1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
|
// Copyright 2016 The Netstack Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package tcp
import (
"math"
"time"
"gvisor.googlesource.com/gvisor/pkg/sleep"
"gvisor.googlesource.com/gvisor/pkg/tcpip"
"gvisor.googlesource.com/gvisor/pkg/tcpip/buffer"
"gvisor.googlesource.com/gvisor/pkg/tcpip/header"
"gvisor.googlesource.com/gvisor/pkg/tcpip/seqnum"
)
const (
// minRTO is the minimum allowed value for the retransmit timeout.
minRTO = 200 * time.Millisecond
// InitialCwnd is the initial congestion window.
InitialCwnd = 10
)
// sender holds the state necessary to send TCP segments.
type sender struct {
ep *endpoint
// lastSendTime is the timestamp when the last packet was sent.
lastSendTime time.Time
// dupAckCount is the number of duplicated acks received. It is used for
// fast retransmit.
dupAckCount int
// fr holds state related to fast recovery.
fr fastRecovery
// sndCwnd is the congestion window, in packets.
sndCwnd int
// sndSsthresh is the threshold between slow start and congestion
// avoidance.
sndSsthresh int
// sndCAAckCount is the number of packets acknowledged during congestion
// avoidance. When enough packets have been ack'd (typically cwnd
// packets), the congestion window is incremented by one.
sndCAAckCount int
// outstanding is the number of outstanding packets, that is, packets
// that have been sent but not yet acknowledged.
outstanding int
// sndWnd is the send window size.
sndWnd seqnum.Size
// sndUna is the next unacknowledged sequence number.
sndUna seqnum.Value
// sndNxt is the sequence number of the next segment to be sent.
sndNxt seqnum.Value
// sndNxtList is the sequence number of the next segment to be added to
// the send list.
sndNxtList seqnum.Value
// rttMeasureSeqNum is the sequence number being used for the latest RTT
// measurement.
rttMeasureSeqNum seqnum.Value
// rttMeasureTime is the time when the rttMeasureSeqNum was sent.
rttMeasureTime time.Time
closed bool
writeNext *segment
writeList segmentList
resendTimer timer `state:"nosave"`
resendWaker sleep.Waker `state:"nosave"`
// srtt, rttvar & rto are the "smoothed round-trip time", "round-trip
// time variation" and "retransmit timeout", as defined in section 2 of
// RFC 6298.
srtt time.Duration
rttvar time.Duration
rto time.Duration
srttInited bool
// maxPayloadSize is the maximum size of the payload of a given segment.
// It is initialized on demand.
maxPayloadSize int
// sndWndScale is the number of bits to shift left when reading the send
// window size from a segment.
sndWndScale uint8
// maxSentAck is the maxium acknowledgement actually sent.
maxSentAck seqnum.Value
}
// fastRecovery holds information related to fast recovery from a packet loss.
type fastRecovery struct {
// active whether the endpoint is in fast recovery. The following fields
// are only meaningful when active is true.
active bool
// first and last represent the inclusive sequence number range being
// recovered.
first seqnum.Value
last seqnum.Value
// maxCwnd is the maximum value the congestion window may be inflated to
// due to duplicate acks. This exists to avoid attacks where the
// receiver intentionally sends duplicate acks to artificially inflate
// the sender's cwnd.
maxCwnd int
}
func newSender(ep *endpoint, iss, irs seqnum.Value, sndWnd seqnum.Size, mss uint16, sndWndScale int) *sender {
s := &sender{
ep: ep,
sndCwnd: InitialCwnd,
sndSsthresh: math.MaxInt64,
sndWnd: sndWnd,
sndUna: iss + 1,
sndNxt: iss + 1,
sndNxtList: iss + 1,
rto: 1 * time.Second,
rttMeasureSeqNum: iss + 1,
lastSendTime: time.Now(),
maxPayloadSize: int(mss),
maxSentAck: irs + 1,
fr: fastRecovery{
// See: https://tools.ietf.org/html/rfc6582#section-3.2 Step 1.
last: iss,
},
}
// A negative sndWndScale means that no scaling is in use, otherwise we
// store the scaling value.
if sndWndScale > 0 {
s.sndWndScale = uint8(sndWndScale)
}
s.updateMaxPayloadSize(int(ep.route.MTU()), 0)
s.resendTimer.init(&s.resendWaker)
return s
}
// updateMaxPayloadSize updates the maximum payload size based on the given
// MTU. If this is in response to "packet too big" control packets (indicated
// by the count argument), it also reduces the number of outstanding packets and
// attempts to retransmit the first packet above the MTU size.
func (s *sender) updateMaxPayloadSize(mtu, count int) {
m := mtu - header.TCPMinimumSize
// Calculate the maximum option size.
var maxSackBlocks [header.TCPMaxSACKBlocks]header.SACKBlock
options := s.ep.makeOptions(maxSackBlocks[:])
m -= len(options)
putOptions(options)
// We don't adjust up for now.
if m >= s.maxPayloadSize {
return
}
// Make sure we can transmit at least one byte.
if m <= 0 {
m = 1
}
s.maxPayloadSize = m
s.outstanding -= count
if s.outstanding < 0 {
s.outstanding = 0
}
// Rewind writeNext to the first segment exceeding the MTU. Do nothing
// if it is already before such a packet.
for seg := s.writeList.Front(); seg != nil; seg = seg.Next() {
if seg == s.writeNext {
// We got to writeNext before we could find a segment
// exceeding the MTU.
break
}
if seg.data.Size() > m {
// We found a segment exceeding the MTU. Rewind
// writeNext and try to retransmit it.
s.writeNext = seg
break
}
}
// Since we likely reduced the number of outstanding packets, we may be
// ready to send some more.
s.sendData()
}
// sendAck sends an ACK segment.
func (s *sender) sendAck() {
s.sendSegment(nil, flagAck, s.sndNxt)
}
// updateRTO updates the retransmit timeout when a new roud-trip time is
// available. This is done in accordance with section 2 of RFC 6298.
func (s *sender) updateRTO(rtt time.Duration) {
if !s.srttInited {
s.rttvar = rtt / 2
s.srtt = rtt
s.srttInited = true
} else {
diff := s.srtt - rtt
if diff < 0 {
diff = -diff
}
s.rttvar = (3*s.rttvar + diff) / 4
s.srtt = (7*s.srtt + rtt) / 8
}
s.rto = s.srtt + 4*s.rttvar
if s.rto < minRTO {
s.rto = minRTO
}
}
// resendSegment resends the first unacknowledged segment.
func (s *sender) resendSegment() {
// Don't use any segments we already sent to measure RTT as they may
// have been affected by packets being lost.
s.rttMeasureSeqNum = s.sndNxt
// Resend the segment.
if seg := s.writeList.Front(); seg != nil {
s.sendSegment(&seg.data, seg.flags, seg.sequenceNumber)
}
}
// reduceSlowStartThreshold reduces the slow-start threshold per RFC 5681,
// page 6, eq. 4. It is called when we detect congestion in the network.
func (s *sender) reduceSlowStartThreshold() {
s.sndSsthresh = s.outstanding / 2
if s.sndSsthresh < 2 {
s.sndSsthresh = 2
}
}
// retransmitTimerExpired is called when the retransmit timer expires, and
// unacknowledged segments are assumed lost, and thus need to be resent.
// Returns true if the connection is still usable, or false if the connection
// is deemed lost.
func (s *sender) retransmitTimerExpired() bool {
// Check if the timer actually expired or if it's a spurious wake due
// to a previously orphaned runtime timer.
if !s.resendTimer.checkExpiration() {
return true
}
// Give up if we've waited more than a minute since the last resend.
if s.rto >= 60*time.Second {
return false
}
// Set new timeout. The timer will be restarted by the call to sendData
// below.
s.rto *= 2
if s.fr.active {
// We were attempting fast recovery but were not successful.
// Leave the state. We don't need to update ssthresh because it
// has already been updated when entered fast-recovery.
s.leaveFastRecovery()
}
// See: https://tools.ietf.org/html/rfc6582#section-3.2 Step 4.
// We store the highest sequence number transmitted in cases where
// we were not in fast recovery.
s.fr.last = s.sndNxt - 1
// We lost a packet, so reduce ssthresh.
s.reduceSlowStartThreshold()
// Reduce the congestion window to 1, i.e., enter slow-start. Per
// RFC 5681, page 7, we must use 1 regardless of the value of the
// initial congestion window.
s.sndCwnd = 1
// Mark the next segment to be sent as the first unacknowledged one and
// start sending again. Set the number of outstanding packets to 0 so
// that we'll be able to retransmit.
//
// We'll keep on transmitting (or retransmitting) as we get acks for
// the data we transmit.
s.outstanding = 0
s.writeNext = s.writeList.Front()
s.sendData()
return true
}
// sendData sends new data segments. It is called when data becomes available or
// when the send window opens up.
func (s *sender) sendData() {
limit := s.maxPayloadSize
// Reduce the congestion window to min(IW, cwnd) per RFC 5681, page 10.
// "A TCP SHOULD set cwnd to no more than RW before beginning
// transmission if the TCP has not sent data in the interval exceeding
// the retrasmission timeout."
if !s.fr.active && time.Now().Sub(s.lastSendTime) > s.rto {
if s.sndCwnd > InitialCwnd {
s.sndCwnd = InitialCwnd
}
}
// TODO: We currently don't merge multiple send buffers
// into one segment if they happen to fit. We should do that
// eventually.
var seg *segment
end := s.sndUna.Add(s.sndWnd)
for seg = s.writeNext; seg != nil && s.outstanding < s.sndCwnd; seg = seg.Next() {
// We abuse the flags field to determine if we have already
// assigned a sequence number to this segment.
if seg.flags == 0 {
seg.sequenceNumber = s.sndNxt
seg.flags = flagAck | flagPsh
}
var segEnd seqnum.Value
if seg.data.Size() == 0 {
seg.flags = flagAck
s.ep.rcvListMu.Lock()
rcvBufUsed := s.ep.rcvBufUsed
s.ep.rcvListMu.Unlock()
s.ep.mu.Lock()
// We're sending a FIN by default
fl := flagFin
segEnd = seg.sequenceNumber
if (s.ep.shutdownFlags&tcpip.ShutdownRead) != 0 && rcvBufUsed > 0 {
// If there is unread data we must send a RST.
// For more information see RFC 2525 section 2.17.
fl = flagRst
} else {
segEnd = seg.sequenceNumber.Add(1)
}
s.ep.mu.Unlock()
seg.flags |= uint8(fl)
} else {
// We're sending a non-FIN segment.
if !seg.sequenceNumber.LessThan(end) {
break
}
available := int(seg.sequenceNumber.Size(end))
if available > limit {
available = limit
}
if seg.data.Size() > available {
// Split this segment up.
nSeg := seg.clone()
nSeg.data.TrimFront(available)
nSeg.sequenceNumber.UpdateForward(seqnum.Size(available))
s.writeList.InsertAfter(seg, nSeg)
seg.data.CapLength(available)
}
s.outstanding++
segEnd = seg.sequenceNumber.Add(seqnum.Size(seg.data.Size()))
}
s.sendSegment(&seg.data, seg.flags, seg.sequenceNumber)
// Update sndNxt if we actually sent new data (as opposed to
// retransmitting some previously sent data).
if s.sndNxt.LessThan(segEnd) {
s.sndNxt = segEnd
}
}
// Remember the next segment we'll write.
s.writeNext = seg
// Enable the timer if we have pending data and it's not enabled yet.
if !s.resendTimer.enabled() && s.sndUna != s.sndNxt {
s.resendTimer.enable(s.rto)
}
}
func (s *sender) enterFastRecovery() {
// Save state to reflect we're now in fast recovery.
s.reduceSlowStartThreshold()
// Save state to reflect we're now in fast recovery.
// See : https://tools.ietf.org/html/rfc5681#section-3.2 Step 3.
// We inflat the cwnd by 3 to account for the 3 packets which triggered
// the 3 duplicate ACKs and are now not in flight.
s.sndCwnd = s.sndSsthresh + 3
s.fr.first = s.sndUna
s.fr.last = s.sndNxt - 1
s.fr.maxCwnd = s.sndCwnd + s.outstanding
s.fr.active = true
}
func (s *sender) leaveFastRecovery() {
s.fr.active = false
s.fr.first = 0
s.fr.last = s.sndNxt - 1
s.fr.maxCwnd = 0
s.dupAckCount = 0
// Deflate cwnd. It had been artificially inflated when new dups arrived.
s.sndCwnd = s.sndSsthresh
}
// checkDuplicateAck is called when an ack is received. It manages the state
// related to duplicate acks and determines if a retransmit is needed according
// to the rules in RFC 6582 (NewReno).
func (s *sender) checkDuplicateAck(seg *segment) bool {
ack := seg.ackNumber
if s.fr.active {
// We are in fast recovery mode. Ignore the ack if it's out of
// range.
if !ack.InRange(s.sndUna, s.sndNxt+1) {
return false
}
// Leave fast recovery if it acknowledges all the data covered by
// this fast recovery session.
if s.fr.last.LessThan(ack) {
s.leaveFastRecovery()
return false
}
// Don't count this as a duplicate if it is carrying data or
// updating the window.
if seg.logicalLen() != 0 || s.sndWnd != seg.window {
return false
}
// Inflate the congestion window if we're getting duplicate acks
// for the packet we retransmitted.
if ack == s.fr.first {
// We received a dup, inflate the congestion window by 1
// packet if we're not at the max yet.
if s.sndCwnd < s.fr.maxCwnd {
s.sndCwnd++
}
return false
}
// A partial ack was received. Retransmit this packet and
// remember it so that we don't retransmit it again. We don't
// inflate the window because we're putting the same packet back
// onto the wire.
//
// N.B. The retransmit timer will be reset by the caller.
s.fr.first = ack
return true
}
// We're not in fast recovery yet. A segment is considered a duplicate
// only if it doesn't carry any data and doesn't update the send window,
// because if it does, it wasn't sent in response to an out-of-order
// segment.
if ack != s.sndUna || seg.logicalLen() != 0 || s.sndWnd != seg.window || ack == s.sndNxt {
s.dupAckCount = 0
return false
}
// Enter fast recovery when we reach 3 dups.
s.dupAckCount++
if s.dupAckCount != 3 {
return false
}
// See: https://tools.ietf.org/html/rfc6582#section-3.2 Step 2
//
// We only do the check here, the incrementing of last to the highest
// sequence number transmitted till now is done when enterFastRecovery
// is invoked.
if !s.fr.last.LessThan(seg.ackNumber) {
s.dupAckCount = 0
return false
}
s.enterFastRecovery()
s.dupAckCount = 0
return true
}
// updateCwnd updates the congestion window based on the number of packets that
// were acknowledged.
func (s *sender) updateCwnd(packetsAcked int) {
if s.sndCwnd < s.sndSsthresh {
// Don't let the congestion window cross into the congestion
// avoidance range.
newcwnd := s.sndCwnd + packetsAcked
if newcwnd >= s.sndSsthresh {
newcwnd = s.sndSsthresh
s.sndCAAckCount = 0
}
packetsAcked -= newcwnd - s.sndCwnd
s.sndCwnd = newcwnd
if packetsAcked == 0 {
// We've consumed all ack'd packets.
return
}
}
// Consume the packets in congestion avoidance mode.
s.sndCAAckCount += packetsAcked
if s.sndCAAckCount >= s.sndCwnd {
s.sndCwnd += s.sndCAAckCount / s.sndCwnd
s.sndCAAckCount = s.sndCAAckCount % s.sndCwnd
}
}
// handleRcvdSegment is called when a segment is received; it is responsible for
// updating the send-related state.
func (s *sender) handleRcvdSegment(seg *segment) {
// Check if we can extract an RTT measurement from this ack.
if s.rttMeasureSeqNum.LessThan(seg.ackNumber) {
s.updateRTO(time.Now().Sub(s.rttMeasureTime))
s.rttMeasureSeqNum = s.sndNxt
}
// Update Timestamp if required. See RFC7323, section-4.3.
s.ep.updateRecentTimestamp(seg.parsedOptions.TSVal, s.maxSentAck, seg.sequenceNumber)
// Count the duplicates and do the fast retransmit if needed.
rtx := s.checkDuplicateAck(seg)
// Stash away the current window size.
s.sndWnd = seg.window
// Ignore ack if it doesn't acknowledge any new data.
ack := seg.ackNumber
if (ack - 1).InRange(s.sndUna, s.sndNxt) {
// When an ack is received we must reset the timer. We stop it
// here and it will be restarted later if needed.
s.resendTimer.disable()
// Remove all acknowledged data from the write list.
acked := s.sndUna.Size(ack)
s.sndUna = ack
ackLeft := acked
originalOutstanding := s.outstanding
for ackLeft > 0 {
// We use logicalLen here because we can have FIN
// segments (which are always at the end of list) that
// have no data, but do consume a sequence number.
seg := s.writeList.Front()
datalen := seg.logicalLen()
if datalen > ackLeft {
seg.data.TrimFront(int(ackLeft))
break
}
if s.writeNext == seg {
s.writeNext = seg.Next()
}
s.writeList.Remove(seg)
s.outstanding--
seg.decRef()
ackLeft -= datalen
}
// Update the send buffer usage and notify potential waiters.
s.ep.updateSndBufferUsage(int(acked))
// If we are not in fast recovery then update the congestion
// window based on the number of acknowledged packets.
if !s.fr.active {
s.updateCwnd(originalOutstanding - s.outstanding)
}
// It is possible for s.outstanding to drop below zero if we get
// a retransmit timeout, reset outstanding to zero but later
// get an ack that cover previously sent data.
if s.outstanding < 0 {
s.outstanding = 0
}
}
// Now that we've popped all acknowledged data from the retransmit
// queue, retransmit if needed.
if rtx {
s.resendSegment()
}
// Send more data now that some of the pending data has been ack'd, or
// that the window opened up, or the congestion window was inflated due
// to a duplicate ack during fast recovery. This will also re-enable
// the retransmit timer if needed.
s.sendData()
}
// sendSegment sends a new segment containing the given payload, flags and
// sequence number.
func (s *sender) sendSegment(data *buffer.VectorisedView, flags byte, seq seqnum.Value) *tcpip.Error {
s.lastSendTime = time.Now()
if seq == s.rttMeasureSeqNum {
s.rttMeasureTime = s.lastSendTime
}
rcvNxt, rcvWnd := s.ep.rcv.getSendParams()
// Remember the max sent ack.
s.maxSentAck = rcvNxt
if data == nil {
return s.ep.sendRaw(nil, flags, seq, rcvNxt, rcvWnd)
}
if len(data.Views()) > 1 {
panic("send path does not support views with multiple buffers")
}
return s.ep.sendRaw(data.First(), flags, seq, rcvNxt, rcvWnd)
}
|