM or SOCK_SEQPACKET, both of which
// indicate that the other end is closed by returning a 0 length read
// with no error.
if n == 0 {
return 0, io.EOF
}
if r.race != nil {
// See comments on Socket.race.
atomic.AddInt32(r.race, 1)
}
if int(n) > length {
return length, errMessageTruncated
}
return int(n), nil
}
// WriteVec writes the bufs to the socket. Returns bytes written.
//
// This function is not guaranteed to send all data, it returns
// as soon as a single sendmsg call succeeds.
func (w *SocketWriter) WriteVec(bufs [][]byte) (int, error) {
iovecs, _ := buildIovec(bufs, make([]unix.Iovec, 0, 2))
if w.race != nil {
// See comments on Socket.race.
atomic.AddInt32(w.race, 1)
}
var msg unix.Msghdr
if len(w.to) != 0 {
msg.Name = &w.to[0]
msg.Namelen = uint32(len(w.to))
}
if len(w.ControlMessage) != 0 {
msg.Control = &w.ControlMessage[0]
msg.Controllen = uint64(len(w.ControlMessage))
}
if len(iovecs) > 0 {
msg.Iov = &iovecs[0]
msg.Iovlen = uint64(len(iovecs))
}
fd, ok := w.socket.enterFD()
if !ok {
return 0, unix.EBADF
}
// Leave on returns below.
for {
// Try a non-blocking send first, so we don't give up the go runtime M.
n, _, e := unix.RawSyscall(unix.SYS_SENDMSG, uintptr(fd), uintptr(unsafe.Pointer(&msg)), unix.MSG_DONTWAIT|unix.MSG_NOSIGNAL)
if e == 0 {
w.socket.gate.Leave()
return int(n), nil
}
if e == unix.EINTR {
continue
}
if !w.blocking {
w.socket.gate.Leave()
return 0, e
}
if e != unix.EAGAIN && e != unix.EWOULDBLOCK {
w.socket.gate.Leave()
return 0, e
}
// Wait for the socket to become writeable.
err := w.socket.wait(true)
if err == errClosing {
err = unix.EBADF
}
if err != nil {
w.socket.gate.Leave()
return 0, err
}
}
// Unreachable, no s.gate.Leave needed.
}
// getsockopt issues a getsockopt unix.
func getsockopt(fd int, level int, optname int, buf []byte) (uint32, error) {
l := uint32(len(buf))
_, _, e := unix.RawSyscall6(unix.SYS_GETSOCKOPT, uintptr(fd), uintptr(level), uintptr(optname), uintptr(unsafe.Pointer(&buf[0])), uintptr(unsafe.Pointer(&l)), 0)
if e != 0 {
return 0, e
}
return l, nil
}
// setsockopt issues a setsockopt unix.
func setsockopt(fd int, level int, optname int, buf []byte) error {
_, _, e := unix.RawSyscall6(unix.SYS_SETSOCKOPT, uintptr(fd), uintptr(level), uintptr(optname), uintptr(unsafe.Pointer(&buf[0])), uintptr(len(buf)), 0)
if e != 0 {
return e
}
return nil
}
// getsockname issues a getsockname unix.
func getsockname(fd int, buf []byte) (uint32, error) {
l := uint32(len(buf))
_, _, e := unix.RawSyscall(unix.SYS_GETSOCKNAME, uintptr(fd), uintptr(unsafe.Pointer(&buf[0])), uintptr(unsafe.Pointer(&l)))
if e != 0 {
return 0, e
}
return l, nil
}
// getpeername issues a getpeername unix.
func getpeername(fd int, buf []byte) (uint32, error) {
l := uint32(len(buf))
_, _, e := unix.RawSyscall(unix.SYS_GETPEERNAME, uintptr(fd), uintptr(unsafe.Pointer(&buf[0])), uintptr(unsafe.Pointer(&l)))
if e != 0 {
return 0, e
}
return l, nil
}
|