1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
|
// Copyright 2018 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package tmutex
import (
"fmt"
"runtime"
"sync"
"sync/atomic"
"testing"
"time"
)
func TestBasicLock(t *testing.T) {
var m Mutex
m.Init()
m.Lock()
// Try blocking lock the mutex from a different goroutine. This must
// not block because the mutex is held.
ch := make(chan struct{}, 1)
go func() {
m.Lock()
ch <- struct{}{}
m.Unlock()
ch <- struct{}{}
}()
select {
case <-ch:
t.Fatalf("Lock succeeded on locked mutex")
case <-time.After(100 * time.Millisecond):
}
// Unlock the mutex and make sure that the goroutine waiting on Lock()
// unblocks and succeeds.
m.Unlock()
select {
case <-ch:
case <-time.After(100 * time.Millisecond):
t.Fatalf("Lock failed to acquire unlocked mutex")
}
// Make sure we can lock and unlock again.
m.Lock()
m.Unlock()
}
func TestTryLock(t *testing.T) {
var m Mutex
m.Init()
// Try to lock. It should succeed.
if !m.TryLock() {
t.Fatalf("TryLock failed on unlocked mutex")
}
// Try to lock again, it should now fail.
if m.TryLock() {
t.Fatalf("TryLock succeeded on locked mutex")
}
// Try blocking lock the mutex from a different goroutine. This must
// not block because the mutex is held.
ch := make(chan struct{}, 1)
go func() {
m.Lock()
ch <- struct{}{}
m.Unlock()
}()
select {
case <-ch:
t.Fatalf("Lock succeeded on locked mutex")
case <-time.After(100 * time.Millisecond):
}
// Unlock the mutex and make sure that the goroutine waiting on Lock()
// unblocks and succeeds.
m.Unlock()
select {
case <-ch:
case <-time.After(100 * time.Millisecond):
t.Fatalf("Lock failed to acquire unlocked mutex")
}
}
func TestMutualExclusion(t *testing.T) {
var m Mutex
m.Init()
// Test mutual exclusion by running "gr" goroutines concurrently, and
// have each one increment a counter "iters" times within the critical
// section established by the mutex.
//
// If at the end the counter is not gr * iters, then we know that
// goroutines ran concurrently within the critical section.
//
// If one of the goroutines doesn't complete, it's likely a bug that
// causes to it to wait forever.
const gr = 1000
const iters = 100000
v := 0
var wg sync.WaitGroup
for i := 0; i < gr; i++ {
wg.Add(1)
go func() {
for j := 0; j < iters; j++ {
m.Lock()
v++
m.Unlock()
}
wg.Done()
}()
}
wg.Wait()
if v != gr*iters {
t.Fatalf("Bad count: got %v, want %v", v, gr*iters)
}
}
func TestMutualExclusionWithTryLock(t *testing.T) {
var m Mutex
m.Init()
// Similar to the previous, with the addition of some goroutines that
// only increment the count if TryLock succeeds.
const gr = 1000
const iters = 100000
total := int64(gr * iters)
var tryTotal int64
v := int64(0)
var wg sync.WaitGroup
for i := 0; i < gr; i++ {
wg.Add(2)
go func() {
for j := 0; j < iters; j++ {
m.Lock()
v++
m.Unlock()
}
wg.Done()
}()
go func() {
local := int64(0)
for j := 0; j < iters; j++ {
if m.TryLock() {
v++
m.Unlock()
local++
}
}
atomic.AddInt64(&tryTotal, local)
wg.Done()
}()
}
wg.Wait()
t.Logf("tryTotal = %d", tryTotal)
total += tryTotal
if v != total {
t.Fatalf("Bad count: got %v, want %v", v, total)
}
}
// BenchmarkTmutex is equivalent to TestMutualExclusion, with the following
// differences:
//
// - The number of goroutines is variable, with the maximum value depending on
// GOMAXPROCS.
//
// - The number of iterations per benchmark is controlled by the benchmarking
// framework.
//
// - Care is taken to ensure that all goroutines participating in the benchmark
// have been created before the benchmark begins.
func BenchmarkTmutex(b *testing.B) {
for n, max := 1, 4*runtime.GOMAXPROCS(0); n > 0 && n <= max; n *= 2 {
b.Run(fmt.Sprintf("%d", n), func(b *testing.B) {
var m Mutex
m.Init()
var ready sync.WaitGroup
begin := make(chan struct{})
var end sync.WaitGroup
for i := 0; i < n; i++ {
ready.Add(1)
end.Add(1)
go func() {
ready.Done()
<-begin
for j := 0; j < b.N; j++ {
m.Lock()
m.Unlock()
}
end.Done()
}()
}
ready.Wait()
b.ResetTimer()
close(begin)
end.Wait()
})
}
}
// BenchmarkSyncMutex is equivalent to BenchmarkTmutex, but uses sync.Mutex as
// a comparison point.
func BenchmarkSyncMutex(b *testing.B) {
for n, max := 1, 4*runtime.GOMAXPROCS(0); n > 0 && n <= max; n *= 2 {
b.Run(fmt.Sprintf("%d", n), func(b *testing.B) {
var m sync.Mutex
var ready sync.WaitGroup
begin := make(chan struct{})
var end sync.WaitGroup
for i := 0; i < n; i++ {
ready.Add(1)
end.Add(1)
go func() {
ready.Done()
<-begin
for j := 0; j < b.N; j++ {
m.Lock()
m.Unlock()
}
end.Done()
}()
}
ready.Wait()
b.ResetTimer()
close(begin)
end.Wait()
})
}
}
|