summaryrefslogtreecommitdiffhomepage
path: root/pkg/tcpip/transport/udp/endpoint.go
blob: 24cb88c1324d2a0a963909b0fdd042e3d48f7e6b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package udp

import (
	"sync"

	"gvisor.dev/gvisor/pkg/tcpip"
	"gvisor.dev/gvisor/pkg/tcpip/buffer"
	"gvisor.dev/gvisor/pkg/tcpip/header"
	"gvisor.dev/gvisor/pkg/tcpip/iptables"
	"gvisor.dev/gvisor/pkg/tcpip/stack"
	"gvisor.dev/gvisor/pkg/waiter"
)

// +stateify savable
type udpPacket struct {
	udpPacketEntry
	senderAddress tcpip.FullAddress
	data          buffer.VectorisedView `state:".(buffer.VectorisedView)"`
	timestamp     int64
}

// EndpointState represents the state of a UDP endpoint.
type EndpointState uint32

// Endpoint states. Note that are represented in a netstack-specific manner and
// may not be meaningful externally. Specifically, they need to be translated to
// Linux's representation for these states if presented to userspace.
const (
	StateInitial EndpointState = iota
	StateBound
	StateConnected
	StateClosed
)

// String implements fmt.Stringer.String.
func (s EndpointState) String() string {
	switch s {
	case StateInitial:
		return "INITIAL"
	case StateBound:
		return "BOUND"
	case StateConnected:
		return "CONNECTING"
	case StateClosed:
		return "CLOSED"
	default:
		return "UNKNOWN"
	}
}

// endpoint represents a UDP endpoint. This struct serves as the interface
// between users of the endpoint and the protocol implementation; it is legal to
// have concurrent goroutines make calls into the endpoint, they are properly
// synchronized.
//
// It implements tcpip.Endpoint.
//
// +stateify savable
type endpoint struct {
	stack.TransportEndpointInfo

	// The following fields are initialized at creation time and do not
	// change throughout the lifetime of the endpoint.
	stack       *stack.Stack `state:"manual"`
	waiterQueue *waiter.Queue
	uniqueID    uint64

	// The following fields are used to manage the receive queue, and are
	// protected by rcvMu.
	rcvMu         sync.Mutex `state:"nosave"`
	rcvReady      bool
	rcvList       udpPacketList
	rcvBufSizeMax int `state:".(int)"`
	rcvBufSize    int
	rcvClosed     bool

	// The following fields are protected by the mu mutex.
	mu             sync.RWMutex `state:"nosave"`
	sndBufSize     int
	state          EndpointState
	route          stack.Route `state:"manual"`
	dstPort        uint16
	v6only         bool
	ttl            uint8
	multicastTTL   uint8
	multicastAddr  tcpip.Address
	multicastNICID tcpip.NICID
	multicastLoop  bool
	reusePort      bool
	bindToDevice   tcpip.NICID
	broadcast      bool

	// Values used to reserve a port or register a transport endpoint.
	// (which ever happens first).
	boundBindToDevice tcpip.NICID

	// sendTOS represents IPv4 TOS or IPv6 TrafficClass,
	// applied while sending packets. Defaults to 0 as on Linux.
	sendTOS uint8

	// shutdownFlags represent the current shutdown state of the endpoint.
	shutdownFlags tcpip.ShutdownFlags

	// multicastMemberships that need to be remvoed when the endpoint is
	// closed. Protected by the mu mutex.
	multicastMemberships []multicastMembership

	// effectiveNetProtos contains the network protocols actually in use. In
	// most cases it will only contain "netProto", but in cases like IPv6
	// endpoints with v6only set to false, this could include multiple
	// protocols (e.g., IPv6 and IPv4) or a single different protocol (e.g.,
	// IPv4 when IPv6 endpoint is bound or connected to an IPv4 mapped
	// address).
	effectiveNetProtos []tcpip.NetworkProtocolNumber

	// TODO(b/142022063): Add ability to save and restore per endpoint stats.
	stats tcpip.TransportEndpointStats `state:"nosave"`
}

// +stateify savable
type multicastMembership struct {
	nicID         tcpip.NICID
	multicastAddr tcpip.Address
}

func newEndpoint(s *stack.Stack, netProto tcpip.NetworkProtocolNumber, waiterQueue *waiter.Queue) *endpoint {
	return &endpoint{
		stack: s,
		TransportEndpointInfo: stack.TransportEndpointInfo{
			NetProto:   netProto,
			TransProto: header.UDPProtocolNumber,
		},
		waiterQueue: waiterQueue,
		// RFC 1075 section 5.4 recommends a TTL of 1 for membership
		// requests.
		//
		// RFC 5135 4.2.1 appears to assume that IGMP messages have a
		// TTL of 1.
		//
		// RFC 5135 Appendix A defines TTL=1: A multicast source that
		// wants its traffic to not traverse a router (e.g., leave a
		// home network) may find it useful to send traffic with IP
		// TTL=1.
		//
		// Linux defaults to TTL=1.
		multicastTTL:  1,
		multicastLoop: true,
		rcvBufSizeMax: 32 * 1024,
		sndBufSize:    32 * 1024,
		state:         StateInitial,
		uniqueID:      s.UniqueID(),
	}
}

// UniqueID implements stack.TransportEndpoint.UniqueID.
func (e *endpoint) UniqueID() uint64 {
	return e.uniqueID
}

// Close puts the endpoint in a closed state and frees all resources
// associated with it.
func (e *endpoint) Close() {
	e.mu.Lock()
	e.shutdownFlags = tcpip.ShutdownRead | tcpip.ShutdownWrite

	switch e.state {
	case StateBound, StateConnected:
		e.stack.UnregisterTransportEndpoint(e.RegisterNICID, e.effectiveNetProtos, ProtocolNumber, e.ID, e, e.boundBindToDevice)
		e.stack.ReleasePort(e.effectiveNetProtos, ProtocolNumber, e.ID.LocalAddress, e.ID.LocalPort, e.boundBindToDevice)
		e.boundBindToDevice = 0
	}

	for _, mem := range e.multicastMemberships {
		e.stack.LeaveGroup(e.NetProto, mem.nicID, mem.multicastAddr)
	}
	e.multicastMemberships = nil

	// Close the receive list and drain it.
	e.rcvMu.Lock()
	e.rcvClosed = true
	e.rcvBufSize = 0
	for !e.rcvList.Empty() {
		p := e.rcvList.Front()
		e.rcvList.Remove(p)
	}
	e.rcvMu.Unlock()

	e.route.Release()

	// Update the state.
	e.state = StateClosed

	e.mu.Unlock()

	e.waiterQueue.Notify(waiter.EventHUp | waiter.EventErr | waiter.EventIn | waiter.EventOut)
}

// ModerateRecvBuf implements tcpip.Endpoint.ModerateRecvBuf.
func (e *endpoint) ModerateRecvBuf(copied int) {}

// IPTables implements tcpip.Endpoint.IPTables.
func (e *endpoint) IPTables() (iptables.IPTables, error) {
	return e.stack.IPTables(), nil
}

// Read reads data from the endpoint. This method does not block if
// there is no data pending.
func (e *endpoint) Read(addr *tcpip.FullAddress) (buffer.View, tcpip.ControlMessages, *tcpip.Error) {
	e.rcvMu.Lock()

	if e.rcvList.Empty() {
		err := tcpip.ErrWouldBlock
		if e.rcvClosed {
			e.stats.ReadErrors.ReadClosed.Increment()
			err = tcpip.ErrClosedForReceive
		}
		e.rcvMu.Unlock()
		return buffer.View{}, tcpip.ControlMessages{}, err
	}

	p := e.rcvList.Front()
	e.rcvList.Remove(p)
	e.rcvBufSize -= p.data.Size()
	e.rcvMu.Unlock()

	if addr != nil {
		*addr = p.senderAddress
	}

	return p.data.ToView(), tcpip.ControlMessages{HasTimestamp: true, Timestamp: p.timestamp}, nil
}

// prepareForWrite prepares the endpoint for sending data. In particular, it
// binds it if it's still in the initial state. To do so, it must first
// reacquire the mutex in exclusive mode.
//
// Returns true for retry if preparation should be retried.
func (e *endpoint) prepareForWrite(to *tcpip.FullAddress) (retry bool, err *tcpip.Error) {
	switch e.state {
	case StateInitial:
	case StateConnected:
		return false, nil

	case StateBound:
		if to == nil {
			return false, tcpip.ErrDestinationRequired
		}
		return false, nil
	default:
		return false, tcpip.ErrInvalidEndpointState
	}

	e.mu.RUnlock()
	defer e.mu.RLock()

	e.mu.Lock()
	defer e.mu.Unlock()

	// The state changed when we released the shared locked and re-acquired
	// it in exclusive mode. Try again.
	if e.state != StateInitial {
		return true, nil
	}

	// The state is still 'initial', so try to bind the endpoint.
	if err := e.bindLocked(tcpip.FullAddress{}); err != nil {
		return false, err
	}

	return true, nil
}

// connectRoute establishes a route to the specified interface or the
// configured multicast interface if no interface is specified and the
// specified address is a multicast address.
func (e *endpoint) connectRoute(nicID tcpip.NICID, addr tcpip.FullAddress, netProto tcpip.NetworkProtocolNumber) (stack.Route, tcpip.NICID, *tcpip.Error) {
	localAddr := e.ID.LocalAddress
	if isBroadcastOrMulticast(localAddr) {
		// A packet can only originate from a unicast address (i.e., an interface).
		localAddr = ""
	}

	if header.IsV4MulticastAddress(addr.Addr) || header.IsV6MulticastAddress(addr.Addr) {
		if nicID == 0 {
			nicID = e.multicastNICID
		}
		if localAddr == "" && nicID == 0 {
			localAddr = e.multicastAddr
		}
	}

	// Find a route to the desired destination.
	r, err := e.stack.FindRoute(nicID, localAddr, addr.Addr, netProto, e.multicastLoop)
	if err != nil {
		return stack.Route{}, 0, err
	}
	return r, nicID, nil
}

// Write writes data to the endpoint's peer. This method does not block
// if the data cannot be written.
func (e *endpoint) Write(p tcpip.Payloader, opts tcpip.WriteOptions) (int64, <-chan struct{}, *tcpip.Error) {
	n, ch, err := e.write(p, opts)
	switch err {
	case nil:
		e.stats.PacketsSent.Increment()
	case tcpip.ErrMessageTooLong, tcpip.ErrInvalidOptionValue:
		e.stats.WriteErrors.InvalidArgs.Increment()
	case tcpip.ErrClosedForSend:
		e.stats.WriteErrors.WriteClosed.Increment()
	case tcpip.ErrInvalidEndpointState:
		e.stats.WriteErrors.InvalidEndpointState.Increment()
	case tcpip.ErrNoLinkAddress:
		e.stats.SendErrors.NoLinkAddr.Increment()
	case tcpip.ErrNoRoute, tcpip.ErrBroadcastDisabled, tcpip.ErrNetworkUnreachable:
		// Errors indicating any problem with IP routing of the packet.
		e.stats.SendErrors.NoRoute.Increment()
	default:
		// For all other errors when writing to the network layer.
		e.stats.SendErrors.SendToNetworkFailed.Increment()
	}
	return n, ch, err
}

func (e *endpoint) write(p tcpip.Payloader, opts tcpip.WriteOptions) (int64, <-chan struct{}, *tcpip.Error) {
	// MSG_MORE is unimplemented. (This also means that MSG_EOR is a no-op.)
	if opts.More {
		return 0, nil, tcpip.ErrInvalidOptionValue
	}

	to := opts.To

	e.mu.RLock()
	defer e.mu.RUnlock()

	// If we've shutdown with SHUT_WR we are in an invalid state for sending.
	if e.shutdownFlags&tcpip.ShutdownWrite != 0 {
		return 0, nil, tcpip.ErrClosedForSend
	}

	// Prepare for write.
	for {
		retry, err := e.prepareForWrite(to)
		if err != nil {
			return 0, nil, err
		}

		if !retry {
			break
		}
	}

	var route *stack.Route
	var dstPort uint16
	if to == nil {
		route = &e.route
		dstPort = e.dstPort

		if route.IsResolutionRequired() {
			// Promote lock to exclusive if using a shared route, given that it may need to
			// change in Route.Resolve() call below.
			e.mu.RUnlock()
			defer e.mu.RLock()

			e.mu.Lock()
			defer e.mu.Unlock()

			// Recheck state after lock was re-acquired.
			if e.state != StateConnected {
				return 0, nil, tcpip.ErrInvalidEndpointState
			}
		}
	} else {
		// Reject destination address if it goes through a different
		// NIC than the endpoint was bound to.
		nicID := to.NIC
		if e.BindNICID != 0 {
			if nicID != 0 && nicID != e.BindNICID {
				return 0, nil, tcpip.ErrNoRoute
			}

			nicID = e.BindNICID
		}

		if to.Addr == header.IPv4Broadcast && !e.broadcast {
			return 0, nil, tcpip.ErrBroadcastDisabled
		}

		netProto, err := e.checkV4Mapped(to, false)
		if err != nil {
			return 0, nil, err
		}

		r, _, err := e.connectRoute(nicID, *to, netProto)
		if err != nil {
			return 0, nil, err
		}
		defer r.Release()

		route = &r
		dstPort = to.Port
	}

	if route.IsResolutionRequired() {
		if ch, err := route.Resolve(nil); err != nil {
			if err == tcpip.ErrWouldBlock {
				return 0, ch, tcpip.ErrNoLinkAddress
			}
			return 0, nil, err
		}
	}

	v, err := p.FullPayload()
	if err != nil {
		return 0, nil, err
	}
	if len(v) > header.UDPMaximumPacketSize {
		// Payload can't possibly fit in a packet.
		return 0, nil, tcpip.ErrMessageTooLong
	}

	ttl := e.ttl
	useDefaultTTL := ttl == 0

	if header.IsV4MulticastAddress(route.RemoteAddress) || header.IsV6MulticastAddress(route.RemoteAddress) {
		ttl = e.multicastTTL
		// Multicast allows a 0 TTL.
		useDefaultTTL = false
	}

	if err := sendUDP(route, buffer.View(v).ToVectorisedView(), e.ID.LocalPort, dstPort, ttl, useDefaultTTL, e.sendTOS); err != nil {
		return 0, nil, err
	}
	return int64(len(v)), nil, nil
}

// Peek only returns data from a single datagram, so do nothing here.
func (e *endpoint) Peek([][]byte) (int64, tcpip.ControlMessages, *tcpip.Error) {
	return 0, tcpip.ControlMessages{}, nil
}

// SetSockOptInt implements tcpip.Endpoint.SetSockOptInt.
func (e *endpoint) SetSockOptInt(opt tcpip.SockOpt, v int) *tcpip.Error {
	return nil
}

// SetSockOpt implements tcpip.Endpoint.SetSockOpt.
func (e *endpoint) SetSockOpt(opt interface{}) *tcpip.Error {
	switch v := opt.(type) {
	case tcpip.V6OnlyOption:
		// We only recognize this option on v6 endpoints.
		if e.NetProto != header.IPv6ProtocolNumber {
			return tcpip.ErrInvalidEndpointState
		}

		e.mu.Lock()
		defer e.mu.Unlock()

		// We only allow this to be set when we're in the initial state.
		if e.state != StateInitial {
			return tcpip.ErrInvalidEndpointState
		}

		e.v6only = v != 0

	case tcpip.TTLOption:
		e.mu.Lock()
		e.ttl = uint8(v)
		e.mu.Unlock()

	case tcpip.MulticastTTLOption:
		e.mu.Lock()
		e.multicastTTL = uint8(v)
		e.mu.Unlock()

	case tcpip.MulticastInterfaceOption:
		e.mu.Lock()
		defer e.mu.Unlock()

		fa := tcpip.FullAddress{Addr: v.InterfaceAddr}
		netProto, err := e.checkV4Mapped(&fa, false)
		if err != nil {
			return err
		}
		nic := v.NIC
		addr := fa.Addr

		if nic == 0 && addr == "" {
			e.multicastAddr = ""
			e.multicastNICID = 0
			break
		}

		if nic != 0 {
			if !e.stack.CheckNIC(nic) {
				return tcpip.ErrBadLocalAddress
			}
		} else {
			nic = e.stack.CheckLocalAddress(0, netProto, addr)
			if nic == 0 {
				return tcpip.ErrBadLocalAddress
			}
		}

		if e.BindNICID != 0 && e.BindNICID != nic {
			return tcpip.ErrInvalidEndpointState
		}

		e.multicastNICID = nic
		e.multicastAddr = addr

	case tcpip.AddMembershipOption:
		if !header.IsV4MulticastAddress(v.MulticastAddr) && !header.IsV6MulticastAddress(v.MulticastAddr) {
			return tcpip.ErrInvalidOptionValue
		}

		nicID := v.NIC

		// The interface address is considered not-set if it is empty or contains
		// all-zeros. The former represent the zero-value in golang, the latter the
		// same in a setsockopt(IP_ADD_MEMBERSHIP, &ip_mreqn) syscall.
		allZeros := header.IPv4Any
		if len(v.InterfaceAddr) == 0 || v.InterfaceAddr == allZeros {
			if nicID == 0 {
				r, err := e.stack.FindRoute(0, "", v.MulticastAddr, header.IPv4ProtocolNumber, false /* multicastLoop */)
				if err == nil {
					nicID = r.NICID()
					r.Release()
				}
			}
		} else {
			nicID = e.stack.CheckLocalAddress(nicID, e.NetProto, v.InterfaceAddr)
		}
		if nicID == 0 {
			return tcpip.ErrUnknownDevice
		}

		memToInsert := multicastMembership{nicID: nicID, multicastAddr: v.MulticastAddr}

		e.mu.Lock()
		defer e.mu.Unlock()

		for _, mem := range e.multicastMemberships {
			if mem == memToInsert {
				return tcpip.ErrPortInUse
			}
		}

		if err := e.stack.JoinGroup(e.NetProto, nicID, v.MulticastAddr); err != nil {
			return err
		}

		e.multicastMemberships = append(e.multicastMemberships, memToInsert)

	case tcpip.RemoveMembershipOption:
		if !header.IsV4MulticastAddress(v.MulticastAddr) && !header.IsV6MulticastAddress(v.MulticastAddr) {
			return tcpip.ErrInvalidOptionValue
		}

		nicID := v.NIC
		if v.InterfaceAddr == header.IPv4Any {
			if nicID == 0 {
				r, err := e.stack.FindRoute(0, "", v.MulticastAddr, header.IPv4ProtocolNumber, false /* multicastLoop */)
				if err == nil {
					nicID = r.NICID()
					r.Release()
				}
			}
		} else {
			nicID = e.stack.CheckLocalAddress(nicID, e.NetProto, v.InterfaceAddr)
		}
		if nicID == 0 {
			return tcpip.ErrUnknownDevice
		}

		memToRemove := multicastMembership{nicID: nicID, multicastAddr: v.MulticastAddr}
		memToRemoveIndex := -1

		e.mu.Lock()
		defer e.mu.Unlock()

		for i, mem := range e.multicastMemberships {
			if mem == memToRemove {
				memToRemoveIndex = i
				break
			}
		}
		if memToRemoveIndex == -1 {
			return tcpip.ErrBadLocalAddress
		}

		if err := e.stack.LeaveGroup(e.NetProto, nicID, v.MulticastAddr); err != nil {
			return err
		}

		e.multicastMemberships[memToRemoveIndex] = e.multicastMemberships[len(e.multicastMemberships)-1]
		e.multicastMemberships = e.multicastMemberships[:len(e.multicastMemberships)-1]

	case tcpip.MulticastLoopOption:
		e.mu.Lock()
		e.multicastLoop = bool(v)
		e.mu.Unlock()

	case tcpip.ReusePortOption:
		e.mu.Lock()
		e.reusePort = v != 0
		e.mu.Unlock()

	case tcpip.BindToDeviceOption:
		e.mu.Lock()
		defer e.mu.Unlock()
		if v == "" {
			e.bindToDevice = 0
			return nil
		}
		for nicID, nic := range e.stack.NICInfo() {
			if nic.Name == string(v) {
				e.bindToDevice = nicID
				return nil
			}
		}
		return tcpip.ErrUnknownDevice

	case tcpip.BroadcastOption:
		e.mu.Lock()
		e.broadcast = v != 0
		e.mu.Unlock()

		return nil

	case tcpip.IPv4TOSOption:
		e.mu.Lock()
		e.sendTOS = uint8(v)
		e.mu.Unlock()
		return nil

	case tcpip.IPv6TrafficClassOption:
		e.mu.Lock()
		e.sendTOS = uint8(v)
		e.mu.Unlock()
		return nil
	}
	return nil
}

// GetSockOptInt implements tcpip.Endpoint.GetSockOptInt.
func (e *endpoint) GetSockOptInt(opt tcpip.SockOpt) (int, *tcpip.Error) {
	switch opt {
	case tcpip.ReceiveQueueSizeOption:
		v := 0
		e.rcvMu.Lock()
		if !e.rcvList.Empty() {
			p := e.rcvList.Front()
			v = p.data.Size()
		}
		e.rcvMu.Unlock()
		return v, nil

	case tcpip.SendBufferSizeOption:
		e.mu.Lock()
		v := e.sndBufSize
		e.mu.Unlock()
		return v, nil

	case tcpip.ReceiveBufferSizeOption:
		e.rcvMu.Lock()
		v := e.rcvBufSizeMax
		e.rcvMu.Unlock()
		return v, nil
	}

	return -1, tcpip.ErrUnknownProtocolOption
}

// GetSockOpt implements tcpip.Endpoint.GetSockOpt.
func (e *endpoint) GetSockOpt(opt interface{}) *tcpip.Error {
	switch o := opt.(type) {
	case tcpip.ErrorOption:
		return nil

	case *tcpip.V6OnlyOption:
		// We only recognize this option on v6 endpoints.
		if e.NetProto != header.IPv6ProtocolNumber {
			return tcpip.ErrUnknownProtocolOption
		}

		e.mu.Lock()
		v := e.v6only
		e.mu.Unlock()

		*o = 0
		if v {
			*o = 1
		}
		return nil

	case *tcpip.TTLOption:
		e.mu.Lock()
		*o = tcpip.TTLOption(e.ttl)
		e.mu.Unlock()
		return nil

	case *tcpip.MulticastTTLOption:
		e.mu.Lock()
		*o = tcpip.MulticastTTLOption(e.multicastTTL)
		e.mu.Unlock()
		return nil

	case *tcpip.MulticastInterfaceOption:
		e.mu.Lock()
		*o = tcpip.MulticastInterfaceOption{
			e.multicastNICID,
			e.multicastAddr,
		}
		e.mu.Unlock()
		return nil

	case *tcpip.MulticastLoopOption:
		e.mu.RLock()
		v := e.multicastLoop
		e.mu.RUnlock()

		*o = tcpip.MulticastLoopOption(v)
		return nil

	case *tcpip.ReuseAddressOption:
		*o = 0
		return nil

	case *tcpip.ReusePortOption:
		e.mu.RLock()
		v := e.reusePort
		e.mu.RUnlock()

		*o = 0
		if v {
			*o = 1
		}
		return nil

	case *tcpip.BindToDeviceOption:
		e.mu.RLock()
		defer e.mu.RUnlock()
		if nic, ok := e.stack.NICInfo()[e.bindToDevice]; ok {
			*o = tcpip.BindToDeviceOption(nic.Name)
			return nil
		}
		*o = tcpip.BindToDeviceOption("")
		return nil

	case *tcpip.KeepaliveEnabledOption:
		*o = 0
		return nil

	case *tcpip.BroadcastOption:
		e.mu.RLock()
		v := e.broadcast
		e.mu.RUnlock()

		*o = 0
		if v {
			*o = 1
		}
		return nil

	case *tcpip.IPv4TOSOption:
		e.mu.RLock()
		*o = tcpip.IPv4TOSOption(e.sendTOS)
		e.mu.RUnlock()
		return nil

	case *tcpip.IPv6TrafficClassOption:
		e.mu.RLock()
		*o = tcpip.IPv6TrafficClassOption(e.sendTOS)
		e.mu.RUnlock()
		return nil

	default:
		return tcpip.ErrUnknownProtocolOption
	}
}

// sendUDP sends a UDP segment via the provided network endpoint and under the
// provided identity.
func sendUDP(r *stack.Route, data buffer.VectorisedView, localPort, remotePort uint16, ttl uint8, useDefaultTTL bool, tos uint8) *tcpip.Error {
	// Allocate a buffer for the UDP header.
	hdr := buffer.NewPrependable(header.UDPMinimumSize + int(r.MaxHeaderLength()))

	// Initialize the header.
	udp := header.UDP(hdr.Prepend(header.UDPMinimumSize))

	length := uint16(hdr.UsedLength() + data.Size())
	udp.Encode(&header.UDPFields{
		SrcPort: localPort,
		DstPort: remotePort,
		Length:  length,
	})

	// Only calculate the checksum if offloading isn't supported.
	if r.Capabilities()&stack.CapabilityTXChecksumOffload == 0 {
		xsum := r.PseudoHeaderChecksum(ProtocolNumber, length)
		for _, v := range data.Views() {
			xsum = header.Checksum(v, xsum)
		}
		udp.SetChecksum(^udp.CalculateChecksum(xsum))
	}

	if useDefaultTTL {
		ttl = r.DefaultTTL()
	}
	if err := r.WritePacket(nil /* gso */, stack.NetworkHeaderParams{Protocol: ProtocolNumber, TTL: ttl, TOS: tos}, tcpip.PacketBuffer{
		Header:          hdr,
		Data:            data,
		TransportHeader: buffer.View(udp),
	}); err != nil {
		r.Stats().UDP.PacketSendErrors.Increment()
		return err
	}

	// Track count of packets sent.
	r.Stats().UDP.PacketsSent.Increment()
	return nil
}

func (e *endpoint) checkV4Mapped(addr *tcpip.FullAddress, allowMismatch bool) (tcpip.NetworkProtocolNumber, *tcpip.Error) {
	netProto := e.NetProto
	if len(addr.Addr) == 0 {
		return netProto, nil
	}
	if header.IsV4MappedAddress(addr.Addr) {
		// Fail if using a v4 mapped address on a v6only endpoint.
		if e.v6only {
			return 0, tcpip.ErrNoRoute
		}

		netProto = header.IPv4ProtocolNumber
		addr.Addr = addr.Addr[header.IPv6AddressSize-header.IPv4AddressSize:]
		if addr.Addr == header.IPv4Any {
			addr.Addr = ""
		}

		// Fail if we are bound to an IPv6 address.
		if !allowMismatch && len(e.ID.LocalAddress) == 16 {
			return 0, tcpip.ErrNetworkUnreachable
		}
	}

	// Fail if we're bound to an address length different from the one we're
	// checking.
	if l := len(e.ID.LocalAddress); l != 0 && l != len(addr.Addr) {
		return 0, tcpip.ErrInvalidEndpointState
	}

	return netProto, nil
}

// Disconnect implements tcpip.Endpoint.Disconnect.
func (e *endpoint) Disconnect() *tcpip.Error {
	e.mu.Lock()
	defer e.mu.Unlock()

	if e.state != StateConnected {
		return nil
	}
	var (
		id  stack.TransportEndpointID
		btd tcpip.NICID
	)
	// Exclude ephemerally bound endpoints.
	if e.BindNICID != 0 || e.ID.LocalAddress == "" {
		var err *tcpip.Error
		id = stack.TransportEndpointID{
			LocalPort:    e.ID.LocalPort,
			LocalAddress: e.ID.LocalAddress,
		}
		id, btd, err = e.registerWithStack(e.RegisterNICID, e.effectiveNetProtos, id)
		if err != nil {
			return err
		}
		e.state = StateBound
	} else {
		if e.ID.LocalPort != 0 {
			// Release the ephemeral port.
			e.stack.ReleasePort(e.effectiveNetProtos, ProtocolNumber, e.ID.LocalAddress, e.ID.LocalPort, e.boundBindToDevice)
		}
		e.state = StateInitial
	}

	e.stack.UnregisterTransportEndpoint(e.RegisterNICID, e.effectiveNetProtos, ProtocolNumber, e.ID, e, e.boundBindToDevice)
	e.ID = id
	e.boundBindToDevice = btd
	e.route.Release()
	e.route = stack.Route{}
	e.dstPort = 0

	return nil
}

// Connect connects the endpoint to its peer. Specifying a NIC is optional.
func (e *endpoint) Connect(addr tcpip.FullAddress) *tcpip.Error {
	netProto, err := e.checkV4Mapped(&addr, false)
	if err != nil {
		return err
	}
	if addr.Port == 0 {
		// We don't support connecting to port zero.
		return tcpip.ErrInvalidEndpointState
	}

	e.mu.Lock()
	defer e.mu.Unlock()

	nicID := addr.NIC
	var localPort uint16
	switch e.state {
	case StateInitial:
	case StateBound, StateConnected:
		localPort = e.ID.LocalPort
		if e.BindNICID == 0 {
			break
		}

		if nicID != 0 && nicID != e.BindNICID {
			return tcpip.ErrInvalidEndpointState
		}

		nicID = e.BindNICID
	default:
		return tcpip.ErrInvalidEndpointState
	}

	r, nicID, err := e.connectRoute(nicID, addr, netProto)
	if err != nil {
		return err
	}
	defer r.Release()

	id := stack.TransportEndpointID{
		LocalAddress:  e.ID.LocalAddress,
		LocalPort:     localPort,
		RemotePort:    addr.Port,
		RemoteAddress: r.RemoteAddress,
	}

	if e.state == StateInitial {
		id.LocalAddress = r.LocalAddress
	}

	// Even if we're connected, this endpoint can still be used to send
	// packets on a different network protocol, so we register both even if
	// v6only is set to false and this is an ipv6 endpoint.
	netProtos := []tcpip.NetworkProtocolNumber{netProto}
	if netProto == header.IPv6ProtocolNumber && !e.v6only {
		netProtos = []tcpip.NetworkProtocolNumber{
			header.IPv4ProtocolNumber,
			header.IPv6ProtocolNumber,
		}
	}

	id, btd, err := e.registerWithStack(nicID, netProtos, id)
	if err != nil {
		return err
	}

	// Remove the old registration.
	if e.ID.LocalPort != 0 {
		e.stack.UnregisterTransportEndpoint(e.RegisterNICID, e.effectiveNetProtos, ProtocolNumber, e.ID, e, e.boundBindToDevice)
	}

	e.ID = id
	e.boundBindToDevice = btd
	e.route = r.Clone()
	e.dstPort = addr.Port
	e.RegisterNICID = nicID
	e.effectiveNetProtos = netProtos

	e.state = StateConnected

	e.rcvMu.Lock()
	e.rcvReady = true
	e.rcvMu.Unlock()

	return nil
}

// ConnectEndpoint is not supported.
func (*endpoint) ConnectEndpoint(tcpip.Endpoint) *tcpip.Error {
	return tcpip.ErrInvalidEndpointState
}

// Shutdown closes the read and/or write end of the endpoint connection
// to its peer.
func (e *endpoint) Shutdown(flags tcpip.ShutdownFlags) *tcpip.Error {
	e.mu.Lock()
	defer e.mu.Unlock()

	// A socket in the bound state can still receive multicast messages,
	// so we need to notify waiters on shutdown.
	if e.state != StateBound && e.state != StateConnected {
		return tcpip.ErrNotConnected
	}

	e.shutdownFlags |= flags

	if flags&tcpip.ShutdownRead != 0 {
		e.rcvMu.Lock()
		wasClosed := e.rcvClosed
		e.rcvClosed = true
		e.rcvMu.Unlock()

		if !wasClosed {
			e.waiterQueue.Notify(waiter.EventIn)
		}
	}

	return nil
}

// Listen is not supported by UDP, it just fails.
func (*endpoint) Listen(int) *tcpip.Error {
	return tcpip.ErrNotSupported
}

// Accept is not supported by UDP, it just fails.
func (*endpoint) Accept() (tcpip.Endpoint, *waiter.Queue, *tcpip.Error) {
	return nil, nil, tcpip.ErrNotSupported
}

func (e *endpoint) registerWithStack(nicID tcpip.NICID, netProtos []tcpip.NetworkProtocolNumber, id stack.TransportEndpointID) (stack.TransportEndpointID, tcpip.NICID, *tcpip.Error) {
	if e.ID.LocalPort == 0 {
		port, err := e.stack.ReservePort(netProtos, ProtocolNumber, id.LocalAddress, id.LocalPort, e.reusePort, e.bindToDevice)
		if err != nil {
			return id, e.bindToDevice, err
		}
		id.LocalPort = port
	}

	err := e.stack.RegisterTransportEndpoint(nicID, netProtos, ProtocolNumber, id, e, e.reusePort, e.bindToDevice)
	if err != nil {
		e.stack.ReleasePort(netProtos, ProtocolNumber, id.LocalAddress, id.LocalPort, e.bindToDevice)
	}
	return id, e.bindToDevice, err
}

func (e *endpoint) bindLocked(addr tcpip.FullAddress) *tcpip.Error {
	// Don't allow binding once endpoint is not in the initial state
	// anymore.
	if e.state != StateInitial {
		return tcpip.ErrInvalidEndpointState
	}

	netProto, err := e.checkV4Mapped(&addr, true)
	if err != nil {
		return err
	}

	// Expand netProtos to include v4 and v6 if the caller is binding to a
	// wildcard (empty) address, and this is an IPv6 endpoint with v6only
	// set to false.
	netProtos := []tcpip.NetworkProtocolNumber{netProto}
	if netProto == header.IPv6ProtocolNumber && !e.v6only && addr.Addr == "" {
		netProtos = []tcpip.NetworkProtocolNumber{
			header.IPv6ProtocolNumber,
			header.IPv4ProtocolNumber,
		}
	}

	nicID := addr.NIC
	if len(addr.Addr) != 0 && !isBroadcastOrMulticast(addr.Addr) {
		// A local unicast address was specified, verify that it's valid.
		nicID = e.stack.CheckLocalAddress(addr.NIC, netProto, addr.Addr)
		if nicID == 0 {
			return tcpip.ErrBadLocalAddress
		}
	}

	id := stack.TransportEndpointID{
		LocalPort:    addr.Port,
		LocalAddress: addr.Addr,
	}
	id, btd, err := e.registerWithStack(nicID, netProtos, id)
	if err != nil {
		return err
	}

	e.ID = id
	e.boundBindToDevice = btd
	e.RegisterNICID = nicID
	e.effectiveNetProtos = netProtos

	// Mark endpoint as bound.
	e.state = StateBound

	e.rcvMu.Lock()
	e.rcvReady = true
	e.rcvMu.Unlock()

	return nil
}

// Bind binds the endpoint to a specific local address and port.
// Specifying a NIC is optional.
func (e *endpoint) Bind(addr tcpip.FullAddress) *tcpip.Error {
	e.mu.Lock()
	defer e.mu.Unlock()

	err := e.bindLocked(addr)
	if err != nil {
		return err
	}

	// Save the effective NICID generated by bindLocked.
	e.BindNICID = e.RegisterNICID

	return nil
}

// GetLocalAddress returns the address to which the endpoint is bound.
func (e *endpoint) GetLocalAddress() (tcpip.FullAddress, *tcpip.Error) {
	e.mu.RLock()
	defer e.mu.RUnlock()

	return tcpip.FullAddress{
		NIC:  e.RegisterNICID,
		Addr: e.ID.LocalAddress,
		Port: e.ID.LocalPort,
	}, nil
}

// GetRemoteAddress returns the address to which the endpoint is connected.
func (e *endpoint) GetRemoteAddress() (tcpip.FullAddress, *tcpip.Error) {
	e.mu.RLock()
	defer e.mu.RUnlock()

	if e.state != StateConnected {
		return tcpip.FullAddress{}, tcpip.ErrNotConnected
	}

	return tcpip.FullAddress{
		NIC:  e.RegisterNICID,
		Addr: e.ID.RemoteAddress,
		Port: e.ID.RemotePort,
	}, nil
}

// Readiness returns the current readiness of the endpoint. For example, if
// waiter.EventIn is set, the endpoint is immediately readable.
func (e *endpoint) Readiness(mask waiter.EventMask) waiter.EventMask {
	// The endpoint is always writable.
	result := waiter.EventOut & mask

	// Determine if the endpoint is readable if requested.
	if (mask & waiter.EventIn) != 0 {
		e.rcvMu.Lock()
		if !e.rcvList.Empty() || e.rcvClosed {
			result |= waiter.EventIn
		}
		e.rcvMu.Unlock()
	}

	return result
}

// HandlePacket is called by the stack when new packets arrive to this transport
// endpoint.
func (e *endpoint) HandlePacket(r *stack.Route, id stack.TransportEndpointID, pkt tcpip.PacketBuffer) {
	// Get the header then trim it from the view.
	hdr := header.UDP(pkt.Data.First())
	if int(hdr.Length()) > pkt.Data.Size() {
		// Malformed packet.
		e.stack.Stats().UDP.MalformedPacketsReceived.Increment()
		e.stats.ReceiveErrors.MalformedPacketsReceived.Increment()
		return
	}

	pkt.Data.TrimFront(header.UDPMinimumSize)

	e.rcvMu.Lock()
	e.stack.Stats().UDP.PacketsReceived.Increment()
	e.stats.PacketsReceived.Increment()

	// Drop the packet if our buffer is currently full.
	if !e.rcvReady || e.rcvClosed {
		e.rcvMu.Unlock()
		e.stack.Stats().UDP.ReceiveBufferErrors.Increment()
		e.stats.ReceiveErrors.ClosedReceiver.Increment()
		return
	}

	if e.rcvBufSize >= e.rcvBufSizeMax {
		e.rcvMu.Unlock()
		e.stack.Stats().UDP.ReceiveBufferErrors.Increment()
		e.stats.ReceiveErrors.ReceiveBufferOverflow.Increment()
		return
	}

	wasEmpty := e.rcvBufSize == 0

	// Push new packet into receive list and increment the buffer size.
	packet := &udpPacket{
		senderAddress: tcpip.FullAddress{
			NIC:  r.NICID(),
			Addr: id.RemoteAddress,
			Port: hdr.SourcePort(),
		},
	}
	packet.data = pkt.Data
	e.rcvList.PushBack(packet)
	e.rcvBufSize += pkt.Data.Size()

	packet.timestamp = e.stack.NowNanoseconds()

	e.rcvMu.Unlock()

	// Notify any waiters that there's data to be read now.
	if wasEmpty {
		e.waiterQueue.Notify(waiter.EventIn)
	}
}

// HandleControlPacket implements stack.TransportEndpoint.HandleControlPacket.
func (e *endpoint) HandleControlPacket(id stack.TransportEndpointID, typ stack.ControlType, extra uint32, pkt tcpip.PacketBuffer) {
}

// State implements tcpip.Endpoint.State.
func (e *endpoint) State() uint32 {
	e.mu.Lock()
	defer e.mu.Unlock()
	return uint32(e.state)
}

// Info returns a copy of the endpoint info.
func (e *endpoint) Info() tcpip.EndpointInfo {
	e.mu.RLock()
	// Make a copy of the endpoint info.
	ret := e.TransportEndpointInfo
	e.mu.RUnlock()
	return &ret
}

// Stats returns a pointer to the endpoint stats.
func (e *endpoint) Stats() tcpip.EndpointStats {
	return &e.stats
}

// Wait implements tcpip.Endpoint.Wait.
func (*endpoint) Wait() {}

func isBroadcastOrMulticast(a tcpip.Address) bool {
	return a == header.IPv4Broadcast || header.IsV4MulticastAddress(a) || header.IsV6MulticastAddress(a)
}