1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
|
// Copyright 2020 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package tcp
import (
"time"
"gvisor.dev/gvisor/pkg/sleep"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/tcpip/seqnum"
)
const (
// wcDelayedACKTimeout is the recommended maximum delayed ACK timer
// value as defined in the RFC. It stands for worst case delayed ACK
// timer (WCDelAckT). When FlightSize is 1, PTO is inflated by
// WCDelAckT time to compensate for a potential long delayed ACK timer
// at the receiver.
// See: https://tools.ietf.org/html/draft-ietf-tcpm-rack-08#section-7.5.
wcDelayedACKTimeout = 200 * time.Millisecond
// tcpRACKRecoveryThreshold is the number of loss recoveries for which
// the reorder window is inflated and after that the reorder window is
// reset to its initial value of minRTT/4.
// See: https://tools.ietf.org/html/draft-ietf-tcpm-rack-08#section-7.2.
tcpRACKRecoveryThreshold = 16
)
// RACK is a loss detection algorithm used in TCP to detect packet loss and
// reordering using transmission timestamp of the packets instead of packet or
// sequence counts. To use RACK, SACK should be enabled on the connection.
// rackControl stores the rack related fields.
// See: https://tools.ietf.org/html/draft-ietf-tcpm-rack-08#section-6.1
//
// +stateify savable
type rackControl struct {
// dsackSeen indicates if the connection has seen a DSACK.
dsackSeen bool
// endSequence is the ending TCP sequence number of rackControl.seg.
endSequence seqnum.Value
// exitedRecovery indicates if the connection is exiting loss recovery.
// This flag is set if the sender is leaving the recovery after
// receiving an ACK and is reset during updating of reorder window.
exitedRecovery bool
// fack is the highest selectively or cumulatively acknowledged
// sequence.
fack seqnum.Value
// minRTT is the estimated minimum RTT of the connection.
minRTT time.Duration
// reorderSeen indicates if reordering has been detected on this
// connection.
reorderSeen bool
// reoWnd is the reordering window time used for recording packet
// transmission times. It is used to defer the moment at which RACK
// marks a packet lost.
reoWnd time.Duration
// reoWndIncr is the multiplier applied to adjust reorder window.
reoWndIncr uint8
// reoWndPersist is the number of loss recoveries before resetting
// reorder window.
reoWndPersist int8
// rtt is the RTT of the most recently delivered packet on the
// connection (either cumulatively acknowledged or selectively
// acknowledged) that was not marked invalid as a possible spurious
// retransmission.
rtt time.Duration
// rttSeq is the SND.NXT when rtt is updated.
rttSeq seqnum.Value
// xmitTime is the latest transmission timestamp of rackControl.seg.
xmitTime time.Time `state:".(unixTime)"`
// probeTimer and probeWaker are used to schedule PTO for RACK TLP algorithm.
probeTimer timer `state:"nosave"`
probeWaker sleep.Waker `state:"nosave"`
// tlpRxtOut indicates whether there is an unacknowledged
// TLP retransmission.
tlpRxtOut bool
// tlpHighRxt the value of sender.sndNxt at the time of sending
// a TLP retransmission.
tlpHighRxt seqnum.Value
// snd is a reference to the sender.
snd *sender
}
// init initializes RACK specific fields.
func (rc *rackControl) init(snd *sender, iss seqnum.Value) {
rc.fack = iss
rc.reoWndIncr = 1
rc.snd = snd
rc.probeTimer.init(&rc.probeWaker)
}
// update will update the RACK related fields when an ACK has been received.
// See: https://tools.ietf.org/html/draft-ietf-tcpm-rack-09#section-6.2
func (rc *rackControl) update(seg *segment, ackSeg *segment) {
rtt := time.Now().Sub(seg.xmitTime)
tsOffset := rc.snd.ep.tsOffset
// If the ACK is for a retransmitted packet, do not update if it is a
// spurious inference which is determined by below checks:
// 1. When Timestamping option is available, if the TSVal is less than
// the transmit time of the most recent retransmitted packet.
// 2. When RTT calculated for the packet is less than the smoothed RTT
// for the connection.
// See: https://tools.ietf.org/html/draft-ietf-tcpm-rack-08#section-7.2
// step 2
if seg.xmitCount > 1 {
if ackSeg.parsedOptions.TS && ackSeg.parsedOptions.TSEcr != 0 {
if ackSeg.parsedOptions.TSEcr < tcpTimeStamp(seg.xmitTime, tsOffset) {
return
}
}
if rtt < rc.minRTT {
return
}
}
rc.rtt = rtt
// The sender can either track a simple global minimum of all RTT
// measurements from the connection, or a windowed min-filtered value
// of recent RTT measurements. This implementation keeps track of the
// simple global minimum of all RTTs for the connection.
if rtt < rc.minRTT || rc.minRTT == 0 {
rc.minRTT = rtt
}
// Update rc.xmitTime and rc.endSequence to the transmit time and
// ending sequence number of the packet which has been acknowledged
// most recently.
endSeq := seg.sequenceNumber.Add(seqnum.Size(seg.data.Size()))
if rc.xmitTime.Before(seg.xmitTime) || (seg.xmitTime.Equal(rc.xmitTime) && rc.endSequence.LessThan(endSeq)) {
rc.xmitTime = seg.xmitTime
rc.endSequence = endSeq
}
}
// detectReorder detects if packet reordering has been observed.
// See: https://tools.ietf.org/html/draft-ietf-tcpm-rack-08#section-7.2
// * Step 3: Detect data segment reordering.
// To detect reordering, the sender looks for original data segments being
// delivered out of order. To detect such cases, the sender tracks the
// highest sequence selectively or cumulatively acknowledged in the RACK.fack
// variable. The name "fack" stands for the most "Forward ACK" (this term is
// adopted from [FACK]). If a never retransmitted segment that's below
// RACK.fack is (selectively or cumulatively) acknowledged, it has been
// delivered out of order. The sender sets RACK.reord to TRUE if such segment
// is identified.
func (rc *rackControl) detectReorder(seg *segment) {
endSeq := seg.sequenceNumber.Add(seqnum.Size(seg.data.Size()))
if rc.fack.LessThan(endSeq) {
rc.fack = endSeq
return
}
if endSeq.LessThan(rc.fack) && seg.xmitCount == 1 {
rc.reorderSeen = true
}
}
func (rc *rackControl) setDSACKSeen(dsackSeen bool) {
rc.dsackSeen = dsackSeen
}
// shouldSchedulePTO dictates whether we should schedule a PTO or not.
// See https://tools.ietf.org/html/draft-ietf-tcpm-rack-08#section-7.5.1.
func (s *sender) shouldSchedulePTO() bool {
// Schedule PTO only if RACK loss detection is enabled.
return s.ep.tcpRecovery&tcpip.TCPRACKLossDetection != 0 &&
// The connection supports SACK.
s.ep.sackPermitted &&
// The connection is not in loss recovery.
(s.state != tcpip.RTORecovery && s.state != tcpip.SACKRecovery) &&
// The connection has no SACKed sequences in the SACK scoreboard.
s.ep.scoreboard.Sacked() == 0
}
// schedulePTO schedules the probe timeout as defined in
// https://tools.ietf.org/html/draft-ietf-tcpm-rack-08#section-7.5.1.
func (s *sender) schedulePTO() {
pto := time.Second
s.rtt.Lock()
if s.rtt.srttInited && s.rtt.srtt > 0 {
pto = s.rtt.srtt * 2
if s.outstanding == 1 {
pto += wcDelayedACKTimeout
}
}
s.rtt.Unlock()
now := time.Now()
if s.resendTimer.enabled() {
if now.Add(pto).After(s.resendTimer.target) {
pto = s.resendTimer.target.Sub(now)
}
s.resendTimer.disable()
}
s.rc.probeTimer.enable(pto)
}
// probeTimerExpired is the same as TLP_send_probe() as defined in
// https://tools.ietf.org/html/draft-ietf-tcpm-rack-08#section-7.5.2.
func (s *sender) probeTimerExpired() tcpip.Error {
if !s.rc.probeTimer.checkExpiration() {
return nil
}
var dataSent bool
if s.writeNext != nil && s.writeNext.xmitCount == 0 && s.outstanding < s.sndCwnd {
dataSent = s.maybeSendSegment(s.writeNext, int(s.ep.scoreboard.SMSS()), s.sndUna.Add(s.sndWnd))
if dataSent {
s.outstanding += s.pCount(s.writeNext, s.maxPayloadSize)
s.writeNext = s.writeNext.Next()
}
}
if !dataSent && !s.rc.tlpRxtOut {
var highestSeqXmit *segment
for highestSeqXmit = s.writeList.Front(); highestSeqXmit != nil; highestSeqXmit = highestSeqXmit.Next() {
if highestSeqXmit.xmitCount == 0 {
// Nothing in writeList is transmitted, no need to send a probe.
highestSeqXmit = nil
break
}
if highestSeqXmit.Next() == nil || highestSeqXmit.Next().xmitCount == 0 {
// Either everything in writeList has been transmitted or the next
// sequence has not been transmitted. Either way this is the highest
// sequence segment that was transmitted.
break
}
}
if highestSeqXmit != nil {
dataSent = s.maybeSendSegment(highestSeqXmit, int(s.ep.scoreboard.SMSS()), s.sndUna.Add(s.sndWnd))
if dataSent {
s.rc.tlpRxtOut = true
s.rc.tlpHighRxt = s.sndNxt
}
}
}
s.postXmit(dataSent)
return nil
}
// detectTLPRecovery detects if recovery was accomplished by the loss probes
// and updates TLP state accordingly.
// See https://tools.ietf.org/html/draft-ietf-tcpm-rack-08#section-7.6.3.
func (s *sender) detectTLPRecovery(ack seqnum.Value, rcvdSeg *segment) {
if !(s.ep.sackPermitted && s.rc.tlpRxtOut) {
return
}
// Step 1.
if s.isDupAck(rcvdSeg) && ack == s.rc.tlpHighRxt {
var sbAboveTLPHighRxt bool
for _, sb := range rcvdSeg.parsedOptions.SACKBlocks {
if s.rc.tlpHighRxt.LessThan(sb.End) {
sbAboveTLPHighRxt = true
break
}
}
if !sbAboveTLPHighRxt {
// TLP episode is complete.
s.rc.tlpRxtOut = false
}
}
if s.rc.tlpRxtOut && s.rc.tlpHighRxt.LessThanEq(ack) {
// TLP episode is complete.
s.rc.tlpRxtOut = false
if !checkDSACK(rcvdSeg) {
// Step 2. Either the original packet or the retransmission (in the
// form of a probe) was lost. Invoke a congestion control response
// equivalent to fast recovery.
s.cc.HandleLossDetected()
s.enterRecovery()
s.leaveRecovery()
}
}
}
// updateRACKReorderWindow updates the reorder window.
// See: https://tools.ietf.org/html/draft-ietf-tcpm-rack-08#section-7.2
// * Step 4: Update RACK reordering window
// To handle the prevalent small degree of reordering, RACK.reo_wnd serves as
// an allowance for settling time before marking a packet lost. RACK starts
// initially with a conservative window of min_RTT/4. If no reordering has
// been observed RACK uses reo_wnd of zero during loss recovery, in order to
// retransmit quickly, or when the number of DUPACKs exceeds the classic
// DUPACKthreshold.
func (rc *rackControl) updateRACKReorderWindow(ackSeg *segment) {
dsackSeen := rc.dsackSeen
snd := rc.snd
// React to DSACK once per round trip.
// If SND.UNA < RACK.rtt_seq:
// RACK.dsack = false
if snd.sndUna.LessThan(rc.rttSeq) {
dsackSeen = false
}
// If RACK.dsack:
// RACK.reo_wnd_incr += 1
// RACK.dsack = false
// RACK.rtt_seq = SND.NXT
// RACK.reo_wnd_persist = 16
if dsackSeen {
rc.reoWndIncr++
dsackSeen = false
rc.rttSeq = snd.sndNxt
rc.reoWndPersist = tcpRACKRecoveryThreshold
} else if rc.exitedRecovery {
// Else if exiting loss recovery:
// RACK.reo_wnd_persist -= 1
// If RACK.reo_wnd_persist <= 0:
// RACK.reo_wnd_incr = 1
rc.reoWndPersist--
if rc.reoWndPersist <= 0 {
rc.reoWndIncr = 1
}
rc.exitedRecovery = false
}
// Reorder window is zero during loss recovery, or when the number of
// DUPACKs exceeds the classic DUPACKthreshold.
// If RACK.reord is FALSE:
// If in loss recovery: (If in fast or timeout recovery)
// RACK.reo_wnd = 0
// Return
// Else if RACK.pkts_sacked >= RACK.dupthresh:
// RACK.reo_wnd = 0
// return
if !rc.reorderSeen {
if snd.state == tcpip.RTORecovery || snd.state == tcpip.SACKRecovery {
rc.reoWnd = 0
return
}
if snd.sackedOut >= nDupAckThreshold {
rc.reoWnd = 0
return
}
}
// Calculate reorder window.
// RACK.reo_wnd = RACK.min_RTT / 4 * RACK.reo_wnd_incr
// RACK.reo_wnd = min(RACK.reo_wnd, SRTT)
snd.rtt.Lock()
srtt := snd.rtt.srtt
snd.rtt.Unlock()
rc.reoWnd = time.Duration((int64(rc.minRTT) / 4) * int64(rc.reoWndIncr))
if srtt < rc.reoWnd {
rc.reoWnd = srtt
}
}
func (rc *rackControl) exitRecovery() {
rc.exitedRecovery = true
}
|