1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package udp
import (
"fmt"
"io"
"time"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/tcpip/buffer"
"gvisor.dev/gvisor/pkg/tcpip/header"
"gvisor.dev/gvisor/pkg/tcpip/ports"
"gvisor.dev/gvisor/pkg/tcpip/stack"
"gvisor.dev/gvisor/pkg/tcpip/transport"
"gvisor.dev/gvisor/pkg/tcpip/transport/internal/network"
"gvisor.dev/gvisor/pkg/waiter"
)
// +stateify savable
type udpPacket struct {
udpPacketEntry
netProto tcpip.NetworkProtocolNumber
senderAddress tcpip.FullAddress
destinationAddress tcpip.FullAddress
packetInfo tcpip.IPPacketInfo
data buffer.VectorisedView `state:".(buffer.VectorisedView)"`
receivedAt time.Time `state:".(int64)"`
// tos stores either the receiveTOS or receiveTClass value.
tos uint8
}
// endpoint represents a UDP endpoint. This struct serves as the interface
// between users of the endpoint and the protocol implementation; it is legal to
// have concurrent goroutines make calls into the endpoint, they are properly
// synchronized.
//
// It implements tcpip.Endpoint.
//
// +stateify savable
type endpoint struct {
tcpip.DefaultSocketOptionsHandler
// The following fields are initialized at creation time and do not
// change throughout the lifetime of the endpoint.
stack *stack.Stack `state:"manual"`
waiterQueue *waiter.Queue
uniqueID uint64
net network.Endpoint
// TODO(b/142022063): Add ability to save and restore per endpoint stats.
stats tcpip.TransportEndpointStats `state:"nosave"`
ops tcpip.SocketOptions
// The following fields are used to manage the receive queue, and are
// protected by rcvMu.
rcvMu sync.Mutex `state:"nosave"`
rcvReady bool
rcvList udpPacketList
rcvBufSize int
rcvClosed bool
lastErrorMu sync.Mutex `state:"nosave"`
lastError tcpip.Error
// The following fields are protected by the mu mutex.
mu sync.RWMutex `state:"nosave"`
portFlags ports.Flags
// Values used to reserve a port or register a transport endpoint.
// (which ever happens first).
boundBindToDevice tcpip.NICID
boundPortFlags ports.Flags
readShutdown bool
// effectiveNetProtos contains the network protocols actually in use. In
// most cases it will only contain "netProto", but in cases like IPv6
// endpoints with v6only set to false, this could include multiple
// protocols (e.g., IPv6 and IPv4) or a single different protocol (e.g.,
// IPv4 when IPv6 endpoint is bound or connected to an IPv4 mapped
// address).
effectiveNetProtos []tcpip.NetworkProtocolNumber
// frozen indicates if the packets should be delivered to the endpoint
// during restore.
frozen bool
localPort uint16
remotePort uint16
}
func newEndpoint(s *stack.Stack, netProto tcpip.NetworkProtocolNumber, waiterQueue *waiter.Queue) *endpoint {
e := &endpoint{
stack: s,
waiterQueue: waiterQueue,
uniqueID: s.UniqueID(),
}
e.ops.InitHandler(e, e.stack, tcpip.GetStackSendBufferLimits, tcpip.GetStackReceiveBufferLimits)
e.ops.SetMulticastLoop(true)
e.ops.SetSendBufferSize(32*1024, false /* notify */)
e.ops.SetReceiveBufferSize(32*1024, false /* notify */)
e.net.Init(s, netProto, header.UDPProtocolNumber, &e.ops)
// Override with stack defaults.
var ss tcpip.SendBufferSizeOption
if err := s.Option(&ss); err == nil {
e.ops.SetSendBufferSize(int64(ss.Default), false /* notify */)
}
var rs tcpip.ReceiveBufferSizeOption
if err := s.Option(&rs); err == nil {
e.ops.SetReceiveBufferSize(int64(rs.Default), false /* notify */)
}
return e
}
// UniqueID implements stack.TransportEndpoint.
func (e *endpoint) UniqueID() uint64 {
return e.uniqueID
}
func (e *endpoint) LastError() tcpip.Error {
e.lastErrorMu.Lock()
defer e.lastErrorMu.Unlock()
err := e.lastError
e.lastError = nil
return err
}
// UpdateLastError implements tcpip.SocketOptionsHandler.
func (e *endpoint) UpdateLastError(err tcpip.Error) {
e.lastErrorMu.Lock()
e.lastError = err
e.lastErrorMu.Unlock()
}
// Abort implements stack.TransportEndpoint.
func (e *endpoint) Abort() {
e.Close()
}
// Close puts the endpoint in a closed state and frees all resources
// associated with it.
func (e *endpoint) Close() {
e.mu.Lock()
switch state := e.net.State(); state {
case transport.DatagramEndpointStateInitial:
case transport.DatagramEndpointStateClosed:
e.mu.Unlock()
return
case transport.DatagramEndpointStateBound, transport.DatagramEndpointStateConnected:
id := e.net.Info().ID
id.LocalPort = e.localPort
id.RemotePort = e.remotePort
e.stack.UnregisterTransportEndpoint(e.effectiveNetProtos, ProtocolNumber, id, e, e.boundPortFlags, e.boundBindToDevice)
portRes := ports.Reservation{
Networks: e.effectiveNetProtos,
Transport: ProtocolNumber,
Addr: id.LocalAddress,
Port: id.LocalPort,
Flags: e.boundPortFlags,
BindToDevice: e.boundBindToDevice,
Dest: tcpip.FullAddress{},
}
e.stack.ReleasePort(portRes)
e.boundBindToDevice = 0
e.boundPortFlags = ports.Flags{}
default:
panic(fmt.Sprintf("unhandled state = %s", state))
}
// Close the receive list and drain it.
e.rcvMu.Lock()
e.rcvClosed = true
e.rcvBufSize = 0
for !e.rcvList.Empty() {
p := e.rcvList.Front()
e.rcvList.Remove(p)
}
e.rcvMu.Unlock()
e.net.Shutdown()
e.net.Close()
e.readShutdown = true
e.mu.Unlock()
e.waiterQueue.Notify(waiter.EventHUp | waiter.EventErr | waiter.ReadableEvents | waiter.WritableEvents)
}
// ModerateRecvBuf implements tcpip.Endpoint.
func (*endpoint) ModerateRecvBuf(int) {}
// Read implements tcpip.Endpoint.
func (e *endpoint) Read(dst io.Writer, opts tcpip.ReadOptions) (tcpip.ReadResult, tcpip.Error) {
if err := e.LastError(); err != nil {
return tcpip.ReadResult{}, err
}
e.rcvMu.Lock()
if e.rcvList.Empty() {
var err tcpip.Error = &tcpip.ErrWouldBlock{}
if e.rcvClosed {
e.stats.ReadErrors.ReadClosed.Increment()
err = &tcpip.ErrClosedForReceive{}
}
e.rcvMu.Unlock()
return tcpip.ReadResult{}, err
}
p := e.rcvList.Front()
if !opts.Peek {
e.rcvList.Remove(p)
e.rcvBufSize -= p.data.Size()
}
e.rcvMu.Unlock()
// Control Messages
cm := tcpip.ControlMessages{
HasTimestamp: true,
Timestamp: p.receivedAt.UnixNano(),
}
switch p.netProto {
case header.IPv4ProtocolNumber:
if e.ops.GetReceiveTOS() {
cm.HasTOS = true
cm.TOS = p.tos
}
case header.IPv6ProtocolNumber:
if e.ops.GetReceiveTClass() {
cm.HasTClass = true
// Although TClass is an 8-bit value it's read in the CMsg as a uint32.
cm.TClass = uint32(p.tos)
}
default:
panic(fmt.Sprintf("unrecognized network protocol = %d", p.netProto))
}
if e.ops.GetReceivePacketInfo() {
cm.HasIPPacketInfo = true
cm.PacketInfo = p.packetInfo
}
if e.ops.GetReceiveOriginalDstAddress() {
cm.HasOriginalDstAddress = true
cm.OriginalDstAddress = p.destinationAddress
}
// Read Result
res := tcpip.ReadResult{
Total: p.data.Size(),
ControlMessages: cm,
}
if opts.NeedRemoteAddr {
res.RemoteAddr = p.senderAddress
}
n, err := p.data.ReadTo(dst, opts.Peek)
if n == 0 && err != nil {
return res, &tcpip.ErrBadBuffer{}
}
res.Count = n
return res, nil
}
// prepareForWriteInner prepares the endpoint for sending data. In particular,
// it binds it if it's still in the initial state. To do so, it must first
// reacquire the mutex in exclusive mode.
//
// Returns true for retry if preparation should be retried.
// +checklocks:e.mu
func (e *endpoint) prepareForWriteInner(to *tcpip.FullAddress) (retry bool, err tcpip.Error) {
switch e.net.State() {
case transport.DatagramEndpointStateInitial:
case transport.DatagramEndpointStateConnected:
return false, nil
case transport.DatagramEndpointStateBound:
if to == nil {
return false, &tcpip.ErrDestinationRequired{}
}
return false, nil
default:
return false, &tcpip.ErrInvalidEndpointState{}
}
e.mu.RUnlock()
e.mu.Lock()
defer e.mu.DowngradeLock()
// The state changed when we released the shared locked and re-acquired
// it in exclusive mode. Try again.
if e.net.State() != transport.DatagramEndpointStateInitial {
return true, nil
}
// The state is still 'initial', so try to bind the endpoint.
if err := e.bindLocked(tcpip.FullAddress{}); err != nil {
return false, err
}
return true, nil
}
// Write writes data to the endpoint's peer. This method does not block
// if the data cannot be written.
func (e *endpoint) Write(p tcpip.Payloader, opts tcpip.WriteOptions) (int64, tcpip.Error) {
n, err := e.write(p, opts)
switch err.(type) {
case nil:
e.stats.PacketsSent.Increment()
case *tcpip.ErrMessageTooLong, *tcpip.ErrInvalidOptionValue:
e.stats.WriteErrors.InvalidArgs.Increment()
case *tcpip.ErrClosedForSend:
e.stats.WriteErrors.WriteClosed.Increment()
case *tcpip.ErrInvalidEndpointState:
e.stats.WriteErrors.InvalidEndpointState.Increment()
case *tcpip.ErrNoRoute, *tcpip.ErrBroadcastDisabled, *tcpip.ErrNetworkUnreachable:
// Errors indicating any problem with IP routing of the packet.
e.stats.SendErrors.NoRoute.Increment()
default:
// For all other errors when writing to the network layer.
e.stats.SendErrors.SendToNetworkFailed.Increment()
}
return n, err
}
func (e *endpoint) prepareForWrite(p tcpip.Payloader, opts tcpip.WriteOptions) (udpPacketInfo, tcpip.Error) {
e.mu.RLock()
defer e.mu.RUnlock()
// Prepare for write.
for {
retry, err := e.prepareForWriteInner(opts.To)
if err != nil {
return udpPacketInfo{}, err
}
if !retry {
break
}
}
dst, connected := e.net.GetRemoteAddress()
dst.Port = e.remotePort
if opts.To != nil {
if opts.To.Port == 0 {
// Port 0 is an invalid port to send to.
return udpPacketInfo{}, &tcpip.ErrInvalidEndpointState{}
}
dst = *opts.To
} else if !connected {
return udpPacketInfo{}, &tcpip.ErrDestinationRequired{}
}
ctx, err := e.net.AcquireContextForWrite(opts)
if err != nil {
return udpPacketInfo{}, err
}
// TODO(https://gvisor.dev/issue/6538): Avoid this allocation.
v := make([]byte, p.Len())
if _, err := io.ReadFull(p, v); err != nil {
ctx.Release()
return udpPacketInfo{}, &tcpip.ErrBadBuffer{}
}
if len(v) > header.UDPMaximumPacketSize {
// Payload can't possibly fit in a packet.
so := e.SocketOptions()
if so.GetRecvError() {
so.QueueLocalErr(
&tcpip.ErrMessageTooLong{},
e.net.NetProto(),
header.UDPMaximumPacketSize,
dst,
v,
)
}
ctx.Release()
return udpPacketInfo{}, &tcpip.ErrMessageTooLong{}
}
return udpPacketInfo{
ctx: ctx,
data: v,
localPort: e.localPort,
remotePort: dst.Port,
}, nil
}
func (e *endpoint) write(p tcpip.Payloader, opts tcpip.WriteOptions) (int64, tcpip.Error) {
// Do not hold lock when sending as loopback is synchronous and if the UDP
// datagram ends up generating an ICMP response then it can result in a
// deadlock where the ICMP response handling ends up acquiring this endpoint's
// mutex using e.mu.RLock() in endpoint.HandleControlPacket which can cause a
// deadlock if another caller is trying to acquire e.mu in exclusive mode w/
// e.mu.Lock(). Since e.mu.Lock() prevents any new read locks to ensure the
// lock can be eventually acquired.
//
// See: https://golang.org/pkg/sync/#RWMutex for details on why recursive read
// locking is prohibited.
if err := e.LastError(); err != nil {
return 0, err
}
udpInfo, err := e.prepareForWrite(p, opts)
if err != nil {
return 0, err
}
defer udpInfo.ctx.Release()
pktInfo := udpInfo.ctx.PacketInfo()
pkt := stack.NewPacketBuffer(stack.PacketBufferOptions{
ReserveHeaderBytes: header.UDPMinimumSize + int(pktInfo.MaxHeaderLength),
Data: udpInfo.data.ToVectorisedView(),
})
// Initialize the UDP header.
udp := header.UDP(pkt.TransportHeader().Push(header.UDPMinimumSize))
pkt.TransportProtocolNumber = ProtocolNumber
length := uint16(pkt.Size())
udp.Encode(&header.UDPFields{
SrcPort: udpInfo.localPort,
DstPort: udpInfo.remotePort,
Length: length,
})
// Set the checksum field unless TX checksum offload is enabled.
// On IPv4, UDP checksum is optional, and a zero value indicates the
// transmitter skipped the checksum generation (RFC768).
// On IPv6, UDP checksum is not optional (RFC2460 Section 8.1).
if pktInfo.RequiresTXTransportChecksum &&
(!e.ops.GetNoChecksum() || pktInfo.NetProto == header.IPv6ProtocolNumber) {
udp.SetChecksum(^udp.CalculateChecksum(header.ChecksumCombine(
header.PseudoHeaderChecksum(ProtocolNumber, pktInfo.LocalAddress, pktInfo.RemoteAddress, length),
pkt.Data().AsRange().Checksum(),
)))
}
if err := udpInfo.ctx.WritePacket(pkt, false /* headerIncluded */); err != nil {
e.stack.Stats().UDP.PacketSendErrors.Increment()
return 0, err
}
// Track count of packets sent.
e.stack.Stats().UDP.PacketsSent.Increment()
return int64(len(udpInfo.data)), nil
}
// OnReuseAddressSet implements tcpip.SocketOptionsHandler.
func (e *endpoint) OnReuseAddressSet(v bool) {
e.mu.Lock()
e.portFlags.MostRecent = v
e.mu.Unlock()
}
// OnReusePortSet implements tcpip.SocketOptionsHandler.
func (e *endpoint) OnReusePortSet(v bool) {
e.mu.Lock()
e.portFlags.LoadBalanced = v
e.mu.Unlock()
}
// SetSockOptInt implements tcpip.Endpoint.
func (e *endpoint) SetSockOptInt(opt tcpip.SockOptInt, v int) tcpip.Error {
return e.net.SetSockOptInt(opt, v)
}
var _ tcpip.SocketOptionsHandler = (*endpoint)(nil)
// HasNIC implements tcpip.SocketOptionsHandler.
func (e *endpoint) HasNIC(id int32) bool {
return e.stack.HasNIC(tcpip.NICID(id))
}
// SetSockOpt implements tcpip.Endpoint.
func (e *endpoint) SetSockOpt(opt tcpip.SettableSocketOption) tcpip.Error {
return e.net.SetSockOpt(opt)
}
// GetSockOptInt implements tcpip.Endpoint.
func (e *endpoint) GetSockOptInt(opt tcpip.SockOptInt) (int, tcpip.Error) {
switch opt {
case tcpip.ReceiveQueueSizeOption:
v := 0
e.rcvMu.Lock()
if !e.rcvList.Empty() {
p := e.rcvList.Front()
v = p.data.Size()
}
e.rcvMu.Unlock()
return v, nil
default:
return e.net.GetSockOptInt(opt)
}
}
// GetSockOpt implements tcpip.Endpoint.
func (e *endpoint) GetSockOpt(opt tcpip.GettableSocketOption) tcpip.Error {
return e.net.GetSockOpt(opt)
}
// udpPacketInfo holds information needed to send a UDP packet.
type udpPacketInfo struct {
ctx network.WriteContext
data buffer.View
localPort uint16
remotePort uint16
}
// Disconnect implements tcpip.Endpoint.
func (e *endpoint) Disconnect() tcpip.Error {
e.mu.Lock()
defer e.mu.Unlock()
if e.net.State() != transport.DatagramEndpointStateConnected {
return nil
}
var (
id stack.TransportEndpointID
btd tcpip.NICID
)
// We change this value below and we need the old value to unregister
// the endpoint.
boundPortFlags := e.boundPortFlags
// Exclude ephemerally bound endpoints.
info := e.net.Info()
info.ID.LocalPort = e.localPort
info.ID.RemotePort = e.remotePort
if info.BindNICID != 0 || info.ID.LocalAddress == "" {
var err tcpip.Error
id = stack.TransportEndpointID{
LocalPort: info.ID.LocalPort,
LocalAddress: info.ID.LocalAddress,
}
id, btd, err = e.registerWithStack(e.effectiveNetProtos, id)
if err != nil {
return err
}
boundPortFlags = e.boundPortFlags
} else {
if info.ID.LocalPort != 0 {
// Release the ephemeral port.
portRes := ports.Reservation{
Networks: e.effectiveNetProtos,
Transport: ProtocolNumber,
Addr: info.ID.LocalAddress,
Port: info.ID.LocalPort,
Flags: boundPortFlags,
BindToDevice: e.boundBindToDevice,
Dest: tcpip.FullAddress{},
}
e.stack.ReleasePort(portRes)
e.boundPortFlags = ports.Flags{}
}
}
e.stack.UnregisterTransportEndpoint(e.effectiveNetProtos, ProtocolNumber, info.ID, e, boundPortFlags, e.boundBindToDevice)
e.boundBindToDevice = btd
e.localPort = id.LocalPort
e.remotePort = id.RemotePort
e.net.Disconnect()
return nil
}
// Connect connects the endpoint to its peer. Specifying a NIC is optional.
func (e *endpoint) Connect(addr tcpip.FullAddress) tcpip.Error {
e.mu.Lock()
defer e.mu.Unlock()
err := e.net.ConnectAndThen(addr, func(netProto tcpip.NetworkProtocolNumber, previousID, nextID stack.TransportEndpointID) tcpip.Error {
nextID.LocalPort = e.localPort
nextID.RemotePort = addr.Port
// Even if we're connected, this endpoint can still be used to send
// packets on a different network protocol, so we register both even if
// v6only is set to false and this is an ipv6 endpoint.
netProtos := []tcpip.NetworkProtocolNumber{netProto}
if netProto == header.IPv6ProtocolNumber && !e.ops.GetV6Only() {
netProtos = []tcpip.NetworkProtocolNumber{
header.IPv4ProtocolNumber,
header.IPv6ProtocolNumber,
}
}
oldPortFlags := e.boundPortFlags
nextID, btd, err := e.registerWithStack(netProtos, nextID)
if err != nil {
return err
}
// Remove the old registration.
if e.localPort != 0 {
previousID.LocalPort = e.localPort
previousID.RemotePort = e.remotePort
e.stack.UnregisterTransportEndpoint(e.effectiveNetProtos, ProtocolNumber, previousID, e, oldPortFlags, e.boundBindToDevice)
}
e.localPort = nextID.LocalPort
e.remotePort = nextID.RemotePort
e.boundBindToDevice = btd
e.effectiveNetProtos = netProtos
return nil
})
if err != nil {
return err
}
e.rcvMu.Lock()
e.rcvReady = true
e.rcvMu.Unlock()
return nil
}
// ConnectEndpoint is not supported.
func (*endpoint) ConnectEndpoint(tcpip.Endpoint) tcpip.Error {
return &tcpip.ErrInvalidEndpointState{}
}
// Shutdown closes the read and/or write end of the endpoint connection
// to its peer.
func (e *endpoint) Shutdown(flags tcpip.ShutdownFlags) tcpip.Error {
e.mu.Lock()
defer e.mu.Unlock()
switch state := e.net.State(); state {
case transport.DatagramEndpointStateInitial, transport.DatagramEndpointStateClosed:
return &tcpip.ErrNotConnected{}
case transport.DatagramEndpointStateBound, transport.DatagramEndpointStateConnected:
default:
panic(fmt.Sprintf("unhandled state = %s", state))
}
if flags&tcpip.ShutdownWrite != 0 {
if err := e.net.Shutdown(); err != nil {
return err
}
}
if flags&tcpip.ShutdownRead != 0 {
e.readShutdown = true
e.rcvMu.Lock()
wasClosed := e.rcvClosed
e.rcvClosed = true
e.rcvMu.Unlock()
if !wasClosed {
e.waiterQueue.Notify(waiter.ReadableEvents)
}
}
return nil
}
// Listen is not supported by UDP, it just fails.
func (*endpoint) Listen(int) tcpip.Error {
return &tcpip.ErrNotSupported{}
}
// Accept is not supported by UDP, it just fails.
func (*endpoint) Accept(*tcpip.FullAddress) (tcpip.Endpoint, *waiter.Queue, tcpip.Error) {
return nil, nil, &tcpip.ErrNotSupported{}
}
func (e *endpoint) registerWithStack(netProtos []tcpip.NetworkProtocolNumber, id stack.TransportEndpointID) (stack.TransportEndpointID, tcpip.NICID, tcpip.Error) {
bindToDevice := tcpip.NICID(e.ops.GetBindToDevice())
if e.localPort == 0 {
portRes := ports.Reservation{
Networks: netProtos,
Transport: ProtocolNumber,
Addr: id.LocalAddress,
Port: id.LocalPort,
Flags: e.portFlags,
BindToDevice: bindToDevice,
Dest: tcpip.FullAddress{},
}
port, err := e.stack.ReservePort(e.stack.Rand(), portRes, nil /* testPort */)
if err != nil {
return id, bindToDevice, err
}
id.LocalPort = port
}
e.boundPortFlags = e.portFlags
err := e.stack.RegisterTransportEndpoint(netProtos, ProtocolNumber, id, e, e.boundPortFlags, bindToDevice)
if err != nil {
portRes := ports.Reservation{
Networks: netProtos,
Transport: ProtocolNumber,
Addr: id.LocalAddress,
Port: id.LocalPort,
Flags: e.boundPortFlags,
BindToDevice: bindToDevice,
Dest: tcpip.FullAddress{},
}
e.stack.ReleasePort(portRes)
e.boundPortFlags = ports.Flags{}
}
return id, bindToDevice, err
}
func (e *endpoint) bindLocked(addr tcpip.FullAddress) tcpip.Error {
// Don't allow binding once endpoint is not in the initial state
// anymore.
if e.net.State() != transport.DatagramEndpointStateInitial {
return &tcpip.ErrInvalidEndpointState{}
}
err := e.net.BindAndThen(addr, func(boundNetProto tcpip.NetworkProtocolNumber, boundAddr tcpip.Address) tcpip.Error {
// Expand netProtos to include v4 and v6 if the caller is binding to a
// wildcard (empty) address, and this is an IPv6 endpoint with v6only
// set to false.
netProtos := []tcpip.NetworkProtocolNumber{boundNetProto}
if boundNetProto == header.IPv6ProtocolNumber && !e.ops.GetV6Only() && boundAddr == "" {
netProtos = []tcpip.NetworkProtocolNumber{
header.IPv6ProtocolNumber,
header.IPv4ProtocolNumber,
}
}
id := stack.TransportEndpointID{
LocalPort: addr.Port,
LocalAddress: boundAddr,
}
id, btd, err := e.registerWithStack(netProtos, id)
if err != nil {
return err
}
e.localPort = id.LocalPort
e.boundBindToDevice = btd
e.effectiveNetProtos = netProtos
return nil
})
if err != nil {
return err
}
e.rcvMu.Lock()
e.rcvReady = true
e.rcvMu.Unlock()
return nil
}
// Bind binds the endpoint to a specific local address and port.
// Specifying a NIC is optional.
func (e *endpoint) Bind(addr tcpip.FullAddress) tcpip.Error {
e.mu.Lock()
defer e.mu.Unlock()
err := e.bindLocked(addr)
if err != nil {
return err
}
return nil
}
// GetLocalAddress returns the address to which the endpoint is bound.
func (e *endpoint) GetLocalAddress() (tcpip.FullAddress, tcpip.Error) {
e.mu.RLock()
defer e.mu.RUnlock()
addr := e.net.GetLocalAddress()
addr.Port = e.localPort
return addr, nil
}
// GetRemoteAddress returns the address to which the endpoint is connected.
func (e *endpoint) GetRemoteAddress() (tcpip.FullAddress, tcpip.Error) {
e.mu.RLock()
defer e.mu.RUnlock()
addr, connected := e.net.GetRemoteAddress()
if !connected || e.remotePort == 0 {
return tcpip.FullAddress{}, &tcpip.ErrNotConnected{}
}
addr.Port = e.remotePort
return addr, nil
}
// Readiness returns the current readiness of the endpoint. For example, if
// waiter.EventIn is set, the endpoint is immediately readable.
func (e *endpoint) Readiness(mask waiter.EventMask) waiter.EventMask {
// The endpoint is always writable.
result := waiter.WritableEvents & mask
// Determine if the endpoint is readable if requested.
if mask&waiter.ReadableEvents != 0 {
e.rcvMu.Lock()
if !e.rcvList.Empty() || e.rcvClosed {
result |= waiter.ReadableEvents
}
e.rcvMu.Unlock()
}
e.lastErrorMu.Lock()
hasError := e.lastError != nil
e.lastErrorMu.Unlock()
if hasError {
result |= waiter.EventErr
}
return result
}
// verifyChecksum verifies the checksum unless RX checksum offload is enabled.
func verifyChecksum(hdr header.UDP, pkt *stack.PacketBuffer) bool {
if pkt.RXTransportChecksumValidated {
return true
}
// On IPv4, UDP checksum is optional, and a zero value means the transmitter
// omitted the checksum generation, as per RFC 768:
//
// An all zero transmitted checksum value means that the transmitter
// generated no checksum (for debugging or for higher level protocols that
// don't care).
//
// On IPv6, UDP checksum is not optional, as per RFC 2460 Section 8.1:
//
// Unlike IPv4, when UDP packets are originated by an IPv6 node, the UDP
// checksum is not optional.
if pkt.NetworkProtocolNumber == header.IPv4ProtocolNumber && hdr.Checksum() == 0 {
return true
}
netHdr := pkt.Network()
payloadChecksum := pkt.Data().AsRange().Checksum()
return hdr.IsChecksumValid(netHdr.SourceAddress(), netHdr.DestinationAddress(), payloadChecksum)
}
// HandlePacket is called by the stack when new packets arrive to this transport
// endpoint.
func (e *endpoint) HandlePacket(id stack.TransportEndpointID, pkt *stack.PacketBuffer) {
// Get the header then trim it from the view.
hdr := header.UDP(pkt.TransportHeader().View())
if int(hdr.Length()) > pkt.Data().Size()+header.UDPMinimumSize {
// Malformed packet.
e.stack.Stats().UDP.MalformedPacketsReceived.Increment()
e.stats.ReceiveErrors.MalformedPacketsReceived.Increment()
return
}
if !verifyChecksum(hdr, pkt) {
e.stack.Stats().UDP.ChecksumErrors.Increment()
e.stats.ReceiveErrors.ChecksumErrors.Increment()
return
}
e.stack.Stats().UDP.PacketsReceived.Increment()
e.stats.PacketsReceived.Increment()
e.rcvMu.Lock()
// Drop the packet if our buffer is currently full.
if !e.rcvReady || e.rcvClosed {
e.rcvMu.Unlock()
e.stack.Stats().UDP.ReceiveBufferErrors.Increment()
e.stats.ReceiveErrors.ClosedReceiver.Increment()
return
}
rcvBufSize := e.ops.GetReceiveBufferSize()
if e.frozen || e.rcvBufSize >= int(rcvBufSize) {
e.rcvMu.Unlock()
e.stack.Stats().UDP.ReceiveBufferErrors.Increment()
e.stats.ReceiveErrors.ReceiveBufferOverflow.Increment()
return
}
wasEmpty := e.rcvBufSize == 0
// Push new packet into receive list and increment the buffer size.
packet := &udpPacket{
netProto: pkt.NetworkProtocolNumber,
senderAddress: tcpip.FullAddress{
NIC: pkt.NICID,
Addr: id.RemoteAddress,
Port: hdr.SourcePort(),
},
destinationAddress: tcpip.FullAddress{
NIC: pkt.NICID,
Addr: id.LocalAddress,
Port: hdr.DestinationPort(),
},
data: pkt.Data().ExtractVV(),
}
e.rcvList.PushBack(packet)
e.rcvBufSize += packet.data.Size()
// Save any useful information from the network header to the packet.
switch pkt.NetworkProtocolNumber {
case header.IPv4ProtocolNumber:
packet.tos, _ = header.IPv4(pkt.NetworkHeader().View()).TOS()
case header.IPv6ProtocolNumber:
packet.tos, _ = header.IPv6(pkt.NetworkHeader().View()).TOS()
}
// TODO(gvisor.dev/issue/3556): r.LocalAddress may be a multicast or broadcast
// address. packetInfo.LocalAddr should hold a unicast address that can be
// used to respond to the incoming packet.
localAddr := pkt.Network().DestinationAddress()
packet.packetInfo.LocalAddr = localAddr
packet.packetInfo.DestinationAddr = localAddr
packet.packetInfo.NIC = pkt.NICID
packet.receivedAt = e.stack.Clock().Now()
e.rcvMu.Unlock()
// Notify any waiters that there's data to be read now.
if wasEmpty {
e.waiterQueue.Notify(waiter.ReadableEvents)
}
}
func (e *endpoint) onICMPError(err tcpip.Error, transErr stack.TransportError, pkt *stack.PacketBuffer) {
// Update last error first.
e.lastErrorMu.Lock()
e.lastError = err
e.lastErrorMu.Unlock()
// Update the error queue if IP_RECVERR is enabled.
if e.SocketOptions().GetRecvError() {
// Linux passes the payload without the UDP header.
var payload []byte
udp := header.UDP(pkt.Data().AsRange().ToOwnedView())
if len(udp) >= header.UDPMinimumSize {
payload = udp.Payload()
}
id := e.net.Info().ID
e.SocketOptions().QueueErr(&tcpip.SockError{
Err: err,
Cause: transErr,
Payload: payload,
Dst: tcpip.FullAddress{
NIC: pkt.NICID,
Addr: id.RemoteAddress,
Port: e.remotePort,
},
Offender: tcpip.FullAddress{
NIC: pkt.NICID,
Addr: id.LocalAddress,
Port: e.localPort,
},
NetProto: pkt.NetworkProtocolNumber,
})
}
// Notify of the error.
e.waiterQueue.Notify(waiter.EventErr)
}
// HandleError implements stack.TransportEndpoint.
func (e *endpoint) HandleError(transErr stack.TransportError, pkt *stack.PacketBuffer) {
// TODO(gvisor.dev/issues/5270): Handle all transport errors.
switch transErr.Kind() {
case stack.DestinationPortUnreachableTransportError:
if e.net.State() == transport.DatagramEndpointStateConnected {
e.onICMPError(&tcpip.ErrConnectionRefused{}, transErr, pkt)
}
}
}
// State implements tcpip.Endpoint.
func (e *endpoint) State() uint32 {
return uint32(e.net.State())
}
// Info returns a copy of the endpoint info.
func (e *endpoint) Info() tcpip.EndpointInfo {
e.mu.RLock()
defer e.mu.RUnlock()
info := e.net.Info()
info.ID.LocalPort = e.localPort
info.ID.RemotePort = e.remotePort
return &info
}
// Stats returns a pointer to the endpoint stats.
func (e *endpoint) Stats() tcpip.EndpointStats {
return &e.stats
}
// Wait implements tcpip.Endpoint.
func (*endpoint) Wait() {}
// SetOwner implements tcpip.Endpoint.
func (e *endpoint) SetOwner(owner tcpip.PacketOwner) {
e.net.SetOwner(owner)
}
// SocketOptions implements tcpip.Endpoint.
func (e *endpoint) SocketOptions() *tcpip.SocketOptions {
return &e.ops
}
// freeze prevents any more packets from being delivered to the endpoint.
func (e *endpoint) freeze() {
e.mu.Lock()
e.frozen = true
e.mu.Unlock()
}
// thaw unfreezes a previously frozen endpoint using endpoint.freeze() allows
// new packets to be delivered again.
func (e *endpoint) thaw() {
e.mu.Lock()
e.frozen = false
e.mu.Unlock()
}
|