summaryrefslogtreecommitdiffhomepage
path: root/pkg/tcpip/transport/tcp/rcv.go
blob: 661ca604a945e24573674d99c86971e64c665cda (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package tcp

import (
	"container/heap"
	"math"

	"gvisor.dev/gvisor/pkg/tcpip"
	"gvisor.dev/gvisor/pkg/tcpip/header"
	"gvisor.dev/gvisor/pkg/tcpip/seqnum"
	"gvisor.dev/gvisor/pkg/tcpip/stack"
)

// receiver holds the state necessary to receive TCP segments and turn them
// into a stream of bytes.
//
// +stateify savable
type receiver struct {
	stack.TCPReceiverState
	ep *endpoint

	// rcvWnd is the non-scaled receive window last advertised to the peer.
	rcvWnd seqnum.Size

	// rcvWUP is the RcvNxt value at the last window update sent.
	rcvWUP seqnum.Value

	// prevBufused is the snapshot of endpoint rcvBufUsed taken when we
	// advertise a receive window.
	prevBufUsed int

	closed bool

	// pendingRcvdSegments is bounded by the receive buffer size of the
	// endpoint.
	pendingRcvdSegments segmentHeap

	// Time when the last ack was received.
	lastRcvdAckTime tcpip.MonotonicTime
}

func newReceiver(ep *endpoint, irs seqnum.Value, rcvWnd seqnum.Size, rcvWndScale uint8) *receiver {
	return &receiver{
		ep: ep,
		TCPReceiverState: stack.TCPReceiverState{
			RcvNxt:      irs + 1,
			RcvAcc:      irs.Add(rcvWnd + 1),
			RcvWndScale: rcvWndScale,
		},
		rcvWnd:          rcvWnd,
		rcvWUP:          irs + 1,
		lastRcvdAckTime: ep.stack.Clock().NowMonotonic(),
	}
}

// acceptable checks if the segment sequence number range is acceptable
// according to the table on page 26 of RFC 793.
func (r *receiver) acceptable(segSeq seqnum.Value, segLen seqnum.Size) bool {
	// r.rcvWnd could be much larger than the window size we advertised in our
	// outgoing packets, we should use what we have advertised for acceptability
	// test.
	scaledWindowSize := r.rcvWnd >> r.RcvWndScale
	if scaledWindowSize > math.MaxUint16 {
		// This is what we actually put in the Window field.
		scaledWindowSize = math.MaxUint16
	}
	advertisedWindowSize := scaledWindowSize << r.RcvWndScale
	return header.Acceptable(segSeq, segLen, r.RcvNxt, r.RcvNxt.Add(advertisedWindowSize))
}

// currentWindow returns the available space in the window that was advertised
// last to our peer.
func (r *receiver) currentWindow() (curWnd seqnum.Size) {
	endOfWnd := r.rcvWUP.Add(r.rcvWnd)
	if endOfWnd.LessThan(r.RcvNxt) {
		// return 0 if r.RcvNxt is past the end of the previously advertised window.
		// This can happen because we accept a large segment completely even if
		// accepting it causes it to partially exceed the advertised window.
		return 0
	}
	return r.RcvNxt.Size(endOfWnd)
}

// getSendParams returns the parameters needed by the sender when building
// segments to send.
func (r *receiver) getSendParams() (RcvNxt seqnum.Value, rcvWnd seqnum.Size) {
	newWnd := r.ep.selectWindow()
	curWnd := r.currentWindow()
	unackLen := int(r.ep.snd.MaxSentAck.Size(r.RcvNxt))
	bufUsed := r.ep.receiveBufferUsed()

	// Grow the right edge of the window only for payloads larger than the
	// the segment overhead OR if the application is actively consuming data.
	//
	// Avoiding growing the right edge otherwise, addresses a situation below:
	// An application has been slow in reading data and we have burst of
	// incoming segments lengths < segment overhead. Here, our available free
	// memory would reduce drastically when compared to the advertised receive
	// window.
	//
	// For example: With incoming 512 bytes segments, segment overhead of
	// 552 bytes (at the time of writing this comment), with receive window
	// starting from 1MB and with rcvAdvWndScale being 1, buffer would reach 0
	// when the curWnd is still 19436 bytes, because for every incoming segment
	// newWnd would reduce by (552+512) >> rcvAdvWndScale (current value 1),
	// while curWnd would reduce by 512 bytes.
	// Such a situation causes us to keep tail dropping the incoming segments
	// and never advertise zero receive window to the peer.
	//
	// Linux does a similar check for minimal sk_buff size (128):
	// https://github.com/torvalds/linux/blob/d5beb3140f91b1c8a3d41b14d729aefa4dcc58bc/net/ipv4/tcp_input.c#L783
	//
	// Also, if the application is reading the data, we keep growing the right
	// edge, as we are still advertising a window that we think can be serviced.
	toGrow := unackLen >= SegSize || bufUsed <= r.prevBufUsed

	// Update RcvAcc only if new window is > previously advertised window. We
	// should never shrink the acceptable sequence space once it has been
	// advertised the peer. If we shrink the acceptable sequence space then we
	// would end up dropping bytes that might already be in flight.
	// ====================================================  sequence space.
	// ^             ^               ^                   ^
	// rcvWUP       RcvNxt         RcvAcc          new RcvAcc
	//               <=====curWnd ===>
	//               <========= newWnd > curWnd ========= >
	if r.RcvNxt.Add(curWnd).LessThan(r.RcvNxt.Add(newWnd)) && toGrow {
		// If the new window moves the right edge, then update RcvAcc.
		r.RcvAcc = r.RcvNxt.Add(newWnd)
	} else {
		if newWnd == 0 {
			// newWnd is zero but we can't advertise a zero as it would cause window
			// to shrink so just increment a metric to record this event.
			r.ep.stats.ReceiveErrors.WantZeroRcvWindow.Increment()
		}
		newWnd = curWnd
	}

	// Apply silly-window avoidance when recovering from zero-window situation.
	// Keep advertising zero receive window up until the new window reaches a
	// threshold.
	if r.rcvWnd == 0 && newWnd != 0 {
		r.ep.rcvQueueInfo.rcvQueueMu.Lock()
		if crossed, above := r.ep.windowCrossedACKThresholdLocked(int(newWnd), int(r.ep.ops.GetReceiveBufferSize())); !crossed && !above {
			newWnd = 0
		}
		r.ep.rcvQueueInfo.rcvQueueMu.Unlock()
	}

	// Stash away the non-scaled receive window as we use it for measuring
	// receiver's estimated RTT.
	r.rcvWnd = newWnd
	r.rcvWUP = r.RcvNxt
	r.prevBufUsed = bufUsed
	scaledWnd := r.rcvWnd >> r.RcvWndScale
	if scaledWnd == 0 {
		// Increment a metric if we are advertising an actual zero window.
		r.ep.stats.ReceiveErrors.ZeroRcvWindowState.Increment()
	}

	// If we started off with a window larger than what can he held in
	// the 16bit window field, we ceil the value to the max value.
	if scaledWnd > math.MaxUint16 {
		scaledWnd = seqnum.Size(math.MaxUint16)

		// Ensure that the stashed receive window always reflects what
		// is being advertised.
		r.rcvWnd = scaledWnd << r.RcvWndScale
	}
	return r.RcvNxt, scaledWnd
}

// nonZeroWindow is called when the receive window grows from zero to nonzero;
// in such cases we may need to send an ack to indicate to our peer that it can
// resume sending data.
func (r *receiver) nonZeroWindow() {
	// Immediately send an ack.
	r.ep.snd.sendAck()
}

// consumeSegment attempts to consume a segment that was received by r. The
// segment may have just been received or may have been received earlier but
// wasn't ready to be consumed then.
//
// Returns true if the segment was consumed, false if it cannot be consumed
// yet because of a missing segment.
func (r *receiver) consumeSegment(s *segment, segSeq seqnum.Value, segLen seqnum.Size) bool {
	if segLen > 0 {
		// If the segment doesn't include the seqnum we're expecting to
		// consume now, we're missing a segment. We cannot proceed until
		// we receive that segment though.
		if !r.RcvNxt.InWindow(segSeq, segLen) {
			return false
		}

		// Trim segment to eliminate already acknowledged data.
		if segSeq.LessThan(r.RcvNxt) {
			diff := segSeq.Size(r.RcvNxt)
			segLen -= diff
			segSeq.UpdateForward(diff)
			s.sequenceNumber.UpdateForward(diff)
			s.data.TrimFront(int(diff))
		}

		// Move segment to ready-to-deliver list. Wakeup any waiters.
		r.ep.readyToRead(s)

	} else if segSeq != r.RcvNxt {
		return false
	}

	// Update the segment that we're expecting to consume.
	r.RcvNxt = segSeq.Add(segLen)

	// In cases of a misbehaving sender which could send more than the
	// advertised window, we could end up in a situation where we get a
	// segment that exceeds the window advertised. Instead of partially
	// accepting the segment and discarding bytes beyond the advertised
	// window, we accept the whole segment and make sure r.RcvAcc is moved
	// forward to match r.RcvNxt to indicate that the window is now closed.
	//
	// In absence of this check the r.acceptable() check fails and accepts
	// segments that should be dropped because rcvWnd is calculated as
	// the size of the interval (RcvNxt, RcvAcc] which becomes extremely
	// large if RcvAcc is ever less than RcvNxt.
	if r.RcvAcc.LessThan(r.RcvNxt) {
		r.RcvAcc = r.RcvNxt
	}

	// Trim SACK Blocks to remove any SACK information that covers
	// sequence numbers that have been consumed.
	TrimSACKBlockList(&r.ep.sack, r.RcvNxt)

	// Handle FIN or FIN-ACK.
	if s.flags.Contains(header.TCPFlagFin) {
		r.RcvNxt++

		// Send ACK immediately.
		r.ep.snd.sendAck()

		// Tell any readers that no more data will come.
		r.closed = true
		r.ep.readyToRead(nil)

		// We just received a FIN, our next state depends on whether we sent a
		// FIN already or not.
		switch r.ep.EndpointState() {
		case StateEstablished:
			r.ep.setEndpointState(StateCloseWait)
		case StateFinWait1:
			if s.flags.Contains(header.TCPFlagAck) && s.ackNumber == r.ep.snd.SndNxt {
				// FIN-ACK, transition to TIME-WAIT.
				r.ep.setEndpointState(StateTimeWait)
			} else {
				// Simultaneous close, expecting a final ACK.
				r.ep.setEndpointState(StateClosing)
			}
		case StateFinWait2:
			r.ep.setEndpointState(StateTimeWait)
		}

		// Flush out any pending segments, except the very first one if
		// it happens to be the one we're handling now because the
		// caller is using it.
		first := 0
		if len(r.pendingRcvdSegments) != 0 && r.pendingRcvdSegments[0] == s {
			first = 1
		}

		for i := first; i < len(r.pendingRcvdSegments); i++ {
			r.PendingBufUsed -= r.pendingRcvdSegments[i].segMemSize()
			r.pendingRcvdSegments[i].decRef()

			// Note that slice truncation does not allow garbage collection of
			// truncated items, thus truncated items must be set to nil to avoid
			// memory leaks.
			r.pendingRcvdSegments[i] = nil
		}
		r.pendingRcvdSegments = r.pendingRcvdSegments[:first]

		return true
	}

	// Handle ACK (not FIN-ACK, which we handled above) during one of the
	// shutdown states.
	if s.flags.Contains(header.TCPFlagAck) && s.ackNumber == r.ep.snd.SndNxt {
		switch r.ep.EndpointState() {
		case StateFinWait1:
			r.ep.setEndpointState(StateFinWait2)
			// Notify protocol goroutine that we have received an
			// ACK to our FIN so that it can start the FIN_WAIT2
			// timer to abort connection if the other side does
			// not close within 2MSL.
			r.ep.notifyProtocolGoroutine(notifyClose)
		case StateClosing:
			r.ep.setEndpointState(StateTimeWait)
		case StateLastAck:
			r.ep.transitionToStateCloseLocked()
		}
	}

	return true
}

// updateRTT updates the receiver RTT measurement based on the sequence number
// of the received segment.
func (r *receiver) updateRTT() {
	// From: https://public.lanl.gov/radiant/pubs/drs/sc2001-poster.pdf
	//
	// A system that is only transmitting acknowledgements can still
	// estimate the round-trip time by observing the time between when a byte
	// is first acknowledged and the receipt of data that is at least one
	// window beyond the sequence number that was acknowledged.
	r.ep.rcvQueueInfo.rcvQueueMu.Lock()
	if r.ep.rcvQueueInfo.RcvAutoParams.RTTMeasureTime == (tcpip.MonotonicTime{}) {
		// New measurement.
		r.ep.rcvQueueInfo.RcvAutoParams.RTTMeasureTime = r.ep.stack.Clock().NowMonotonic()
		r.ep.rcvQueueInfo.RcvAutoParams.RTTMeasureSeqNumber = r.RcvNxt.Add(r.rcvWnd)
		r.ep.rcvQueueInfo.rcvQueueMu.Unlock()
		return
	}
	if r.RcvNxt.LessThan(r.ep.rcvQueueInfo.RcvAutoParams.RTTMeasureSeqNumber) {
		r.ep.rcvQueueInfo.rcvQueueMu.Unlock()
		return
	}
	rtt := r.ep.stack.Clock().NowMonotonic().Sub(r.ep.rcvQueueInfo.RcvAutoParams.RTTMeasureTime)
	// We only store the minimum observed RTT here as this is only used in
	// absence of a SRTT available from either timestamps or a sender
	// measurement of RTT.
	if r.ep.rcvQueueInfo.RcvAutoParams.RTT == 0 || rtt < r.ep.rcvQueueInfo.RcvAutoParams.RTT {
		r.ep.rcvQueueInfo.RcvAutoParams.RTT = rtt
	}
	r.ep.rcvQueueInfo.RcvAutoParams.RTTMeasureTime = r.ep.stack.Clock().NowMonotonic()
	r.ep.rcvQueueInfo.RcvAutoParams.RTTMeasureSeqNumber = r.RcvNxt.Add(r.rcvWnd)
	r.ep.rcvQueueInfo.rcvQueueMu.Unlock()
}

func (r *receiver) handleRcvdSegmentClosing(s *segment, state EndpointState, closed bool) (drop bool, err tcpip.Error) {
	r.ep.rcvQueueInfo.rcvQueueMu.Lock()
	rcvClosed := r.ep.rcvQueueInfo.RcvClosed || r.closed
	r.ep.rcvQueueInfo.rcvQueueMu.Unlock()

	// If we are in one of the shutdown states then we need to do
	// additional checks before we try and process the segment.
	switch state {
	case StateCloseWait, StateClosing, StateLastAck:
		if !s.sequenceNumber.LessThanEq(r.RcvNxt) {
			// Just drop the segment as we have
			// already received a FIN and this
			// segment is after the sequence number
			// for the FIN.
			return true, nil
		}
		fallthrough
	case StateFinWait1, StateFinWait2:
		// If the ACK acks something not yet sent then we send an ACK.
		//
		// RFC793, page 37: If the connection is in a synchronized state,
		// (ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK,
		// TIME-WAIT), any unacceptable segment (out of window sequence number
		// or unacceptable acknowledgment number) must elicit only an empty
		// acknowledgment segment containing the current send-sequence number
		// and an acknowledgment indicating the next sequence number expected
		// to be received, and the connection remains in the same state.
		//
		// Just as on Linux, we do not apply this behavior when state is
		// ESTABLISHED.
		// Linux receive processing for all states except ESTABLISHED and
		// TIME_WAIT is here where if the ACK check fails, we attempt to
		// reply back with an ACK with correct seq/ack numbers.
		// https://github.com/torvalds/linux/blob/v5.8/net/ipv4/tcp_input.c#L6186
		// The ESTABLISHED state processing is here where if the ACK check
		// fails, we ignore the packet:
		// https://github.com/torvalds/linux/blob/v5.8/net/ipv4/tcp_input.c#L5591
		if r.ep.snd.SndNxt.LessThan(s.ackNumber) {
			r.ep.snd.maybeSendOutOfWindowAck(s)
			return true, nil
		}

		// If we are closed for reads (either due to an
		// incoming FIN or the user calling shutdown(..,
		// SHUT_RD) then any data past the RcvNxt should
		// trigger a RST.
		endDataSeq := s.sequenceNumber.Add(seqnum.Size(s.data.Size()))
		if state != StateCloseWait && rcvClosed && r.RcvNxt.LessThan(endDataSeq) {
			return true, &tcpip.ErrConnectionAborted{}
		}
		if state == StateFinWait1 {
			break
		}

		// If it's a retransmission of an old data segment
		// or a pure ACK then allow it.
		if s.sequenceNumber.Add(s.logicalLen()).LessThanEq(r.RcvNxt) ||
			s.logicalLen() == 0 {
			break
		}

		// In FIN-WAIT2 if the socket is fully
		// closed(not owned by application on our end
		// then the only acceptable segment is a
		// FIN. Since FIN can technically also carry
		// data we verify that the segment carrying a
		// FIN ends at exactly e.RcvNxt+1.
		//
		// From RFC793 page 25.
		//
		// For sequence number purposes, the SYN is
		// considered to occur before the first actual
		// data octet of the segment in which it occurs,
		// while the FIN is considered to occur after
		// the last actual data octet in a segment in
		// which it occurs.
		if closed && (!s.flags.Contains(header.TCPFlagFin) || s.sequenceNumber.Add(s.logicalLen()) != r.RcvNxt+1) {
			return true, &tcpip.ErrConnectionAborted{}
		}
	}

	// We don't care about receive processing anymore if the receive side
	// is closed.
	//
	// NOTE: We still want to permit a FIN as it's possible only our
	// end has closed and the peer is yet to send a FIN. Hence we
	// compare only the payload.
	segEnd := s.sequenceNumber.Add(seqnum.Size(s.data.Size()))
	if rcvClosed && !segEnd.LessThanEq(r.RcvNxt) {
		return true, nil
	}
	return false, nil
}

// handleRcvdSegment handles TCP segments directed at the connection managed by
// r as they arrive. It is called by the protocol main loop.
func (r *receiver) handleRcvdSegment(s *segment) (drop bool, err tcpip.Error) {
	state := r.ep.EndpointState()
	closed := r.ep.closed

	segLen := seqnum.Size(s.data.Size())
	segSeq := s.sequenceNumber

	// If the sequence number range is outside the acceptable range, just
	// send an ACK and stop further processing of the segment.
	// This is according to RFC 793, page 68.
	if !r.acceptable(segSeq, segLen) {
		r.ep.snd.maybeSendOutOfWindowAck(s)
		return true, nil
	}

	if state != StateEstablished {
		drop, err := r.handleRcvdSegmentClosing(s, state, closed)
		if drop || err != nil {
			return drop, err
		}
	}

	// Store the time of the last ack.
	r.lastRcvdAckTime = r.ep.stack.Clock().NowMonotonic()

	// Defer segment processing if it can't be consumed now.
	if !r.consumeSegment(s, segSeq, segLen) {
		if segLen > 0 || s.flags.Contains(header.TCPFlagFin) {
			// We only store the segment if it's within our buffer size limit.
			//
			// Only use 75% of the receive buffer queue for out-of-order
			// segments. This ensures that we always leave some space for the inorder
			// segments to arrive allowing pending segments to be processed and
			// delivered to the user.
			if rcvBufSize := r.ep.ops.GetReceiveBufferSize(); rcvBufSize > 0 && r.PendingBufUsed < int(rcvBufSize)>>2 {
				r.ep.rcvQueueInfo.rcvQueueMu.Lock()
				r.PendingBufUsed += s.segMemSize()
				r.ep.rcvQueueInfo.rcvQueueMu.Unlock()
				s.incRef()
				heap.Push(&r.pendingRcvdSegments, s)
				UpdateSACKBlocks(&r.ep.sack, segSeq, segSeq.Add(segLen), r.RcvNxt)
			}

			// Immediately send an ack so that the peer knows it may
			// have to retransmit.
			r.ep.snd.sendAck()
		}
		return false, nil
	}

	// Since we consumed a segment update the receiver's RTT estimate
	// if required.
	if segLen > 0 {
		r.updateRTT()
	}

	// By consuming the current segment, we may have filled a gap in the
	// sequence number domain that allows pending segments to be consumed
	// now. So try to do it.
	for !r.closed && r.pendingRcvdSegments.Len() > 0 {
		s := r.pendingRcvdSegments[0]
		segLen := seqnum.Size(s.data.Size())
		segSeq := s.sequenceNumber

		// Skip segment altogether if it has already been acknowledged.
		if !segSeq.Add(segLen-1).LessThan(r.RcvNxt) &&
			!r.consumeSegment(s, segSeq, segLen) {
			break
		}

		heap.Pop(&r.pendingRcvdSegments)
		r.ep.rcvQueueInfo.rcvQueueMu.Lock()
		r.PendingBufUsed -= s.segMemSize()
		r.ep.rcvQueueInfo.rcvQueueMu.Unlock()
		s.decRef()
	}
	return false, nil
}

// handleTimeWaitSegment handles inbound segments received when the endpoint
// has entered the TIME_WAIT state.
func (r *receiver) handleTimeWaitSegment(s *segment) (resetTimeWait bool, newSyn bool) {
	segSeq := s.sequenceNumber
	segLen := seqnum.Size(s.data.Size())

	// Just silently drop any RST packets in TIME_WAIT. We do not support
	// TIME_WAIT assasination as a result we confirm w/ fix 1 as described
	// in https://tools.ietf.org/html/rfc1337#section-3.
	//
	// This behavior overrides RFC793 page 70 where we transition to CLOSED
	// on receiving RST, which is also default Linux behavior.
	// On Linux the RST can be ignored by setting sysctl net.ipv4.tcp_rfc1337.
	//
	// As we do not yet support PAWS, we are being conservative in ignoring
	// RSTs by default.
	if s.flags.Contains(header.TCPFlagRst) {
		return false, false
	}

	// If it's a SYN and the sequence number is higher than any seen before
	// for this connection then try and redirect it to a listening endpoint
	// if available.
	//
	// RFC 1122:
	//   "When a connection is [...] on TIME-WAIT state [...]
	//   [a TCP] MAY accept a new SYN from the remote TCP to
	//   reopen the connection directly, if it:

	//    (1) assigns its initial sequence number for the new
	//     connection to be larger than the largest sequence
	//     number it used on the previous connection incarnation,
	//     and

	//    (2) returns to TIME-WAIT state if the SYN turns out
	//      to be an old duplicate".
	if s.flags.Contains(header.TCPFlagSyn) && r.RcvNxt.LessThan(segSeq) {

		return false, true
	}

	// Drop the segment if it does not contain an ACK.
	if !s.flags.Contains(header.TCPFlagAck) {
		return false, false
	}

	// Update Timestamp if required. See RFC7323, section-4.3.
	if r.ep.SendTSOk && s.parsedOptions.TS {
		r.ep.updateRecentTimestamp(s.parsedOptions.TSVal, r.ep.snd.MaxSentAck, segSeq)
	}

	if segSeq.Add(1) == r.RcvNxt && s.flags.Contains(header.TCPFlagFin) {
		// If it's a FIN-ACK then resetTimeWait and send an ACK, as it
		// indicates our final ACK could have been lost.
		r.ep.snd.sendAck()
		return true, false
	}

	// If the sequence number range is outside the acceptable range or
	// carries data then just send an ACK. This is according to RFC 793,
	// page 37.
	//
	// NOTE: In TIME_WAIT the only acceptable sequence number is RcvNxt.
	if segSeq != r.RcvNxt || segLen != 0 {
		r.ep.snd.sendAck()
	}
	return false, false
}