1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package tcp
import (
"container/list"
"encoding/binary"
"fmt"
"io"
"math"
"runtime"
"strings"
"sync/atomic"
"time"
"gvisor.dev/gvisor/pkg/sleep"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/tcpip/hash/jenkins"
"gvisor.dev/gvisor/pkg/tcpip/header"
"gvisor.dev/gvisor/pkg/tcpip/ports"
"gvisor.dev/gvisor/pkg/tcpip/seqnum"
"gvisor.dev/gvisor/pkg/tcpip/stack"
"gvisor.dev/gvisor/pkg/waiter"
)
// EndpointState represents the state of a TCP endpoint.
type EndpointState tcpip.EndpointState
// Endpoint states. Note that are represented in a netstack-specific manner and
// may not be meaningful externally. Specifically, they need to be translated to
// Linux's representation for these states if presented to userspace.
const (
_ EndpointState = iota
// TCP protocol states in sync with the definitions in
// https://github.com/torvalds/linux/blob/7acac4b3196/include/net/tcp_states.h#L13
StateEstablished
StateSynSent
StateSynRecv
StateFinWait1
StateFinWait2
StateTimeWait
StateClose
StateCloseWait
StateLastAck
StateListen
StateClosing
// Endpoint states internal to netstack.
StateInitial
StateBound
StateConnecting // Connect() called, but the initial SYN hasn't been sent.
StateError
)
const (
// rcvAdvWndScale is used to split the available socket buffer into
// application buffer and the window to be advertised to the peer. This is
// currently hard coded to split the available space equally.
rcvAdvWndScale = 1
// SegOverheadFactor is used to multiply the value provided by the
// user on a SetSockOpt for setting the socket send/receive buffer sizes.
SegOverheadFactor = 2
)
// connected returns true when s is one of the states representing an
// endpoint connected to a peer.
func (s EndpointState) connected() bool {
switch s {
case StateEstablished, StateFinWait1, StateFinWait2, StateTimeWait, StateCloseWait, StateLastAck, StateClosing:
return true
default:
return false
}
}
// connecting returns true when s is one of the states representing a
// connection in progress, but not yet fully established.
func (s EndpointState) connecting() bool {
switch s {
case StateConnecting, StateSynSent, StateSynRecv:
return true
default:
return false
}
}
// internal returns true when the state is netstack internal.
func (s EndpointState) internal() bool {
switch s {
case StateInitial, StateBound, StateConnecting, StateError:
return true
default:
return false
}
}
// handshake returns true when s is one of the states representing an endpoint
// in the middle of a TCP handshake.
func (s EndpointState) handshake() bool {
switch s {
case StateSynSent, StateSynRecv:
return true
default:
return false
}
}
// closed returns true when s is one of the states an endpoint transitions to
// when closed or when it encounters an error. This is distinct from a newly
// initialized endpoint that was never connected.
func (s EndpointState) closed() bool {
switch s {
case StateClose, StateError:
return true
default:
return false
}
}
// String implements fmt.Stringer.String.
func (s EndpointState) String() string {
switch s {
case StateInitial:
return "INITIAL"
case StateBound:
return "BOUND"
case StateConnecting:
return "CONNECTING"
case StateError:
return "ERROR"
case StateEstablished:
return "ESTABLISHED"
case StateSynSent:
return "SYN-SENT"
case StateSynRecv:
return "SYN-RCVD"
case StateFinWait1:
return "FIN-WAIT1"
case StateFinWait2:
return "FIN-WAIT2"
case StateTimeWait:
return "TIME-WAIT"
case StateClose:
return "CLOSED"
case StateCloseWait:
return "CLOSE-WAIT"
case StateLastAck:
return "LAST-ACK"
case StateListen:
return "LISTEN"
case StateClosing:
return "CLOSING"
default:
panic("unreachable")
}
}
// Reasons for notifying the protocol goroutine.
const (
notifyNonZeroReceiveWindow = 1 << iota
notifyClose
notifyMTUChanged
notifyDrain
notifyReset
notifyResetByPeer
// notifyAbort is a request for an expedited teardown.
notifyAbort
notifyKeepaliveChanged
notifyMSSChanged
// notifyTickleWorker is used to tickle the protocol main loop during a
// restore after we update the endpoint state to the correct one. This
// ensures the loop terminates if the final state of the endpoint is
// say TIME_WAIT.
notifyTickleWorker
notifyError
)
// SACKInfo holds TCP SACK related information for a given endpoint.
//
// +stateify savable
type SACKInfo struct {
// Blocks is the maximum number of SACK blocks we track
// per endpoint.
Blocks [MaxSACKBlocks]header.SACKBlock
// NumBlocks is the number of valid SACK blocks stored in the
// blocks array above.
NumBlocks int
}
// ReceiveErrors collect segment receive errors within transport layer.
type ReceiveErrors struct {
tcpip.ReceiveErrors
// SegmentQueueDropped is the number of segments dropped due to
// a full segment queue.
SegmentQueueDropped tcpip.StatCounter
// ChecksumErrors is the number of segments dropped due to bad checksums.
ChecksumErrors tcpip.StatCounter
// ListenOverflowSynDrop is the number of times the listen queue overflowed
// and a SYN was dropped.
ListenOverflowSynDrop tcpip.StatCounter
// ListenOverflowAckDrop is the number of times the final ACK
// in the handshake was dropped due to overflow.
ListenOverflowAckDrop tcpip.StatCounter
// ZeroRcvWindowState is the number of times we advertised
// a zero receive window when rcvQueue is full.
ZeroRcvWindowState tcpip.StatCounter
// WantZeroWindow is the number of times we wanted to advertise a
// zero receive window but couldn't because it would have caused
// the receive window's right edge to shrink.
WantZeroRcvWindow tcpip.StatCounter
}
// SendErrors collect segment send errors within the transport layer.
type SendErrors struct {
tcpip.SendErrors
// SegmentSendToNetworkFailed is the number of TCP segments failed to be sent
// to the network endpoint.
SegmentSendToNetworkFailed tcpip.StatCounter
// SynSendToNetworkFailed is the number of TCP SYNs failed to be sent
// to the network endpoint.
SynSendToNetworkFailed tcpip.StatCounter
// Retransmits is the number of TCP segments retransmitted.
Retransmits tcpip.StatCounter
// FastRetransmit is the number of segments retransmitted in fast
// recovery.
FastRetransmit tcpip.StatCounter
// Timeouts is the number of times the RTO expired.
Timeouts tcpip.StatCounter
}
// Stats holds statistics about the endpoint.
type Stats struct {
// SegmentsReceived is the number of TCP segments received that
// the transport layer successfully parsed.
SegmentsReceived tcpip.StatCounter
// SegmentsSent is the number of TCP segments sent.
SegmentsSent tcpip.StatCounter
// FailedConnectionAttempts is the number of times we saw Connect and
// Accept errors.
FailedConnectionAttempts tcpip.StatCounter
// ReceiveErrors collects segment receive errors within the
// transport layer.
ReceiveErrors ReceiveErrors
// ReadErrors collects segment read errors from an endpoint read call.
ReadErrors tcpip.ReadErrors
// SendErrors collects segment send errors within the transport layer.
SendErrors SendErrors
// WriteErrors collects segment write errors from an endpoint write call.
WriteErrors tcpip.WriteErrors
}
// IsEndpointStats is an empty method to implement the tcpip.EndpointStats
// marker interface.
func (*Stats) IsEndpointStats() {}
// sndQueueInfo implements a send queue.
//
// +stateify savable
type sndQueueInfo struct {
sndQueueMu sync.Mutex `state:"nosave"`
stack.TCPSndBufState
// sndWaker is used to signal the protocol goroutine when there may be
// segments that need to be sent.
sndWaker sleep.Waker `state:"manual"`
}
// rcvQueueInfo contains the endpoint's rcvQueue and associated metadata.
//
// +stateify savable
type rcvQueueInfo struct {
rcvQueueMu sync.Mutex `state:"nosave"`
stack.TCPRcvBufState
// rcvQueue is the queue for ready-for-delivery segments. This struct's
// mutex must be held in order append segments to list.
rcvQueue segmentList `state:"wait"`
}
// +stateify savable
type accepted struct {
// NB: this could be an endpointList, but ilist only permits endpoints to
// belong to one list at a time, and endpoints are already stored in the
// dispatcher's list.
endpoints list.List `state:".([]*endpoint)"`
// cap is the maximum number of endpoints that can be in the accepted endpoint
// list.
cap int
}
// endpoint represents a TCP endpoint. This struct serves as the interface
// between users of the endpoint and the protocol implementation; it is legal to
// have concurrent goroutines make calls into the endpoint, they are properly
// synchronized. The protocol implementation, however, runs in a single
// goroutine.
//
// Each endpoint has a few mutexes:
//
// e.mu -> Primary mutex for an endpoint must be held for all operations except
// in e.Readiness where acquiring it will result in a deadlock in epoll
// implementation.
//
// The following three mutexes can be acquired independent of e.mu but if
// acquired with e.mu then e.mu must be acquired first.
//
// e.acceptMu -> Protects e.accepted.
// e.rcvQueueMu -> Protects e.rcvQueue and associated fields.
// e.sndQueueMu -> Protects the e.sndQueue and associated fields.
// e.lastErrorMu -> Protects the lastError field.
//
// LOCKING/UNLOCKING of the endpoint. The locking of an endpoint is different
// based on the context in which the lock is acquired. In the syscall context
// e.LockUser/e.UnlockUser should be used and when doing background processing
// e.mu.Lock/e.mu.Unlock should be used. The distinction is described below
// in brief.
//
// The reason for this locking behaviour is to avoid wakeups to handle packets.
// In cases where the endpoint is already locked the background processor can
// queue the packet up and go its merry way and the lock owner will eventually
// process the backlog when releasing the lock. Similarly when acquiring the
// lock from say a syscall goroutine we can implement a bit of spinning if we
// know that the lock is not held by another syscall goroutine. Background
// processors should never hold the lock for long and we can avoid an expensive
// sleep/wakeup by spinning for a shortwhile.
//
// For more details please see the detailed documentation on
// e.LockUser/e.UnlockUser methods.
//
// +stateify savable
type endpoint struct {
stack.TCPEndpointStateInner
stack.TransportEndpointInfo
tcpip.DefaultSocketOptionsHandler
// endpointEntry is used to queue endpoints for processing to the
// a given tcp processor goroutine.
//
// Precondition: epQueue.mu must be held to read/write this field..
endpointEntry `state:"nosave"`
// pendingProcessing is true if this endpoint is queued for processing
// to a TCP processor.
//
// Precondition: epQueue.mu must be held to read/write this field..
pendingProcessing bool `state:"nosave"`
// The following fields are initialized at creation time and do not
// change throughout the lifetime of the endpoint.
stack *stack.Stack `state:"manual"`
protocol *protocol `state:"manual"`
waiterQueue *waiter.Queue `state:"wait"`
uniqueID uint64
// hardError is meaningful only when state is stateError. It stores the
// error to be returned when read/write syscalls are called and the
// endpoint is in this state. hardError is protected by endpoint mu.
hardError tcpip.Error
// lastError represents the last error that the endpoint reported;
// access to it is protected by the following mutex.
lastErrorMu sync.Mutex `state:"nosave"`
lastError tcpip.Error
// rcvReadMu synchronizes calls to Read.
//
// mu and rcvQueueMu are temporarily released during data copying. rcvReadMu
// must be held during each read to ensure atomicity, so that multiple reads
// do not interleave.
//
// rcvReadMu should be held before holding mu.
rcvReadMu sync.Mutex `state:"nosave"`
// rcvQueueInfo holds the implementation of the endpoint's receive buffer.
// The data within rcvQueueInfo should only be accessed while rcvReadMu, mu,
// and rcvQueueMu are held, in that stated order. While processing the segment
// range, you can determine a range and then temporarily release mu and
// rcvQueueMu, which allows new segments to be appended to the queue while
// processing.
rcvQueueInfo rcvQueueInfo
// rcvMemUsed tracks the total amount of memory in use by received segments
// held in rcvQueue, pendingRcvdSegments and the segment queue. This is used to
// compute the window and the actual available buffer space. This is distinct
// from rcvBufUsed above which is the actual number of payload bytes held in
// the buffer not including any segment overheads.
//
// rcvMemUsed must be accessed atomically.
rcvMemUsed int32
// mu protects all endpoint fields unless documented otherwise. mu must
// be acquired before interacting with the endpoint fields.
//
// During handshake, mu is locked by the protocol listen goroutine and
// released by the handshake completion goroutine.
mu sync.CrossGoroutineMutex `state:"nosave"`
ownedByUser uint32
// state must be read/set using the EndpointState()/setEndpointState()
// methods.
state uint32 `state:".(EndpointState)"`
// origEndpointState is only used during a restore phase to save the
// endpoint state at restore time as the socket is moved to it's correct
// state.
origEndpointState uint32 `state:"nosave"`
isPortReserved bool `state:"manual"`
isRegistered bool `state:"manual"`
boundNICID tcpip.NICID
route *stack.Route `state:"manual"`
ttl uint8
isConnectNotified bool
// h stores a reference to the current handshake state if the endpoint is in
// the SYN-SENT or SYN-RECV states, in which case endpoint == endpoint.h.ep.
// nil otherwise.
h *handshake `state:"nosave"`
// portFlags stores the current values of port related flags.
portFlags ports.Flags
// Values used to reserve a port or register a transport endpoint
// (which ever happens first).
boundBindToDevice tcpip.NICID
boundPortFlags ports.Flags
boundDest tcpip.FullAddress
// effectiveNetProtos contains the network protocols actually in use. In
// most cases it will only contain "netProto", but in cases like IPv6
// endpoints with v6only set to false, this could include multiple
// protocols (e.g., IPv6 and IPv4) or a single different protocol (e.g.,
// IPv4 when IPv6 endpoint is bound or connected to an IPv4 mapped
// address).
effectiveNetProtos []tcpip.NetworkProtocolNumber
// workerRunning specifies if a worker goroutine is running.
workerRunning bool
// workerCleanup specifies if the worker goroutine must perform cleanup
// before exiting. This can only be set to true when workerRunning is
// also true, and they're both protected by the mutex.
workerCleanup bool
// recentTSTime is the unix time when we last updated
// TCPEndpointStateInner.RecentTS.
recentTSTime tcpip.MonotonicTime
// shutdownFlags represent the current shutdown state of the endpoint.
shutdownFlags tcpip.ShutdownFlags
// tcpRecovery is the loss recovery algorithm used by TCP.
tcpRecovery tcpip.TCPRecovery
// sack holds TCP SACK related information for this endpoint.
sack SACKInfo
// delay enables Nagle's algorithm.
//
// delay is a boolean (0 is false) and must be accessed atomically.
delay uint32
// scoreboard holds TCP SACK Scoreboard information for this endpoint.
scoreboard *SACKScoreboard
// segmentQueue is used to hand received segments to the protocol
// goroutine. Segments are queued as long as the queue is not full,
// and dropped when it is.
segmentQueue segmentQueue `state:"wait"`
// synRcvdCount is the number of connections for this endpoint that are
// in SYN-RCVD state; this is only accessed atomically.
synRcvdCount int32
// userMSS if non-zero is the MSS value explicitly set by the user
// for this endpoint using the TCP_MAXSEG setsockopt.
userMSS uint16
// maxSynRetries is the maximum number of SYN retransmits that TCP should
// send before aborting the attempt to connect. It cannot exceed 255.
//
// NOTE: This is currently a no-op and does not change the SYN
// retransmissions.
maxSynRetries uint8
// windowClamp is used to bound the size of the advertised window to
// this value.
windowClamp uint32
// sndQueueInfo contains the implementation of the endpoint's send queue.
sndQueueInfo sndQueueInfo
// cc stores the name of the Congestion Control algorithm to use for
// this endpoint.
cc tcpip.CongestionControlOption
// newSegmentWaker is used to indicate to the protocol goroutine that
// it needs to wake up and handle new segments queued to it.
newSegmentWaker sleep.Waker `state:"manual"`
// notificationWaker is used to indicate to the protocol goroutine that
// it needs to wake up and check for notifications.
notificationWaker sleep.Waker `state:"manual"`
// notifyFlags is a bitmask of flags used to indicate to the protocol
// goroutine what it was notified; this is only accessed atomically.
notifyFlags uint32 `state:"nosave"`
// keepalive manages TCP keepalive state. When the connection is idle
// (no data sent or received) for keepaliveIdle, we start sending
// keepalives every keepalive.interval. If we send keepalive.count
// without hearing a response, the connection is closed.
keepalive keepalive
// userTimeout if non-zero specifies a user specified timeout for
// a connection w/ pending data to send. A connection that has pending
// unacked data will be forcibily aborted if the timeout is reached
// without any data being acked.
userTimeout time.Duration
// deferAccept if non-zero specifies a user specified time during
// which the final ACK of a handshake will be dropped provided the
// ACK is a bare ACK and carries no data. If the timeout is crossed then
// the bare ACK is accepted and the connection is delivered to the
// listener.
deferAccept time.Duration
// pendingAccepted tracks connections queued to be accepted. It is used to
// ensure such queued connections are terminated before the accepted queue is
// marked closed (by setting its capacity to zero).
pendingAccepted sync.WaitGroup `state:"nosave"`
// acceptMu protects accepted.
acceptMu sync.Mutex `state:"nosave"`
// acceptCond is a condition variable that can be used to block on when
// accepted is full and an endpoint is ready to be delivered.
//
// We use this condition variable to block/unblock goroutines which
// tried to deliver an endpoint but couldn't because accept backlog was
// full ( See: endpoint.deliverAccepted ).
acceptCond *sync.Cond `state:"nosave"`
// accepted is used by a listening endpoint protocol goroutine to
// send newly accepted connections to the endpoint so that they can be
// read by Accept() calls.
// +checklocks:acceptMu
accepted accepted
// The following are only used from the protocol goroutine, and
// therefore don't need locks to protect them.
rcv *receiver `state:"wait"`
snd *sender `state:"wait"`
// The goroutine drain completion notification channel.
drainDone chan struct{} `state:"nosave"`
// The goroutine undrain notification channel. This is currently used as
// a way to block the worker goroutines. Today nothing closes/writes
// this channel and this causes any goroutines waiting on this to just
// block. This is used during save/restore to prevent worker goroutines
// from mutating state as it's being saved.
undrain chan struct{} `state:"nosave"`
// probe if not nil is invoked on every received segment. It is passed
// a copy of the current state of the endpoint.
probe stack.TCPProbeFunc `state:"nosave"`
// The following are only used to assist the restore run to re-connect.
connectingAddress tcpip.Address
// amss is the advertised MSS to the peer by this endpoint.
amss uint16
// sendTOS represents IPv4 TOS or IPv6 TrafficClass,
// applied while sending packets. Defaults to 0 as on Linux.
sendTOS uint8
gso stack.GSO
// TODO(b/142022063): Add ability to save and restore per endpoint stats.
stats Stats `state:"nosave"`
// tcpLingerTimeout is the maximum amount of a time a socket
// a socket stays in TIME_WAIT state before being marked
// closed.
tcpLingerTimeout time.Duration
// closed indicates that the user has called closed on the
// endpoint and at this point the endpoint is only around
// to complete the TCP shutdown.
closed bool
// txHash is the transport layer hash to be set on outbound packets
// emitted by this endpoint.
txHash uint32
// owner is used to get uid and gid of the packet.
owner tcpip.PacketOwner
// ops is used to get socket level options.
ops tcpip.SocketOptions
// lastOutOfWindowAckTime is the time at which the an ACK was sent in response
// to an out of window segment being received by this endpoint.
lastOutOfWindowAckTime tcpip.MonotonicTime
}
// UniqueID implements stack.TransportEndpoint.UniqueID.
func (e *endpoint) UniqueID() uint64 {
return e.uniqueID
}
// calculateAdvertisedMSS calculates the MSS to advertise.
//
// If userMSS is non-zero and is not greater than the maximum possible MSS for
// r, it will be used; otherwise, the maximum possible MSS will be used.
func calculateAdvertisedMSS(userMSS uint16, r *stack.Route) uint16 {
// The maximum possible MSS is dependent on the route.
// TODO(b/143359391): Respect TCP Min and Max size.
maxMSS := uint16(r.MTU() - header.TCPMinimumSize)
if userMSS != 0 && userMSS < maxMSS {
return userMSS
}
return maxMSS
}
// LockUser tries to lock e.mu and if it fails it will check if the lock is held
// by another syscall goroutine. If yes, then it will goto sleep waiting for the
// lock to be released, if not then it will spin till it acquires the lock or
// another syscall goroutine acquires it in which case it will goto sleep as
// described above.
//
// The assumption behind spinning here being that background packet processing
// should not be holding the lock for long and spinning reduces latency as we
// avoid an expensive sleep/wakeup of of the syscall goroutine).
// +checklocksacquire:e.mu
func (e *endpoint) LockUser() {
for {
// Try first if the sock is locked then check if it's owned
// by another user goroutine if not then we spin, otherwise
// we just go to sleep on the Lock() and wait.
if !e.mu.TryLock() {
// If socket is owned by the user then just go to sleep
// as the lock could be held for a reasonably long time.
if atomic.LoadUint32(&e.ownedByUser) == 1 {
e.mu.Lock()
atomic.StoreUint32(&e.ownedByUser, 1)
return
}
// Spin but yield the processor since the lower half
// should yield the lock soon.
runtime.Gosched()
continue
}
atomic.StoreUint32(&e.ownedByUser, 1)
return // +checklocksforce
}
}
// UnlockUser will check if there are any segments already queued for processing
// and process any such segments before unlocking e.mu. This is required because
// we when packets arrive and endpoint lock is already held then such packets
// are queued up to be processed. If the lock is held by the endpoint goroutine
// then it will process these packets but if the lock is instead held by the
// syscall goroutine then we can have the syscall goroutine process the backlog
// before unlocking.
//
// This avoids an unnecessary wakeup of the endpoint protocol goroutine for the
// endpoint. It's also required eventually when we get rid of the endpoint
// protocol goroutine altogether.
//
// Precondition: e.LockUser() must have been called before calling e.UnlockUser()
// +checklocksrelease:e.mu
func (e *endpoint) UnlockUser() {
// Lock segment queue before checking so that we avoid a race where
// segments can be queued between the time we check if queue is empty
// and actually unlock the endpoint mutex.
for {
e.segmentQueue.mu.Lock()
if e.segmentQueue.emptyLocked() {
if atomic.SwapUint32(&e.ownedByUser, 0) != 1 {
panic("e.UnlockUser() called without calling e.LockUser()")
}
e.mu.Unlock()
e.segmentQueue.mu.Unlock()
return
}
e.segmentQueue.mu.Unlock()
switch e.EndpointState() {
case StateEstablished:
if err := e.handleSegmentsLocked(true /* fastPath */); err != nil {
e.notifyProtocolGoroutine(notifyTickleWorker)
}
default:
// Since we are waking the endpoint goroutine here just unlock
// and let it process the queued segments.
e.newSegmentWaker.Assert()
if atomic.SwapUint32(&e.ownedByUser, 0) != 1 {
panic("e.UnlockUser() called without calling e.LockUser()")
}
e.mu.Unlock()
return
}
}
}
// StopWork halts packet processing. Only to be used in tests.
// +checklocksacquire:e.mu
func (e *endpoint) StopWork() {
e.mu.Lock()
}
// ResumeWork resumes packet processing. Only to be used in tests.
// +checklocksrelease:e.mu
func (e *endpoint) ResumeWork() {
e.mu.Unlock()
}
// setEndpointState updates the state of the endpoint to state atomically. This
// method is unexported as the only place we should update the state is in this
// package but we allow the state to be read freely without holding e.mu.
//
// Precondition: e.mu must be held to call this method.
func (e *endpoint) setEndpointState(state EndpointState) {
oldstate := EndpointState(atomic.SwapUint32(&e.state, uint32(state)))
switch state {
case StateEstablished:
e.stack.Stats().TCP.CurrentEstablished.Increment()
e.stack.Stats().TCP.CurrentConnected.Increment()
case StateError:
fallthrough
case StateClose:
if oldstate == StateCloseWait || oldstate == StateEstablished {
e.stack.Stats().TCP.EstablishedResets.Increment()
}
fallthrough
default:
if oldstate == StateEstablished {
e.stack.Stats().TCP.CurrentEstablished.Decrement()
}
}
}
// EndpointState returns the current state of the endpoint.
func (e *endpoint) EndpointState() EndpointState {
return EndpointState(atomic.LoadUint32(&e.state))
}
// setRecentTimestamp sets the recentTS field to the provided value.
func (e *endpoint) setRecentTimestamp(recentTS uint32) {
e.RecentTS = recentTS
e.recentTSTime = e.stack.Clock().NowMonotonic()
}
// recentTimestamp returns the value of the recentTS field.
func (e *endpoint) recentTimestamp() uint32 {
return e.RecentTS
}
// keepalive is a synchronization wrapper used to appease stateify. See the
// comment in endpoint, where it is used.
//
// +stateify savable
type keepalive struct {
sync.Mutex `state:"nosave"`
idle time.Duration
interval time.Duration
count int
unacked int
timer timer `state:"nosave"`
waker sleep.Waker `state:"nosave"`
}
func newEndpoint(s *stack.Stack, protocol *protocol, netProto tcpip.NetworkProtocolNumber, waiterQueue *waiter.Queue) *endpoint {
e := &endpoint{
stack: s,
protocol: protocol,
TransportEndpointInfo: stack.TransportEndpointInfo{
NetProto: netProto,
TransProto: header.TCPProtocolNumber,
},
sndQueueInfo: sndQueueInfo{
TCPSndBufState: stack.TCPSndBufState{
SndMTU: math.MaxInt32,
},
},
waiterQueue: waiterQueue,
state: uint32(StateInitial),
keepalive: keepalive{
// Linux defaults.
idle: 2 * time.Hour,
interval: 75 * time.Second,
count: 9,
},
uniqueID: s.UniqueID(),
txHash: s.Rand().Uint32(),
windowClamp: DefaultReceiveBufferSize,
maxSynRetries: DefaultSynRetries,
}
e.ops.InitHandler(e, e.stack, GetTCPSendBufferLimits, GetTCPReceiveBufferLimits)
e.ops.SetMulticastLoop(true)
e.ops.SetQuickAck(true)
e.ops.SetSendBufferSize(DefaultSendBufferSize, false /* notify */)
e.ops.SetReceiveBufferSize(DefaultReceiveBufferSize, false /* notify */)
var ss tcpip.TCPSendBufferSizeRangeOption
if err := s.TransportProtocolOption(ProtocolNumber, &ss); err == nil {
e.ops.SetSendBufferSize(int64(ss.Default), false /* notify */)
}
var rs tcpip.TCPReceiveBufferSizeRangeOption
if err := s.TransportProtocolOption(ProtocolNumber, &rs); err == nil {
e.ops.SetReceiveBufferSize(int64(rs.Default), false /* notify */)
}
var cs tcpip.CongestionControlOption
if err := s.TransportProtocolOption(ProtocolNumber, &cs); err == nil {
e.cc = cs
}
var mrb tcpip.TCPModerateReceiveBufferOption
if err := s.TransportProtocolOption(ProtocolNumber, &mrb); err == nil {
e.rcvQueueInfo.RcvAutoParams.Disabled = !bool(mrb)
}
var de tcpip.TCPDelayEnabled
if err := s.TransportProtocolOption(ProtocolNumber, &de); err == nil && de {
e.ops.SetDelayOption(true)
}
var tcpLT tcpip.TCPLingerTimeoutOption
if err := s.TransportProtocolOption(ProtocolNumber, &tcpLT); err == nil {
e.tcpLingerTimeout = time.Duration(tcpLT)
}
var synRetries tcpip.TCPSynRetriesOption
if err := s.TransportProtocolOption(ProtocolNumber, &synRetries); err == nil {
e.maxSynRetries = uint8(synRetries)
}
if p := s.GetTCPProbe(); p != nil {
e.probe = p
}
e.segmentQueue.ep = e
e.acceptCond = sync.NewCond(&e.acceptMu)
e.keepalive.timer.init(e.stack.Clock(), &e.keepalive.waker)
return e
}
// Readiness returns the current readiness of the endpoint. For example, if
// waiter.EventIn is set, the endpoint is immediately readable.
func (e *endpoint) Readiness(mask waiter.EventMask) waiter.EventMask {
result := waiter.EventMask(0)
switch e.EndpointState() {
case StateInitial, StateBound:
// This prevents blocking of new sockets which are not
// connected when SO_LINGER is set.
result |= waiter.EventHUp
case StateConnecting, StateSynSent, StateSynRecv:
// Ready for nothing.
case StateClose, StateError, StateTimeWait:
// Ready for anything.
result = mask
case StateListen:
// Check if there's anything in the accepted queue.
if (mask & waiter.ReadableEvents) != 0 {
e.acceptMu.Lock()
if e.accepted.endpoints.Len() != 0 {
result |= waiter.ReadableEvents
}
e.acceptMu.Unlock()
}
}
if e.EndpointState().connected() {
// Determine if the endpoint is writable if requested.
if (mask & waiter.WritableEvents) != 0 {
e.sndQueueInfo.sndQueueMu.Lock()
sndBufSize := e.getSendBufferSize()
if e.sndQueueInfo.SndClosed || e.sndQueueInfo.SndBufUsed < sndBufSize {
result |= waiter.WritableEvents
}
e.sndQueueInfo.sndQueueMu.Unlock()
}
// Determine if the endpoint is readable if requested.
if (mask & waiter.ReadableEvents) != 0 {
e.rcvQueueInfo.rcvQueueMu.Lock()
if e.rcvQueueInfo.RcvBufUsed > 0 || e.rcvQueueInfo.RcvClosed {
result |= waiter.ReadableEvents
}
e.rcvQueueInfo.rcvQueueMu.Unlock()
}
}
return result
}
func (e *endpoint) fetchNotifications() uint32 {
return atomic.SwapUint32(&e.notifyFlags, 0)
}
func (e *endpoint) notifyProtocolGoroutine(n uint32) {
for {
v := atomic.LoadUint32(&e.notifyFlags)
if v&n == n {
// The flags are already set.
return
}
if atomic.CompareAndSwapUint32(&e.notifyFlags, v, v|n) {
if v == 0 {
// We are causing a transition from no flags to
// at least one flag set, so we must cause the
// protocol goroutine to wake up.
e.notificationWaker.Assert()
}
return
}
}
}
// Abort implements stack.TransportEndpoint.Abort.
func (e *endpoint) Abort() {
// The abort notification is not processed synchronously, so no
// synchronization is needed.
//
// If the endpoint becomes connected after this check, we still close
// the endpoint. This worst case results in a slower abort.
//
// If the endpoint disconnected after the check, nothing needs to be
// done, so sending a notification which will potentially be ignored is
// fine.
//
// If the endpoint connecting finishes after the check, the endpoint
// is either in a connected state (where we would notifyAbort anyway),
// SYN-RECV (where we would also notifyAbort anyway), or in an error
// state where nothing is required and the notification can be safely
// ignored.
//
// Endpoints where a Close during connecting or SYN-RECV state would be
// problematic are set to state connecting before being registered (and
// thus possible to be Aborted). They are never available in initial
// state.
//
// Endpoints transitioning from initial to connecting state may be
// safely either closed or sent notifyAbort.
if s := e.EndpointState(); s == StateConnecting || s == StateSynRecv || s.connected() {
e.notifyProtocolGoroutine(notifyAbort)
return
}
e.Close()
}
// Close puts the endpoint in a closed state and frees all resources associated
// with it. It must be called only once and with no other concurrent calls to
// the endpoint.
func (e *endpoint) Close() {
e.LockUser()
defer e.UnlockUser()
if e.closed {
return
}
linger := e.SocketOptions().GetLinger()
if linger.Enabled && linger.Timeout == 0 {
s := e.EndpointState()
isResetState := s == StateEstablished || s == StateCloseWait || s == StateFinWait1 || s == StateFinWait2 || s == StateSynRecv
if isResetState {
// Close the endpoint without doing full shutdown and
// send a RST.
e.resetConnectionLocked(&tcpip.ErrConnectionAborted{})
e.closeNoShutdownLocked()
// Wake up worker to close the endpoint.
switch s {
case StateSynRecv:
e.notifyProtocolGoroutine(notifyClose)
default:
e.notifyProtocolGoroutine(notifyTickleWorker)
}
return
}
}
// Issue a shutdown so that the peer knows we won't send any more data
// if we're connected, or stop accepting if we're listening.
e.shutdownLocked(tcpip.ShutdownWrite | tcpip.ShutdownRead)
e.closeNoShutdownLocked()
}
// closeNoShutdown closes the endpoint without doing a full shutdown.
func (e *endpoint) closeNoShutdownLocked() {
// For listening sockets, we always release ports inline so that they
// are immediately available for reuse after Close() is called. If also
// registered, we unregister as well otherwise the next user would fail
// in Listen() when trying to register.
if e.EndpointState() == StateListen && e.isPortReserved {
if e.isRegistered {
e.stack.StartTransportEndpointCleanup(e.effectiveNetProtos, ProtocolNumber, e.TransportEndpointInfo.ID, e, e.boundPortFlags, e.boundBindToDevice)
e.isRegistered = false
}
portRes := ports.Reservation{
Networks: e.effectiveNetProtos,
Transport: ProtocolNumber,
Addr: e.TransportEndpointInfo.ID.LocalAddress,
Port: e.TransportEndpointInfo.ID.LocalPort,
Flags: e.boundPortFlags,
BindToDevice: e.boundBindToDevice,
Dest: e.boundDest,
}
e.stack.ReleasePort(portRes)
e.isPortReserved = false
e.boundBindToDevice = 0
e.boundPortFlags = ports.Flags{}
e.boundDest = tcpip.FullAddress{}
}
// Mark endpoint as closed.
e.closed = true
switch e.EndpointState() {
case StateClose, StateError:
return
}
eventMask := waiter.ReadableEvents | waiter.WritableEvents
// Either perform the local cleanup or kick the worker to make sure it
// knows it needs to cleanup.
if e.workerRunning {
e.workerCleanup = true
tcpip.AddDanglingEndpoint(e)
// Worker will remove the dangling endpoint when the endpoint
// goroutine terminates.
e.notifyProtocolGoroutine(notifyClose)
} else {
e.transitionToStateCloseLocked()
// Notify that the endpoint is closed.
eventMask |= waiter.EventHUp
}
// The TCP closing state-machine would eventually notify EventHUp, but we
// notify EventIn|EventOut immediately to unblock any blocked waiters.
e.waiterQueue.Notify(eventMask)
}
// closePendingAcceptableConnections closes all connections that have completed
// handshake but not yet been delivered to the application.
func (e *endpoint) closePendingAcceptableConnectionsLocked() {
e.acceptMu.Lock()
acceptedCopy := e.accepted
e.accepted = accepted{}
e.acceptMu.Unlock()
if acceptedCopy == (accepted{}) {
return
}
e.acceptCond.Broadcast()
// Reset all connections that are waiting to be accepted.
for n := acceptedCopy.endpoints.Front(); n != nil; n = n.Next() {
n.Value.(*endpoint).notifyProtocolGoroutine(notifyReset)
}
// Wait for reset of all endpoints that are still waiting to be delivered to
// the now closed accepted.
e.pendingAccepted.Wait()
}
// cleanupLocked frees all resources associated with the endpoint. It is called
// after Close() is called and the worker goroutine (if any) is done with its
// work.
func (e *endpoint) cleanupLocked() {
// Close all endpoints that might have been accepted by TCP but not by
// the client.
e.closePendingAcceptableConnectionsLocked()
e.keepalive.timer.cleanup()
e.workerCleanup = false
if e.isRegistered {
e.stack.StartTransportEndpointCleanup(e.effectiveNetProtos, ProtocolNumber, e.TransportEndpointInfo.ID, e, e.boundPortFlags, e.boundBindToDevice)
e.isRegistered = false
}
if e.isPortReserved {
portRes := ports.Reservation{
Networks: e.effectiveNetProtos,
Transport: ProtocolNumber,
Addr: e.TransportEndpointInfo.ID.LocalAddress,
Port: e.TransportEndpointInfo.ID.LocalPort,
Flags: e.boundPortFlags,
BindToDevice: e.boundBindToDevice,
Dest: e.boundDest,
}
e.stack.ReleasePort(portRes)
e.isPortReserved = false
}
e.boundBindToDevice = 0
e.boundPortFlags = ports.Flags{}
e.boundDest = tcpip.FullAddress{}
if e.route != nil {
e.route.Release()
e.route = nil
}
e.stack.CompleteTransportEndpointCleanup(e)
tcpip.DeleteDanglingEndpoint(e)
}
// wndFromSpace returns the window that we can advertise based on the available
// receive buffer space.
func wndFromSpace(space int) int {
return space >> rcvAdvWndScale
}
// initialReceiveWindow returns the initial receive window to advertise in the
// SYN/SYN-ACK.
func (e *endpoint) initialReceiveWindow() int {
rcvWnd := wndFromSpace(e.receiveBufferAvailable())
if rcvWnd > math.MaxUint16 {
rcvWnd = math.MaxUint16
}
// Use the user supplied MSS, if available.
routeWnd := InitialCwnd * int(calculateAdvertisedMSS(e.userMSS, e.route)) * 2
if rcvWnd > routeWnd {
rcvWnd = routeWnd
}
rcvWndScale := e.rcvWndScaleForHandshake()
// Round-down the rcvWnd to a multiple of wndScale. This ensures that the
// window offered in SYN won't be reduced due to the loss of precision if
// window scaling is enabled after the handshake.
rcvWnd = (rcvWnd >> uint8(rcvWndScale)) << uint8(rcvWndScale)
// Ensure we can always accept at least 1 byte if the scale specified
// was too high for the provided rcvWnd.
if rcvWnd == 0 {
rcvWnd = 1
}
return rcvWnd
}
// ModerateRecvBuf adjusts the receive buffer and the advertised window
// based on the number of bytes copied to userspace.
func (e *endpoint) ModerateRecvBuf(copied int) {
e.LockUser()
defer e.UnlockUser()
e.rcvQueueInfo.rcvQueueMu.Lock()
if e.rcvQueueInfo.RcvAutoParams.Disabled {
e.rcvQueueInfo.rcvQueueMu.Unlock()
return
}
now := e.stack.Clock().NowMonotonic()
if rtt := e.rcvQueueInfo.RcvAutoParams.RTT; rtt == 0 || now.Sub(e.rcvQueueInfo.RcvAutoParams.MeasureTime) < rtt {
e.rcvQueueInfo.RcvAutoParams.CopiedBytes += copied
e.rcvQueueInfo.rcvQueueMu.Unlock()
return
}
prevRTTCopied := e.rcvQueueInfo.RcvAutoParams.CopiedBytes + copied
prevCopied := e.rcvQueueInfo.RcvAutoParams.PrevCopiedBytes
rcvWnd := 0
if prevRTTCopied > prevCopied {
// The minimal receive window based on what was copied by the app
// in the immediate preceding RTT and some extra buffer for 16
// segments to account for variations.
// We multiply by 2 to account for packet losses.
rcvWnd = prevRTTCopied*2 + 16*int(e.amss)
// Scale for slow start based on bytes copied in this RTT vs previous.
grow := (rcvWnd * (prevRTTCopied - prevCopied)) / prevCopied
// Multiply growth factor by 2 again to account for sender being
// in slow-start where the sender grows it's congestion window
// by 100% per RTT.
rcvWnd += grow * 2
// Make sure auto tuned buffer size can always receive upto 2x
// the initial window of 10 segments.
if minRcvWnd := int(e.amss) * InitialCwnd * 2; rcvWnd < minRcvWnd {
rcvWnd = minRcvWnd
}
// Cap the auto tuned buffer size by the maximum permissible
// receive buffer size.
if max := e.maxReceiveBufferSize(); rcvWnd > max {
rcvWnd = max
}
// We do not adjust downwards as that can cause the receiver to
// reject valid data that might already be in flight as the
// acceptable window will shrink.
rcvBufSize := int(e.ops.GetReceiveBufferSize())
if rcvWnd > rcvBufSize {
availBefore := wndFromSpace(e.receiveBufferAvailableLocked(rcvBufSize))
e.ops.SetReceiveBufferSize(int64(rcvWnd), false /* notify */)
availAfter := wndFromSpace(e.receiveBufferAvailableLocked(rcvWnd))
if crossed, above := e.windowCrossedACKThresholdLocked(availAfter-availBefore, rcvBufSize); crossed && above {
e.notifyProtocolGoroutine(notifyNonZeroReceiveWindow)
}
}
// We only update PrevCopiedBytes when we grow the buffer because in cases
// where PrevCopiedBytes > prevRTTCopied the existing buffer is already big
// enough to handle the current rate and we don't need to do any
// adjustments.
e.rcvQueueInfo.RcvAutoParams.PrevCopiedBytes = prevRTTCopied
}
e.rcvQueueInfo.RcvAutoParams.MeasureTime = now
e.rcvQueueInfo.RcvAutoParams.CopiedBytes = 0
e.rcvQueueInfo.rcvQueueMu.Unlock()
}
// SetOwner implements tcpip.Endpoint.SetOwner.
func (e *endpoint) SetOwner(owner tcpip.PacketOwner) {
e.owner = owner
}
// Preconditions: e.mu must be held to call this function.
func (e *endpoint) hardErrorLocked() tcpip.Error {
err := e.hardError
e.hardError = nil
return err
}
// Preconditions: e.mu must be held to call this function.
func (e *endpoint) lastErrorLocked() tcpip.Error {
e.lastErrorMu.Lock()
defer e.lastErrorMu.Unlock()
err := e.lastError
e.lastError = nil
return err
}
// LastError implements tcpip.Endpoint.LastError.
func (e *endpoint) LastError() tcpip.Error {
e.LockUser()
defer e.UnlockUser()
if err := e.hardErrorLocked(); err != nil {
return err
}
return e.lastErrorLocked()
}
// LastErrorLocked reads and clears lastError with e.mu held.
// Only to be used in tests.
func (e *endpoint) LastErrorLocked() tcpip.Error {
return e.lastErrorLocked()
}
// UpdateLastError implements tcpip.SocketOptionsHandler.UpdateLastError.
func (e *endpoint) UpdateLastError(err tcpip.Error) {
e.LockUser()
e.lastErrorMu.Lock()
e.lastError = err
e.lastErrorMu.Unlock()
e.UnlockUser()
}
// Read implements tcpip.Endpoint.Read.
func (e *endpoint) Read(dst io.Writer, opts tcpip.ReadOptions) (tcpip.ReadResult, tcpip.Error) {
e.rcvReadMu.Lock()
defer e.rcvReadMu.Unlock()
// N.B. Here we get a range of segments to be processed. It is safe to not
// hold rcvQueueMu when processing, since we hold rcvReadMu to ensure only we
// can remove segments from the list through commitRead().
first, last, serr := e.startRead()
if serr != nil {
if _, ok := serr.(*tcpip.ErrClosedForReceive); ok {
e.stats.ReadErrors.ReadClosed.Increment()
}
return tcpip.ReadResult{}, serr
}
var err error
done := 0
s := first
for s != nil {
var n int
n, err = s.data.ReadTo(dst, opts.Peek)
// Book keeping first then error handling.
done += n
if opts.Peek {
// For peek, we use the (first, last) range of segment returned from
// startRead. We don't consume the receive buffer, so commitRead should
// not be called.
//
// N.B. It is important to use `last` to determine the last segment, since
// appending can happen while we process, and will lead to data race.
if s == last {
break
}
s = s.Next()
} else {
// N.B. commitRead() conveniently returns the next segment to read, after
// removing the data/segment that is read.
s = e.commitRead(n)
}
if err != nil {
break
}
}
// If something is read, we must report it. Report error when nothing is read.
if done == 0 && err != nil {
return tcpip.ReadResult{}, &tcpip.ErrBadBuffer{}
}
return tcpip.ReadResult{
Count: done,
Total: done,
}, nil
}
// startRead checks that endpoint is in a readable state, and return the
// inclusive range of segments that can be read.
//
// Precondition: e.rcvReadMu must be held.
func (e *endpoint) startRead() (first, last *segment, err tcpip.Error) {
e.LockUser()
defer e.UnlockUser()
// When in SYN-SENT state, let the caller block on the receive.
// An application can initiate a non-blocking connect and then block
// on a receive. It can expect to read any data after the handshake
// is complete. RFC793, section 3.9, p58.
if e.EndpointState() == StateSynSent {
return nil, nil, &tcpip.ErrWouldBlock{}
}
// The endpoint can be read if it's connected, or if it's already closed
// but has some pending unread data. Also note that a RST being received
// would cause the state to become StateError so we should allow the
// reads to proceed before returning a ECONNRESET.
e.rcvQueueInfo.rcvQueueMu.Lock()
defer e.rcvQueueInfo.rcvQueueMu.Unlock()
bufUsed := e.rcvQueueInfo.RcvBufUsed
if s := e.EndpointState(); !s.connected() && s != StateClose && bufUsed == 0 {
if s == StateError {
if err := e.hardErrorLocked(); err != nil {
return nil, nil, err
}
return nil, nil, &tcpip.ErrClosedForReceive{}
}
e.stats.ReadErrors.NotConnected.Increment()
return nil, nil, &tcpip.ErrNotConnected{}
}
if e.rcvQueueInfo.RcvBufUsed == 0 {
if e.rcvQueueInfo.RcvClosed || !e.EndpointState().connected() {
return nil, nil, &tcpip.ErrClosedForReceive{}
}
return nil, nil, &tcpip.ErrWouldBlock{}
}
return e.rcvQueueInfo.rcvQueue.Front(), e.rcvQueueInfo.rcvQueue.Back(), nil
}
// commitRead commits a read of done bytes and returns the next non-empty
// segment to read. Data read from the segment must have also been removed from
// the segment in order for this method to work correctly.
//
// It is performance critical to call commitRead frequently when servicing a big
// Read request, so TCP can make progress timely. Right now, it is designed to
// do this per segment read, hence this method conveniently returns the next
// segment to read while holding the lock.
//
// Precondition: e.rcvReadMu must be held.
func (e *endpoint) commitRead(done int) *segment {
e.LockUser()
defer e.UnlockUser()
e.rcvQueueInfo.rcvQueueMu.Lock()
defer e.rcvQueueInfo.rcvQueueMu.Unlock()
memDelta := 0
s := e.rcvQueueInfo.rcvQueue.Front()
for s != nil && s.data.Size() == 0 {
e.rcvQueueInfo.rcvQueue.Remove(s)
// Memory is only considered released when the whole segment has been
// read.
memDelta += s.segMemSize()
s.decRef()
s = e.rcvQueueInfo.rcvQueue.Front()
}
e.rcvQueueInfo.RcvBufUsed -= done
if memDelta > 0 {
// If the window was small before this read and if the read freed up
// enough buffer space, to either fit an aMSS or half a receive buffer
// (whichever smaller), then notify the protocol goroutine to send a
// window update.
if crossed, above := e.windowCrossedACKThresholdLocked(memDelta, int(e.ops.GetReceiveBufferSize())); crossed && above {
e.notifyProtocolGoroutine(notifyNonZeroReceiveWindow)
}
}
return e.rcvQueueInfo.rcvQueue.Front()
}
// isEndpointWritableLocked checks if a given endpoint is writable
// and also returns the number of bytes that can be written at this
// moment. If the endpoint is not writable then it returns an error
// indicating the reason why it's not writable.
// Caller must hold e.mu and e.sndQueueMu
func (e *endpoint) isEndpointWritableLocked() (int, tcpip.Error) {
// The endpoint cannot be written to if it's not connected.
switch s := e.EndpointState(); {
case s == StateError:
if err := e.hardErrorLocked(); err != nil {
return 0, err
}
return 0, &tcpip.ErrClosedForSend{}
case !s.connecting() && !s.connected():
return 0, &tcpip.ErrClosedForSend{}
case s.connecting():
// As per RFC793, page 56, a send request arriving when in connecting
// state, can be queued to be completed after the state becomes
// connected. Return an error code for the caller of endpoint Write to
// try again, until the connection handshake is complete.
return 0, &tcpip.ErrWouldBlock{}
}
// Check if the connection has already been closed for sends.
if e.sndQueueInfo.SndClosed {
return 0, &tcpip.ErrClosedForSend{}
}
sndBufSize := e.getSendBufferSize()
avail := sndBufSize - e.sndQueueInfo.SndBufUsed
if avail <= 0 {
return 0, &tcpip.ErrWouldBlock{}
}
return avail, nil
}
// readFromPayloader reads a slice from the Payloader.
// +checklocks:e.mu
// +checklocks:e.sndQueueInfo.sndQueueMu
func (e *endpoint) readFromPayloader(p tcpip.Payloader, opts tcpip.WriteOptions, avail int) ([]byte, tcpip.Error) {
// We can release locks while copying data.
//
// This is not possible if atomic is set, because we can't allow the
// available buffer space to be consumed by some other caller while we
// are copying data in.
if !opts.Atomic {
e.sndQueueInfo.sndQueueMu.Unlock()
defer e.sndQueueInfo.sndQueueMu.Lock()
e.UnlockUser()
defer e.LockUser()
}
// Fetch data.
if l := p.Len(); l < avail {
avail = l
}
if avail == 0 {
return nil, nil
}
v := make([]byte, avail)
n, err := p.Read(v)
if err != nil && err != io.EOF {
return nil, &tcpip.ErrBadBuffer{}
}
return v[:n], nil
}
// queueSegment reads data from the payloader and returns a segment to be sent.
// +checklocks:e.mu
func (e *endpoint) queueSegment(p tcpip.Payloader, opts tcpip.WriteOptions) (*segment, int, tcpip.Error) {
e.sndQueueInfo.sndQueueMu.Lock()
defer e.sndQueueInfo.sndQueueMu.Unlock()
avail, err := e.isEndpointWritableLocked()
if err != nil {
e.stats.WriteErrors.WriteClosed.Increment()
return nil, 0, err
}
v, err := e.readFromPayloader(p, opts, avail)
if err != nil {
return nil, 0, err
}
// Do not queue zero length segments.
if len(v) == 0 {
return nil, 0, nil
}
if !opts.Atomic {
// Since we released locks in between it's possible that the
// endpoint transitioned to a CLOSED/ERROR states so make
// sure endpoint is still writable before trying to write.
avail, err := e.isEndpointWritableLocked()
if err != nil {
e.stats.WriteErrors.WriteClosed.Increment()
return nil, 0, err
}
// Discard any excess data copied in due to avail being reduced due
// to a simultaneous write call to the socket.
if avail < len(v) {
v = v[:avail]
}
}
// Add data to the send queue.
s := newOutgoingSegment(e.TransportEndpointInfo.ID, e.stack.Clock(), v)
e.sndQueueInfo.SndBufUsed += len(v)
e.snd.writeList.PushBack(s)
return s, len(v), nil
}
// Write writes data to the endpoint's peer.
func (e *endpoint) Write(p tcpip.Payloader, opts tcpip.WriteOptions) (int64, tcpip.Error) {
// Linux completely ignores any address passed to sendto(2) for TCP sockets
// (without the MSG_FASTOPEN flag). Corking is unimplemented, so opts.More
// and opts.EndOfRecord are also ignored.
e.LockUser()
defer e.UnlockUser()
// Return if either we didn't queue anything or if an error occurred while
// attempting to queue data.
nextSeg, n, err := e.queueSegment(p, opts)
if n == 0 || err != nil {
return 0, err
}
e.sendData(nextSeg)
return int64(n), nil
}
// selectWindowLocked returns the new window without checking for shrinking or scaling
// applied.
// Precondition: e.mu and e.rcvQueueMu must be held.
func (e *endpoint) selectWindowLocked(rcvBufSize int) (wnd seqnum.Size) {
wndFromAvailable := wndFromSpace(e.receiveBufferAvailableLocked(rcvBufSize))
maxWindow := wndFromSpace(rcvBufSize)
wndFromUsedBytes := maxWindow - e.rcvQueueInfo.RcvBufUsed
// We take the lesser of the wndFromAvailable and wndFromUsedBytes because in
// cases where we receive a lot of small segments the segment overhead is a
// lot higher and we can run out socket buffer space before we can fill the
// previous window we advertised. In cases where we receive MSS sized or close
// MSS sized segments we will probably run out of window space before we
// exhaust receive buffer.
newWnd := wndFromAvailable
if newWnd > wndFromUsedBytes {
newWnd = wndFromUsedBytes
}
if newWnd < 0 {
newWnd = 0
}
return seqnum.Size(newWnd)
}
// selectWindow invokes selectWindowLocked after acquiring e.rcvQueueMu.
func (e *endpoint) selectWindow() (wnd seqnum.Size) {
e.rcvQueueInfo.rcvQueueMu.Lock()
wnd = e.selectWindowLocked(int(e.ops.GetReceiveBufferSize()))
e.rcvQueueInfo.rcvQueueMu.Unlock()
return wnd
}
// windowCrossedACKThresholdLocked checks if the receive window to be announced
// would be under aMSS or under the window derived from half receive buffer,
// whichever smaller. This is useful as a receive side silly window syndrome
// prevention mechanism. If window grows to reasonable value, we should send ACK
// to the sender to inform the rx space is now large. We also want ensure a
// series of small read()'s won't trigger a flood of spurious tiny ACK's.
//
// For large receive buffers, the threshold is aMSS - once reader reads more
// than aMSS we'll send ACK. For tiny receive buffers, the threshold is half of
// receive buffer size. This is chosen arbitrarily.
// crossed will be true if the window size crossed the ACK threshold.
// above will be true if the new window is >= ACK threshold and false
// otherwise.
//
// Precondition: e.mu and e.rcvQueueMu must be held.
func (e *endpoint) windowCrossedACKThresholdLocked(deltaBefore int, rcvBufSize int) (crossed bool, above bool) {
newAvail := int(e.selectWindowLocked(rcvBufSize))
oldAvail := newAvail - deltaBefore
if oldAvail < 0 {
oldAvail = 0
}
threshold := int(e.amss)
// rcvBufFraction is the inverse of the fraction of receive buffer size that
// is used to decide if the available buffer space is now above it.
const rcvBufFraction = 2
if wndThreshold := wndFromSpace(rcvBufSize / rcvBufFraction); threshold > wndThreshold {
threshold = wndThreshold
}
switch {
case oldAvail < threshold && newAvail >= threshold:
return true, true
case oldAvail >= threshold && newAvail < threshold:
return true, false
}
return false, false
}
// OnReuseAddressSet implements tcpip.SocketOptionsHandler.OnReuseAddressSet.
func (e *endpoint) OnReuseAddressSet(v bool) {
e.LockUser()
e.portFlags.TupleOnly = v
e.UnlockUser()
}
// OnReusePortSet implements tcpip.SocketOptionsHandler.OnReusePortSet.
func (e *endpoint) OnReusePortSet(v bool) {
e.LockUser()
e.portFlags.LoadBalanced = v
e.UnlockUser()
}
// OnKeepAliveSet implements tcpip.SocketOptionsHandler.OnKeepAliveSet.
func (e *endpoint) OnKeepAliveSet(bool) {
e.notifyProtocolGoroutine(notifyKeepaliveChanged)
}
// OnDelayOptionSet implements tcpip.SocketOptionsHandler.OnDelayOptionSet.
func (e *endpoint) OnDelayOptionSet(v bool) {
if !v {
// Handle delayed data.
e.sndQueueInfo.sndWaker.Assert()
}
}
// OnCorkOptionSet implements tcpip.SocketOptionsHandler.OnCorkOptionSet.
func (e *endpoint) OnCorkOptionSet(v bool) {
if !v {
// Handle the corked data.
e.sndQueueInfo.sndWaker.Assert()
}
}
func (e *endpoint) getSendBufferSize() int {
return int(e.ops.GetSendBufferSize())
}
// OnSetReceiveBufferSize implements tcpip.SocketOptionsHandler.OnSetReceiveBufferSize.
func (e *endpoint) OnSetReceiveBufferSize(rcvBufSz, oldSz int64) (newSz int64) {
e.LockUser()
e.rcvQueueInfo.rcvQueueMu.Lock()
// Make sure the receive buffer size allows us to send a
// non-zero window size.
scale := uint8(0)
if e.rcv != nil {
scale = e.rcv.RcvWndScale
}
if rcvBufSz>>scale == 0 {
rcvBufSz = 1 << scale
}
availBefore := wndFromSpace(e.receiveBufferAvailableLocked(int(oldSz)))
availAfter := wndFromSpace(e.receiveBufferAvailableLocked(int(rcvBufSz)))
e.rcvQueueInfo.RcvAutoParams.Disabled = true
// Immediately send an ACK to uncork the sender silly window
// syndrome prevetion, when our available space grows above aMSS
// or half receive buffer, whichever smaller.
if crossed, above := e.windowCrossedACKThresholdLocked(availAfter-availBefore, int(rcvBufSz)); crossed && above {
e.notifyProtocolGoroutine(notifyNonZeroReceiveWindow)
}
e.rcvQueueInfo.rcvQueueMu.Unlock()
e.UnlockUser()
return rcvBufSz
}
// OnSetSendBufferSize implements tcpip.SocketOptionsHandler.OnSetSendBufferSize.
func (e *endpoint) OnSetSendBufferSize(sz int64) int64 {
atomic.StoreUint32(&e.sndQueueInfo.TCPSndBufState.AutoTuneSndBufDisabled, 1)
return sz
}
// WakeupWriters implements tcpip.SocketOptionsHandler.WakeupWriters.
func (e *endpoint) WakeupWriters() {
e.LockUser()
defer e.UnlockUser()
sendBufferSize := e.getSendBufferSize()
e.sndQueueInfo.sndQueueMu.Lock()
notify := (sendBufferSize - e.sndQueueInfo.SndBufUsed) >= e.sndQueueInfo.SndBufUsed>>1
e.sndQueueInfo.sndQueueMu.Unlock()
if notify {
e.waiterQueue.Notify(waiter.WritableEvents)
}
}
// SetSockOptInt sets a socket option.
func (e *endpoint) SetSockOptInt(opt tcpip.SockOptInt, v int) tcpip.Error {
// Lower 2 bits represents ECN bits. RFC 3168, section 23.1
const inetECNMask = 3
switch opt {
case tcpip.KeepaliveCountOption:
e.keepalive.Lock()
e.keepalive.count = v
e.keepalive.Unlock()
e.notifyProtocolGoroutine(notifyKeepaliveChanged)
case tcpip.IPv4TOSOption:
e.LockUser()
// TODO(gvisor.dev/issue/995): ECN is not currently supported,
// ignore the bits for now.
e.sendTOS = uint8(v) & ^uint8(inetECNMask)
e.UnlockUser()
case tcpip.IPv6TrafficClassOption:
e.LockUser()
// TODO(gvisor.dev/issue/995): ECN is not currently supported,
// ignore the bits for now.
e.sendTOS = uint8(v) & ^uint8(inetECNMask)
e.UnlockUser()
case tcpip.MaxSegOption:
userMSS := v
if userMSS < header.TCPMinimumMSS || userMSS > header.TCPMaximumMSS {
return &tcpip.ErrInvalidOptionValue{}
}
e.LockUser()
e.userMSS = uint16(userMSS)
e.UnlockUser()
e.notifyProtocolGoroutine(notifyMSSChanged)
case tcpip.MTUDiscoverOption:
// Return not supported if attempting to set this option to
// anything other than path MTU discovery disabled.
if v != tcpip.PMTUDiscoveryDont {
return &tcpip.ErrNotSupported{}
}
case tcpip.TTLOption:
e.LockUser()
e.ttl = uint8(v)
e.UnlockUser()
case tcpip.TCPSynCountOption:
if v < 1 || v > 255 {
return &tcpip.ErrInvalidOptionValue{}
}
e.LockUser()
e.maxSynRetries = uint8(v)
e.UnlockUser()
case tcpip.TCPWindowClampOption:
if v == 0 {
e.LockUser()
switch e.EndpointState() {
case StateClose, StateInitial:
e.windowClamp = 0
e.UnlockUser()
return nil
default:
e.UnlockUser()
return &tcpip.ErrInvalidOptionValue{}
}
}
var rs tcpip.TCPReceiveBufferSizeRangeOption
if err := e.stack.TransportProtocolOption(ProtocolNumber, &rs); err == nil {
if v < rs.Min/2 {
v = rs.Min / 2
}
}
e.LockUser()
e.windowClamp = uint32(v)
e.UnlockUser()
}
return nil
}
func (e *endpoint) HasNIC(id int32) bool {
return id == 0 || e.stack.HasNIC(tcpip.NICID(id))
}
// SetSockOpt sets a socket option.
func (e *endpoint) SetSockOpt(opt tcpip.SettableSocketOption) tcpip.Error {
switch v := opt.(type) {
case *tcpip.KeepaliveIdleOption:
e.keepalive.Lock()
e.keepalive.idle = time.Duration(*v)
e.keepalive.Unlock()
e.notifyProtocolGoroutine(notifyKeepaliveChanged)
case *tcpip.KeepaliveIntervalOption:
e.keepalive.Lock()
e.keepalive.interval = time.Duration(*v)
e.keepalive.Unlock()
e.notifyProtocolGoroutine(notifyKeepaliveChanged)
case *tcpip.TCPUserTimeoutOption:
e.LockUser()
e.userTimeout = time.Duration(*v)
e.UnlockUser()
case *tcpip.CongestionControlOption:
// Query the available cc algorithms in the stack and
// validate that the specified algorithm is actually
// supported in the stack.
var avail tcpip.TCPAvailableCongestionControlOption
if err := e.stack.TransportProtocolOption(ProtocolNumber, &avail); err != nil {
return err
}
availCC := strings.Split(string(avail), " ")
for _, cc := range availCC {
if *v == tcpip.CongestionControlOption(cc) {
e.LockUser()
state := e.EndpointState()
e.cc = *v
switch state {
case StateEstablished:
if e.EndpointState() == state {
e.snd.cc = e.snd.initCongestionControl(e.cc)
}
}
e.UnlockUser()
return nil
}
}
// Linux returns ENOENT when an invalid congestion
// control algorithm is specified.
return &tcpip.ErrNoSuchFile{}
case *tcpip.TCPLingerTimeoutOption:
e.LockUser()
switch {
case *v < 0:
// Same as effectively disabling TCPLinger timeout.
*v = -1
case *v == 0:
// Same as the stack default.
var stackLingerTimeout tcpip.TCPLingerTimeoutOption
if err := e.stack.TransportProtocolOption(ProtocolNumber, &stackLingerTimeout); err != nil {
panic(fmt.Sprintf("e.stack.TransportProtocolOption(%d, %+v) = %v", ProtocolNumber, &stackLingerTimeout, err))
}
*v = stackLingerTimeout
case *v > tcpip.TCPLingerTimeoutOption(MaxTCPLingerTimeout):
// Cap it to Stack's default TCP_LINGER2 timeout.
*v = tcpip.TCPLingerTimeoutOption(MaxTCPLingerTimeout)
default:
}
e.tcpLingerTimeout = time.Duration(*v)
e.UnlockUser()
case *tcpip.TCPDeferAcceptOption:
e.LockUser()
if time.Duration(*v) > MaxRTO {
*v = tcpip.TCPDeferAcceptOption(MaxRTO)
}
e.deferAccept = time.Duration(*v)
e.UnlockUser()
case *tcpip.SocketDetachFilterOption:
return nil
default:
return nil
}
return nil
}
// readyReceiveSize returns the number of bytes ready to be received.
func (e *endpoint) readyReceiveSize() (int, tcpip.Error) {
e.LockUser()
defer e.UnlockUser()
// The endpoint cannot be in listen state.
if e.EndpointState() == StateListen {
return 0, &tcpip.ErrInvalidEndpointState{}
}
e.rcvQueueInfo.rcvQueueMu.Lock()
defer e.rcvQueueInfo.rcvQueueMu.Unlock()
return e.rcvQueueInfo.RcvBufUsed, nil
}
// GetSockOptInt implements tcpip.Endpoint.GetSockOptInt.
func (e *endpoint) GetSockOptInt(opt tcpip.SockOptInt) (int, tcpip.Error) {
switch opt {
case tcpip.KeepaliveCountOption:
e.keepalive.Lock()
v := e.keepalive.count
e.keepalive.Unlock()
return v, nil
case tcpip.IPv4TOSOption:
e.LockUser()
v := int(e.sendTOS)
e.UnlockUser()
return v, nil
case tcpip.IPv6TrafficClassOption:
e.LockUser()
v := int(e.sendTOS)
e.UnlockUser()
return v, nil
case tcpip.MaxSegOption:
// This is just stubbed out. Linux never returns the user_mss
// value as it either returns the defaultMSS or returns the
// actual current MSS. Netstack just returns the defaultMSS
// always for now.
v := header.TCPDefaultMSS
return v, nil
case tcpip.MTUDiscoverOption:
// Always return the path MTU discovery disabled setting since
// it's the only one supported.
return tcpip.PMTUDiscoveryDont, nil
case tcpip.ReceiveQueueSizeOption:
return e.readyReceiveSize()
case tcpip.TTLOption:
e.LockUser()
v := int(e.ttl)
e.UnlockUser()
return v, nil
case tcpip.TCPSynCountOption:
e.LockUser()
v := int(e.maxSynRetries)
e.UnlockUser()
return v, nil
case tcpip.TCPWindowClampOption:
e.LockUser()
v := int(e.windowClamp)
e.UnlockUser()
return v, nil
case tcpip.MulticastTTLOption:
return 1, nil
default:
return -1, &tcpip.ErrUnknownProtocolOption{}
}
}
func (e *endpoint) getTCPInfo() tcpip.TCPInfoOption {
info := tcpip.TCPInfoOption{}
e.LockUser()
if state := e.EndpointState(); state.internal() {
info.State = tcpip.EndpointState(StateClose)
} else {
info.State = tcpip.EndpointState(state)
}
snd := e.snd
if snd != nil {
// We do not calculate RTT before sending the data packets. If
// the connection did not send and receive data, then RTT will
// be zero.
snd.rtt.Lock()
info.RTT = snd.rtt.TCPRTTState.SRTT
info.RTTVar = snd.rtt.TCPRTTState.RTTVar
snd.rtt.Unlock()
info.RTO = snd.RTO
info.CcState = snd.state
info.SndSsthresh = uint32(snd.Ssthresh)
info.SndCwnd = uint32(snd.SndCwnd)
info.ReorderSeen = snd.rc.Reord
}
e.UnlockUser()
return info
}
// GetSockOpt implements tcpip.Endpoint.GetSockOpt.
func (e *endpoint) GetSockOpt(opt tcpip.GettableSocketOption) tcpip.Error {
switch o := opt.(type) {
case *tcpip.TCPInfoOption:
*o = e.getTCPInfo()
case *tcpip.KeepaliveIdleOption:
e.keepalive.Lock()
*o = tcpip.KeepaliveIdleOption(e.keepalive.idle)
e.keepalive.Unlock()
case *tcpip.KeepaliveIntervalOption:
e.keepalive.Lock()
*o = tcpip.KeepaliveIntervalOption(e.keepalive.interval)
e.keepalive.Unlock()
case *tcpip.TCPUserTimeoutOption:
e.LockUser()
*o = tcpip.TCPUserTimeoutOption(e.userTimeout)
e.UnlockUser()
case *tcpip.CongestionControlOption:
e.LockUser()
*o = e.cc
e.UnlockUser()
case *tcpip.TCPLingerTimeoutOption:
e.LockUser()
*o = tcpip.TCPLingerTimeoutOption(e.tcpLingerTimeout)
e.UnlockUser()
case *tcpip.TCPDeferAcceptOption:
e.LockUser()
*o = tcpip.TCPDeferAcceptOption(e.deferAccept)
e.UnlockUser()
case *tcpip.OriginalDestinationOption:
e.LockUser()
ipt := e.stack.IPTables()
addr, port, err := ipt.OriginalDst(e.TransportEndpointInfo.ID, e.NetProto)
e.UnlockUser()
if err != nil {
return err
}
*o = tcpip.OriginalDestinationOption{
Addr: addr,
Port: port,
}
default:
return &tcpip.ErrUnknownProtocolOption{}
}
return nil
}
// checkV4MappedLocked determines the effective network protocol and converts
// addr to its canonical form.
func (e *endpoint) checkV4MappedLocked(addr tcpip.FullAddress) (tcpip.FullAddress, tcpip.NetworkProtocolNumber, tcpip.Error) {
unwrapped, netProto, err := e.TransportEndpointInfo.AddrNetProtoLocked(addr, e.ops.GetV6Only())
if err != nil {
return tcpip.FullAddress{}, 0, err
}
return unwrapped, netProto, nil
}
// Disconnect implements tcpip.Endpoint.Disconnect.
func (*endpoint) Disconnect() tcpip.Error {
return &tcpip.ErrNotSupported{}
}
// Connect connects the endpoint to its peer.
func (e *endpoint) Connect(addr tcpip.FullAddress) tcpip.Error {
err := e.connect(addr, true, true)
if err != nil {
if !err.IgnoreStats() {
// Connect failed. Let's wake up any waiters.
e.waiterQueue.Notify(waiter.EventHUp | waiter.EventErr | waiter.ReadableEvents | waiter.WritableEvents)
e.stack.Stats().TCP.FailedConnectionAttempts.Increment()
e.stats.FailedConnectionAttempts.Increment()
}
}
return err
}
// connect connects the endpoint to its peer. In the normal non-S/R case, the
// new connection is expected to run the main goroutine and perform handshake.
// In restore of previously connected endpoints, both ends will be passively
// created (so no new handshaking is done); for stack-accepted connections not
// yet accepted by the app, they are restored without running the main goroutine
// here.
func (e *endpoint) connect(addr tcpip.FullAddress, handshake bool, run bool) tcpip.Error {
e.LockUser()
defer e.UnlockUser()
connectingAddr := addr.Addr
addr, netProto, err := e.checkV4MappedLocked(addr)
if err != nil {
return err
}
if e.EndpointState().connected() {
// The endpoint is already connected. If caller hasn't been
// notified yet, return success.
if !e.isConnectNotified {
e.isConnectNotified = true
return nil
}
// Otherwise return that it's already connected.
return &tcpip.ErrAlreadyConnected{}
}
nicID := addr.NIC
switch e.EndpointState() {
case StateBound:
// If we're already bound to a NIC but the caller is requesting
// that we use a different one now, we cannot proceed.
if e.boundNICID == 0 {
break
}
if nicID != 0 && nicID != e.boundNICID {
return &tcpip.ErrNoRoute{}
}
nicID = e.boundNICID
case StateInitial:
// Nothing to do. We'll eventually fill-in the gaps in the ID (if any)
// when we find a route.
case StateConnecting, StateSynSent, StateSynRecv:
// A connection request has already been issued but hasn't completed
// yet.
return &tcpip.ErrAlreadyConnecting{}
case StateError:
if err := e.hardErrorLocked(); err != nil {
return err
}
return &tcpip.ErrConnectionAborted{}
default:
return &tcpip.ErrInvalidEndpointState{}
}
// Find a route to the desired destination.
r, err := e.stack.FindRoute(nicID, e.TransportEndpointInfo.ID.LocalAddress, addr.Addr, netProto, false /* multicastLoop */)
if err != nil {
return err
}
defer r.Release()
netProtos := []tcpip.NetworkProtocolNumber{netProto}
e.TransportEndpointInfo.ID.LocalAddress = r.LocalAddress()
e.TransportEndpointInfo.ID.RemoteAddress = r.RemoteAddress()
e.TransportEndpointInfo.ID.RemotePort = addr.Port
if e.TransportEndpointInfo.ID.LocalPort != 0 {
// The endpoint is bound to a port, attempt to register it.
err := e.stack.RegisterTransportEndpoint(netProtos, ProtocolNumber, e.TransportEndpointInfo.ID, e, e.boundPortFlags, e.boundBindToDevice)
if err != nil {
return err
}
} else {
// The endpoint doesn't have a local port yet, so try to get
// one. Make sure that it isn't one that will result in the same
// address/port for both local and remote (otherwise this
// endpoint would be trying to connect to itself).
sameAddr := e.TransportEndpointInfo.ID.LocalAddress == e.TransportEndpointInfo.ID.RemoteAddress
// Calculate a port offset based on the destination IP/port and
// src IP to ensure that for a given tuple (srcIP, destIP,
// destPort) the offset used as a starting point is the same to
// ensure that we can cycle through the port space effectively.
portBuf := make([]byte, 2)
binary.LittleEndian.PutUint16(portBuf, e.ID.RemotePort)
h := jenkins.Sum32(e.protocol.portOffsetSecret)
for _, s := range [][]byte{
[]byte(e.ID.LocalAddress),
[]byte(e.ID.RemoteAddress),
portBuf,
} {
// Per io.Writer.Write:
//
// Write must return a non-nil error if it returns n < len(p).
if _, err := h.Write(s); err != nil {
panic(err)
}
}
portOffset := h.Sum32()
var twReuse tcpip.TCPTimeWaitReuseOption
if err := e.stack.TransportProtocolOption(ProtocolNumber, &twReuse); err != nil {
panic(fmt.Sprintf("e.stack.TransportProtocolOption(%d, %#v) = %s", ProtocolNumber, &twReuse, err))
}
reuse := twReuse == tcpip.TCPTimeWaitReuseGlobal
if twReuse == tcpip.TCPTimeWaitReuseLoopbackOnly {
switch netProto {
case header.IPv4ProtocolNumber:
reuse = header.IsV4LoopbackAddress(e.TransportEndpointInfo.ID.LocalAddress) && header.IsV4LoopbackAddress(e.TransportEndpointInfo.ID.RemoteAddress)
case header.IPv6ProtocolNumber:
reuse = e.TransportEndpointInfo.ID.LocalAddress == header.IPv6Loopback && e.TransportEndpointInfo.ID.RemoteAddress == header.IPv6Loopback
}
}
bindToDevice := tcpip.NICID(e.ops.GetBindToDevice())
if _, err := e.stack.PickEphemeralPortStable(portOffset, func(p uint16) (bool, tcpip.Error) {
if sameAddr && p == e.TransportEndpointInfo.ID.RemotePort {
return false, nil
}
portRes := ports.Reservation{
Networks: netProtos,
Transport: ProtocolNumber,
Addr: e.TransportEndpointInfo.ID.LocalAddress,
Port: p,
Flags: e.portFlags,
BindToDevice: bindToDevice,
Dest: addr,
}
if _, err := e.stack.ReservePort(e.stack.Rand(), portRes, nil /* testPort */); err != nil {
if _, ok := err.(*tcpip.ErrPortInUse); !ok || !reuse {
return false, nil
}
transEPID := e.TransportEndpointInfo.ID
transEPID.LocalPort = p
// Check if an endpoint is registered with demuxer in TIME-WAIT and if
// we can reuse it. If we can't find a transport endpoint then we just
// skip using this port as it's possible that either an endpoint has
// bound the port but not registered with demuxer yet (no listen/connect
// done yet) or the reservation was freed between the check above and
// the FindTransportEndpoint below. But rather than retry the same port
// we just skip it and move on.
transEP := e.stack.FindTransportEndpoint(netProto, ProtocolNumber, transEPID, r.NICID())
if transEP == nil {
// ReservePort failed but there is no registered endpoint with
// demuxer. Which indicates there is at least some endpoint that has
// bound the port.
return false, nil
}
tcpEP := transEP.(*endpoint)
tcpEP.LockUser()
// If the endpoint is not in TIME-WAIT or if it is in TIME-WAIT but
// less than 1 second has elapsed since its recentTS was updated then
// we cannot reuse the port.
if tcpEP.EndpointState() != StateTimeWait || e.stack.Clock().NowMonotonic().Sub(tcpEP.recentTSTime) < 1*time.Second {
tcpEP.UnlockUser()
return false, nil
}
// Since the endpoint is in TIME-WAIT it should be safe to acquire its
// Lock while holding the lock for this endpoint as endpoints in
// TIME-WAIT do not acquire locks on other endpoints.
tcpEP.workerCleanup = false
tcpEP.cleanupLocked()
tcpEP.notifyProtocolGoroutine(notifyAbort)
tcpEP.UnlockUser()
// Now try and Reserve again if it fails then we skip.
portRes := ports.Reservation{
Networks: netProtos,
Transport: ProtocolNumber,
Addr: e.TransportEndpointInfo.ID.LocalAddress,
Port: p,
Flags: e.portFlags,
BindToDevice: bindToDevice,
Dest: addr,
}
if _, err := e.stack.ReservePort(e.stack.Rand(), portRes, nil /* testPort */); err != nil {
return false, nil
}
}
id := e.TransportEndpointInfo.ID
id.LocalPort = p
if err := e.stack.RegisterTransportEndpoint(netProtos, ProtocolNumber, id, e, e.portFlags, bindToDevice); err != nil {
portRes := ports.Reservation{
Networks: netProtos,
Transport: ProtocolNumber,
Addr: e.TransportEndpointInfo.ID.LocalAddress,
Port: p,
Flags: e.portFlags,
BindToDevice: bindToDevice,
Dest: addr,
}
e.stack.ReleasePort(portRes)
if _, ok := err.(*tcpip.ErrPortInUse); ok {
return false, nil
}
return false, err
}
// Port picking successful. Save the details of
// the selected port.
e.TransportEndpointInfo.ID = id
e.isPortReserved = true
e.boundBindToDevice = bindToDevice
e.boundPortFlags = e.portFlags
e.boundDest = addr
return true, nil
}); err != nil {
e.stack.Stats().TCP.FailedPortReservations.Increment()
return err
}
}
e.isRegistered = true
e.setEndpointState(StateConnecting)
r.Acquire()
e.route = r
e.boundNICID = nicID
e.effectiveNetProtos = netProtos
e.connectingAddress = connectingAddr
e.initGSO()
// Connect in the restore phase does not perform handshake. Restore its
// connection setting here.
if !handshake {
e.segmentQueue.mu.Lock()
for _, l := range []segmentList{e.segmentQueue.list, e.snd.writeList} {
for s := l.Front(); s != nil; s = s.Next() {
s.id = e.TransportEndpointInfo.ID
e.sndQueueInfo.sndWaker.Assert()
}
}
e.segmentQueue.mu.Unlock()
e.snd.updateMaxPayloadSize(int(e.route.MTU()), 0)
e.setEndpointState(StateEstablished)
// Set the new auto tuned send buffer size after entering
// established state.
e.ops.SetSendBufferSize(e.computeTCPSendBufferSize(), false /* notify */)
}
if run {
if handshake {
h := e.newHandshake()
e.setEndpointState(StateSynSent)
h.start()
}
e.stack.Stats().TCP.ActiveConnectionOpenings.Increment()
e.workerRunning = true
go e.protocolMainLoop(handshake, nil) // S/R-SAFE: will be drained before save.
}
return &tcpip.ErrConnectStarted{}
}
// ConnectEndpoint is not supported.
func (*endpoint) ConnectEndpoint(tcpip.Endpoint) tcpip.Error {
return &tcpip.ErrInvalidEndpointState{}
}
// Shutdown closes the read and/or write end of the endpoint connection to its
// peer.
func (e *endpoint) Shutdown(flags tcpip.ShutdownFlags) tcpip.Error {
e.LockUser()
defer e.UnlockUser()
return e.shutdownLocked(flags)
}
func (e *endpoint) shutdownLocked(flags tcpip.ShutdownFlags) tcpip.Error {
e.shutdownFlags |= flags
switch {
case e.EndpointState().connected():
// Close for read.
if e.shutdownFlags&tcpip.ShutdownRead != 0 {
// Mark read side as closed.
e.rcvQueueInfo.rcvQueueMu.Lock()
e.rcvQueueInfo.RcvClosed = true
rcvBufUsed := e.rcvQueueInfo.RcvBufUsed
e.rcvQueueInfo.rcvQueueMu.Unlock()
// If we're fully closed and we have unread data we need to abort
// the connection with a RST.
if e.shutdownFlags&tcpip.ShutdownWrite != 0 && rcvBufUsed > 0 {
e.resetConnectionLocked(&tcpip.ErrConnectionAborted{})
// Wake up worker to terminate loop.
e.notifyProtocolGoroutine(notifyTickleWorker)
return nil
}
// Wake up any readers that maybe waiting for the stream to become
// readable.
e.waiterQueue.Notify(waiter.ReadableEvents)
}
// Close for write.
if e.shutdownFlags&tcpip.ShutdownWrite != 0 {
e.sndQueueInfo.sndQueueMu.Lock()
if e.sndQueueInfo.SndClosed {
// Already closed.
e.sndQueueInfo.sndQueueMu.Unlock()
if e.EndpointState() == StateTimeWait {
return &tcpip.ErrNotConnected{}
}
return nil
}
// Queue fin segment.
s := newOutgoingSegment(e.TransportEndpointInfo.ID, e.stack.Clock(), nil)
e.snd.writeList.PushBack(s)
// Mark endpoint as closed.
e.sndQueueInfo.SndClosed = true
e.sndQueueInfo.sndQueueMu.Unlock()
// Drain the send queue.
e.sendData(s)
// Mark send side as closed.
e.snd.Closed = true
// Wake up any writers that maybe waiting for the stream to become
// writable.
e.waiterQueue.Notify(waiter.WritableEvents)
}
return nil
case e.EndpointState() == StateListen:
if e.shutdownFlags&tcpip.ShutdownRead != 0 {
// Reset all connections from the accept queue and keep the
// worker running so that it can continue handling incoming
// segments by replying with RST.
//
// By not removing this endpoint from the demuxer mapping, we
// ensure that any other bind to the same port fails, as on Linux.
e.rcvQueueInfo.rcvQueueMu.Lock()
e.rcvQueueInfo.RcvClosed = true
e.rcvQueueInfo.rcvQueueMu.Unlock()
e.closePendingAcceptableConnectionsLocked()
// Notify waiters that the endpoint is shutdown.
e.waiterQueue.Notify(waiter.ReadableEvents | waiter.WritableEvents | waiter.EventHUp | waiter.EventErr)
}
return nil
default:
return &tcpip.ErrNotConnected{}
}
}
// Listen puts the endpoint in "listen" mode, which allows it to accept
// new connections.
func (e *endpoint) Listen(backlog int) tcpip.Error {
err := e.listen(backlog)
if err != nil {
if !err.IgnoreStats() {
e.stack.Stats().TCP.FailedConnectionAttempts.Increment()
e.stats.FailedConnectionAttempts.Increment()
}
}
return err
}
func (e *endpoint) listen(backlog int) tcpip.Error {
e.LockUser()
defer e.UnlockUser()
if e.EndpointState() == StateListen && !e.closed {
e.acceptMu.Lock()
defer e.acceptMu.Unlock()
if e.accepted == (accepted{}) {
// listen is called after shutdown.
e.accepted.cap = backlog
e.shutdownFlags = 0
e.rcvQueueInfo.rcvQueueMu.Lock()
e.rcvQueueInfo.RcvClosed = false
e.rcvQueueInfo.rcvQueueMu.Unlock()
} else {
// Adjust the size of the backlog iff we can fit
// existing pending connections into the new one.
if e.accepted.endpoints.Len() > backlog {
return &tcpip.ErrInvalidEndpointState{}
}
e.accepted.cap = backlog
}
// Notify any blocked goroutines that they can attempt to
// deliver endpoints again.
e.acceptCond.Broadcast()
return nil
}
if e.EndpointState() == StateInitial {
// The listen is called on an unbound socket, the socket is
// automatically bound to a random free port with the local
// address set to INADDR_ANY.
if err := e.bindLocked(tcpip.FullAddress{}); err != nil {
return err
}
}
// Endpoint must be bound before it can transition to listen mode.
if e.EndpointState() != StateBound {
e.stats.ReadErrors.InvalidEndpointState.Increment()
return &tcpip.ErrInvalidEndpointState{}
}
// Register the endpoint.
if err := e.stack.RegisterTransportEndpoint(e.effectiveNetProtos, ProtocolNumber, e.TransportEndpointInfo.ID, e, e.boundPortFlags, e.boundBindToDevice); err != nil {
return err
}
e.isRegistered = true
e.setEndpointState(StateListen)
// The queue may be non-zero when we're restoring the endpoint, and it
// may be pre-populated with some previously accepted (but not Accepted)
// endpoints.
e.acceptMu.Lock()
if e.accepted == (accepted{}) {
e.accepted.cap = backlog
}
e.acceptMu.Unlock()
e.workerRunning = true
go e.protocolListenLoop( // S/R-SAFE: drained on save.
seqnum.Size(e.receiveBufferAvailable()))
return nil
}
// startAcceptedLoop sets up required state and starts a goroutine with the
// main loop for accepted connections.
// +checklocksrelease:e.mu
func (e *endpoint) startAcceptedLoop() {
e.workerRunning = true
e.mu.Unlock()
wakerInitDone := make(chan struct{})
go e.protocolMainLoop(false, wakerInitDone) // S/R-SAFE: drained on save.
<-wakerInitDone
}
// Accept returns a new endpoint if a peer has established a connection
// to an endpoint previously set to listen mode.
//
// addr if not-nil will contain the peer address of the returned endpoint.
func (e *endpoint) Accept(peerAddr *tcpip.FullAddress) (tcpip.Endpoint, *waiter.Queue, tcpip.Error) {
e.LockUser()
defer e.UnlockUser()
e.rcvQueueInfo.rcvQueueMu.Lock()
rcvClosed := e.rcvQueueInfo.RcvClosed
e.rcvQueueInfo.rcvQueueMu.Unlock()
// Endpoint must be in listen state before it can accept connections.
if rcvClosed || e.EndpointState() != StateListen {
return nil, nil, &tcpip.ErrInvalidEndpointState{}
}
// Get the new accepted endpoint.
var n *endpoint
e.acceptMu.Lock()
if element := e.accepted.endpoints.Front(); element != nil {
n = e.accepted.endpoints.Remove(element).(*endpoint)
}
e.acceptMu.Unlock()
if n == nil {
return nil, nil, &tcpip.ErrWouldBlock{}
}
e.acceptCond.Signal()
if peerAddr != nil {
*peerAddr = n.getRemoteAddress()
}
return n, n.waiterQueue, nil
}
// Bind binds the endpoint to a specific local port and optionally address.
func (e *endpoint) Bind(addr tcpip.FullAddress) (err tcpip.Error) {
e.LockUser()
defer e.UnlockUser()
return e.bindLocked(addr)
}
func (e *endpoint) bindLocked(addr tcpip.FullAddress) (err tcpip.Error) {
// Don't allow binding once endpoint is not in the initial state
// anymore. This is because once the endpoint goes into a connected or
// listen state, it is already bound.
if e.EndpointState() != StateInitial {
return &tcpip.ErrAlreadyBound{}
}
e.BindAddr = addr.Addr
addr, netProto, err := e.checkV4MappedLocked(addr)
if err != nil {
return err
}
netProtos := []tcpip.NetworkProtocolNumber{netProto}
// Expand netProtos to include v4 and v6 under dual-stack if the caller is
// binding to a wildcard (empty) address, and this is an IPv6 endpoint with
// v6only set to false.
if netProto == header.IPv6ProtocolNumber {
stackHasV4 := e.stack.CheckNetworkProtocol(header.IPv4ProtocolNumber)
alsoBindToV4 := !e.ops.GetV6Only() && addr.Addr == "" && stackHasV4
if alsoBindToV4 {
netProtos = append(netProtos, header.IPv4ProtocolNumber)
}
}
var nic tcpip.NICID
// If an address is specified, we must ensure that it's one of our
// local addresses.
if len(addr.Addr) != 0 {
nic = e.stack.CheckLocalAddress(addr.NIC, netProto, addr.Addr)
if nic == 0 {
return &tcpip.ErrBadLocalAddress{}
}
e.TransportEndpointInfo.ID.LocalAddress = addr.Addr
}
bindToDevice := tcpip.NICID(e.ops.GetBindToDevice())
portRes := ports.Reservation{
Networks: netProtos,
Transport: ProtocolNumber,
Addr: addr.Addr,
Port: addr.Port,
Flags: e.portFlags,
BindToDevice: bindToDevice,
Dest: tcpip.FullAddress{},
}
port, err := e.stack.ReservePort(e.stack.Rand(), portRes, func(p uint16) (bool, tcpip.Error) {
id := e.TransportEndpointInfo.ID
id.LocalPort = p
// CheckRegisterTransportEndpoint should only return an error if there is a
// listening endpoint bound with the same id and portFlags and bindToDevice
// options.
//
// NOTE: Only listening and connected endpoint register with
// demuxer. Further connected endpoints always have a remote
// address/port. Hence this will only return an error if there is a matching
// listening endpoint.
if err := e.stack.CheckRegisterTransportEndpoint(netProtos, ProtocolNumber, id, e.portFlags, bindToDevice); err != nil {
return false, nil
}
return true, nil
})
if err != nil {
e.stack.Stats().TCP.FailedPortReservations.Increment()
return err
}
e.boundBindToDevice = bindToDevice
e.boundPortFlags = e.portFlags
// TODO(gvisor.dev/issue/3691): Add test to verify boundNICID is correct.
e.boundNICID = nic
e.isPortReserved = true
e.effectiveNetProtos = netProtos
e.TransportEndpointInfo.ID.LocalPort = port
// Mark endpoint as bound.
e.setEndpointState(StateBound)
return nil
}
// GetLocalAddress returns the address to which the endpoint is bound.
func (e *endpoint) GetLocalAddress() (tcpip.FullAddress, tcpip.Error) {
e.LockUser()
defer e.UnlockUser()
return tcpip.FullAddress{
Addr: e.TransportEndpointInfo.ID.LocalAddress,
Port: e.TransportEndpointInfo.ID.LocalPort,
NIC: e.boundNICID,
}, nil
}
// GetRemoteAddress returns the address to which the endpoint is connected.
func (e *endpoint) GetRemoteAddress() (tcpip.FullAddress, tcpip.Error) {
e.LockUser()
defer e.UnlockUser()
if !e.EndpointState().connected() {
return tcpip.FullAddress{}, &tcpip.ErrNotConnected{}
}
return e.getRemoteAddress(), nil
}
func (e *endpoint) getRemoteAddress() tcpip.FullAddress {
return tcpip.FullAddress{
Addr: e.TransportEndpointInfo.ID.RemoteAddress,
Port: e.TransportEndpointInfo.ID.RemotePort,
NIC: e.boundNICID,
}
}
func (*endpoint) HandlePacket(stack.TransportEndpointID, *stack.PacketBuffer) {
// TCP HandlePacket is not required anymore as inbound packets first
// land at the Dispatcher which then can either deliver using the
// worker go routine or directly do the invoke the tcp processing inline
// based on the state of the endpoint.
}
func (e *endpoint) enqueueSegment(s *segment) bool {
// Send packet to worker goroutine.
if !e.segmentQueue.enqueue(s) {
// The queue is full, so we drop the segment.
e.stack.Stats().DroppedPackets.Increment()
e.stats.ReceiveErrors.SegmentQueueDropped.Increment()
return false
}
return true
}
func (e *endpoint) onICMPError(err tcpip.Error, transErr stack.TransportError, pkt *stack.PacketBuffer) {
// Update last error first.
e.lastErrorMu.Lock()
e.lastError = err
e.lastErrorMu.Unlock()
// Update the error queue if IP_RECVERR is enabled.
if e.SocketOptions().GetRecvError() {
e.SocketOptions().QueueErr(&tcpip.SockError{
Err: err,
Cause: transErr,
// Linux passes the payload with the TCP header. We don't know if the TCP
// header even exists, it may not for fragmented packets.
Payload: pkt.Data().AsRange().ToOwnedView(),
Dst: tcpip.FullAddress{
NIC: pkt.NICID,
Addr: e.TransportEndpointInfo.ID.RemoteAddress,
Port: e.TransportEndpointInfo.ID.RemotePort,
},
Offender: tcpip.FullAddress{
NIC: pkt.NICID,
Addr: e.TransportEndpointInfo.ID.LocalAddress,
Port: e.TransportEndpointInfo.ID.LocalPort,
},
NetProto: pkt.NetworkProtocolNumber,
})
}
// Notify of the error.
e.notifyProtocolGoroutine(notifyError)
}
// HandleError implements stack.TransportEndpoint.
func (e *endpoint) HandleError(transErr stack.TransportError, pkt *stack.PacketBuffer) {
handlePacketTooBig := func(mtu uint32) {
e.sndQueueInfo.sndQueueMu.Lock()
e.sndQueueInfo.PacketTooBigCount++
if v := int(mtu); v < e.sndQueueInfo.SndMTU {
e.sndQueueInfo.SndMTU = v
}
e.sndQueueInfo.sndQueueMu.Unlock()
e.notifyProtocolGoroutine(notifyMTUChanged)
}
// TODO(gvisor.dev/issues/5270): Handle all transport errors.
switch transErr.Kind() {
case stack.PacketTooBigTransportError:
handlePacketTooBig(transErr.Info())
case stack.DestinationHostUnreachableTransportError:
e.onICMPError(&tcpip.ErrNoRoute{}, transErr, pkt)
case stack.DestinationNetworkUnreachableTransportError:
e.onICMPError(&tcpip.ErrNetworkUnreachable{}, transErr, pkt)
}
}
// updateSndBufferUsage is called by the protocol goroutine when room opens up
// in the send buffer. The number of newly available bytes is v.
func (e *endpoint) updateSndBufferUsage(v int) {
sendBufferSize := e.getSendBufferSize()
e.sndQueueInfo.sndQueueMu.Lock()
notify := e.sndQueueInfo.SndBufUsed >= sendBufferSize>>1
e.sndQueueInfo.SndBufUsed -= v
// Get the new send buffer size with auto tuning, but do not set it
// unless we decide to notify the writers.
newSndBufSz := e.computeTCPSendBufferSize()
// We only notify when there is half the sendBufferSize available after
// a full buffer event occurs. This ensures that we don't wake up
// writers to queue just 1-2 segments and go back to sleep.
notify = notify && e.sndQueueInfo.SndBufUsed < int(newSndBufSz)>>1
e.sndQueueInfo.sndQueueMu.Unlock()
if notify {
// Set the new send buffer size calculated from auto tuning.
e.ops.SetSendBufferSize(newSndBufSz, false /* notify */)
e.waiterQueue.Notify(waiter.WritableEvents)
}
}
// readyToRead is called by the protocol goroutine when a new segment is ready
// to be read, or when the connection is closed for receiving (in which case
// s will be nil).
func (e *endpoint) readyToRead(s *segment) {
e.rcvQueueInfo.rcvQueueMu.Lock()
if s != nil {
e.rcvQueueInfo.RcvBufUsed += s.payloadSize()
s.incRef()
e.rcvQueueInfo.rcvQueue.PushBack(s)
} else {
e.rcvQueueInfo.RcvClosed = true
}
e.rcvQueueInfo.rcvQueueMu.Unlock()
e.waiterQueue.Notify(waiter.ReadableEvents)
}
// receiveBufferAvailableLocked calculates how many bytes are still available
// in the receive buffer.
// rcvQueueMu must be held when this function is called.
func (e *endpoint) receiveBufferAvailableLocked(rcvBufSize int) int {
// We may use more bytes than the buffer size when the receive buffer
// shrinks.
memUsed := e.receiveMemUsed()
if memUsed >= rcvBufSize {
return 0
}
return rcvBufSize - memUsed
}
// receiveBufferAvailable calculates how many bytes are still available in the
// receive buffer based on the actual memory used by all segments held in
// receive buffer/pending and segment queue.
func (e *endpoint) receiveBufferAvailable() int {
e.rcvQueueInfo.rcvQueueMu.Lock()
available := e.receiveBufferAvailableLocked(int(e.ops.GetReceiveBufferSize()))
e.rcvQueueInfo.rcvQueueMu.Unlock()
return available
}
// receiveBufferUsed returns the amount of in-use receive buffer.
func (e *endpoint) receiveBufferUsed() int {
e.rcvQueueInfo.rcvQueueMu.Lock()
used := e.rcvQueueInfo.RcvBufUsed
e.rcvQueueInfo.rcvQueueMu.Unlock()
return used
}
// receiveMemUsed returns the total memory in use by segments held by this
// endpoint.
func (e *endpoint) receiveMemUsed() int {
return int(atomic.LoadInt32(&e.rcvMemUsed))
}
// updateReceiveMemUsed adds the provided delta to e.rcvMemUsed.
func (e *endpoint) updateReceiveMemUsed(delta int) {
atomic.AddInt32(&e.rcvMemUsed, int32(delta))
}
// maxReceiveBufferSize returns the stack wide maximum receive buffer size for
// an endpoint.
func (e *endpoint) maxReceiveBufferSize() int {
var rs tcpip.TCPReceiveBufferSizeRangeOption
if err := e.stack.TransportProtocolOption(ProtocolNumber, &rs); err != nil {
// As a fallback return the hardcoded max buffer size.
return MaxBufferSize
}
return rs.Max
}
// rcvWndScaleForHandshake computes the receive window scale to offer to the
// peer when window scaling is enabled (true by default). If auto-tuning is
// disabled then the window scaling factor is based on the size of the
// receiveBuffer otherwise we use the max permissible receive buffer size to
// compute the scale.
func (e *endpoint) rcvWndScaleForHandshake() int {
bufSizeForScale := e.ops.GetReceiveBufferSize()
e.rcvQueueInfo.rcvQueueMu.Lock()
autoTuningDisabled := e.rcvQueueInfo.RcvAutoParams.Disabled
e.rcvQueueInfo.rcvQueueMu.Unlock()
if autoTuningDisabled {
return FindWndScale(seqnum.Size(bufSizeForScale))
}
return FindWndScale(seqnum.Size(e.maxReceiveBufferSize()))
}
// updateRecentTimestamp updates the recent timestamp using the algorithm
// described in https://tools.ietf.org/html/rfc7323#section-4.3
func (e *endpoint) updateRecentTimestamp(tsVal uint32, maxSentAck seqnum.Value, segSeq seqnum.Value) {
if e.SendTSOk && seqnum.Value(e.recentTimestamp()).LessThan(seqnum.Value(tsVal)) && segSeq.LessThanEq(maxSentAck) {
e.setRecentTimestamp(tsVal)
}
}
// maybeEnableTimestamp marks the timestamp option enabled for this endpoint if
// the SYN options indicate that timestamp option was negotiated. It also
// initializes the recentTS with the value provided in synOpts.TSval.
func (e *endpoint) maybeEnableTimestamp(synOpts header.TCPSynOptions) {
if synOpts.TS {
e.SendTSOk = true
e.setRecentTimestamp(synOpts.TSVal)
}
}
func (e *endpoint) tsVal(now tcpip.MonotonicTime) uint32 {
return e.TSOffset.TSVal(now)
}
func (e *endpoint) tsValNow() uint32 {
return e.tsVal(e.stack.Clock().NowMonotonic())
}
func (e *endpoint) elapsed(now tcpip.MonotonicTime, tsEcr uint32) time.Duration {
return e.TSOffset.Elapsed(now, tsEcr)
}
// maybeEnableSACKPermitted marks the SACKPermitted option enabled for this endpoint
// if the SYN options indicate that the SACK option was negotiated and the TCP
// stack is configured to enable TCP SACK option.
func (e *endpoint) maybeEnableSACKPermitted(synOpts header.TCPSynOptions) {
var v tcpip.TCPSACKEnabled
if err := e.stack.TransportProtocolOption(ProtocolNumber, &v); err != nil {
// Stack doesn't support SACK. So just return.
return
}
if bool(v) && synOpts.SACKPermitted {
e.SACKPermitted = true
e.stack.TransportProtocolOption(ProtocolNumber, &e.tcpRecovery)
}
}
// maxOptionSize return the maximum size of TCP options.
func (e *endpoint) maxOptionSize() (size int) {
var maxSackBlocks [header.TCPMaxSACKBlocks]header.SACKBlock
options := e.makeOptions(maxSackBlocks[:])
size = len(options)
putOptions(options)
return size
}
// completeStateLocked makes a full copy of the endpoint and returns it. This is
// used before invoking the probe.
//
// Precondition: e.mu must be held.
func (e *endpoint) completeStateLocked() stack.TCPEndpointState {
s := stack.TCPEndpointState{
TCPEndpointStateInner: e.TCPEndpointStateInner,
ID: stack.TCPEndpointID(e.TransportEndpointInfo.ID),
SegTime: e.stack.Clock().NowMonotonic(),
Receiver: e.rcv.TCPReceiverState,
Sender: e.snd.TCPSenderState,
}
sndBufSize := e.getSendBufferSize()
// Copy the send buffer atomically.
e.sndQueueInfo.sndQueueMu.Lock()
s.SndBufState = e.sndQueueInfo.TCPSndBufState
s.SndBufState.SndBufSize = sndBufSize
e.sndQueueInfo.sndQueueMu.Unlock()
// Copy the receive buffer atomically.
e.rcvQueueInfo.rcvQueueMu.Lock()
s.RcvBufState = e.rcvQueueInfo.TCPRcvBufState
e.rcvQueueInfo.rcvQueueMu.Unlock()
// Copy the endpoint TCP Option state.
s.SACK.Blocks = make([]header.SACKBlock, e.sack.NumBlocks)
copy(s.SACK.Blocks, e.sack.Blocks[:e.sack.NumBlocks])
s.SACK.ReceivedBlocks, s.SACK.MaxSACKED = e.scoreboard.Copy()
e.snd.rtt.Lock()
s.Sender.RTTState = e.snd.rtt.TCPRTTState
e.snd.rtt.Unlock()
if cubic, ok := e.snd.cc.(*cubicState); ok {
s.Sender.Cubic = cubic.TCPCubicState
s.Sender.Cubic.TimeSinceLastCongestion = e.stack.Clock().NowMonotonic().Sub(s.Sender.Cubic.T)
}
s.Sender.RACKState = e.snd.rc.TCPRACKState
return s
}
func (e *endpoint) initHardwareGSO() {
switch e.route.NetProto() {
case header.IPv4ProtocolNumber:
e.gso.Type = stack.GSOTCPv4
e.gso.L3HdrLen = header.IPv4MinimumSize
case header.IPv6ProtocolNumber:
e.gso.Type = stack.GSOTCPv6
e.gso.L3HdrLen = header.IPv6MinimumSize
default:
panic(fmt.Sprintf("Unknown netProto: %v", e.NetProto))
}
e.gso.NeedsCsum = true
e.gso.CsumOffset = header.TCPChecksumOffset
e.gso.MaxSize = e.route.GSOMaxSize()
}
func (e *endpoint) initGSO() {
if e.route.HasHardwareGSOCapability() {
e.initHardwareGSO()
} else if e.route.HasSoftwareGSOCapability() {
e.gso = stack.GSO{
MaxSize: e.route.GSOMaxSize(),
Type: stack.GSOSW,
NeedsCsum: false,
}
}
}
// State implements tcpip.Endpoint.State. It exports the endpoint's protocol
// state for diagnostics.
func (e *endpoint) State() uint32 {
return uint32(e.EndpointState())
}
// Info returns a copy of the endpoint info.
func (e *endpoint) Info() tcpip.EndpointInfo {
e.LockUser()
// Make a copy of the endpoint info.
ret := e.TransportEndpointInfo
e.UnlockUser()
return &ret
}
// Stats returns a pointer to the endpoint stats.
func (e *endpoint) Stats() tcpip.EndpointStats {
return &e.stats
}
// Wait implements stack.TransportEndpoint.Wait.
func (e *endpoint) Wait() {
waitEntry, notifyCh := waiter.NewChannelEntry(nil)
e.waiterQueue.EventRegister(&waitEntry, waiter.EventHUp)
defer e.waiterQueue.EventUnregister(&waitEntry)
for {
e.LockUser()
running := e.workerRunning
e.UnlockUser()
if !running {
break
}
<-notifyCh
}
}
// SocketOptions implements tcpip.Endpoint.SocketOptions.
func (e *endpoint) SocketOptions() *tcpip.SocketOptions {
return &e.ops
}
// GetTCPSendBufferLimits is used to get send buffer size limits for TCP.
func GetTCPSendBufferLimits(s tcpip.StackHandler) tcpip.SendBufferSizeOption {
var ss tcpip.TCPSendBufferSizeRangeOption
if err := s.TransportProtocolOption(header.TCPProtocolNumber, &ss); err != nil {
panic(fmt.Sprintf("s.TransportProtocolOption(%d, %#v) = %s", header.TCPProtocolNumber, ss, err))
}
return tcpip.SendBufferSizeOption{
Min: ss.Min,
Default: ss.Default,
Max: ss.Max,
}
}
// allowOutOfWindowAck returns true if an out-of-window ACK can be sent now.
func (e *endpoint) allowOutOfWindowAck() bool {
now := e.stack.Clock().NowMonotonic()
if e.lastOutOfWindowAckTime != (tcpip.MonotonicTime{}) {
var limit stack.TCPInvalidRateLimitOption
if err := e.stack.Option(&limit); err != nil {
panic(fmt.Sprintf("e.stack.Option(%+v) failed with error: %s", limit, err))
}
if now.Sub(e.lastOutOfWindowAckTime) < time.Duration(limit) {
return false
}
}
e.lastOutOfWindowAckTime = now
return true
}
// GetTCPReceiveBufferLimits is used to get send buffer size limits for TCP.
func GetTCPReceiveBufferLimits(s tcpip.StackHandler) tcpip.ReceiveBufferSizeOption {
var ss tcpip.TCPReceiveBufferSizeRangeOption
if err := s.TransportProtocolOption(header.TCPProtocolNumber, &ss); err != nil {
panic(fmt.Sprintf("s.TransportProtocolOption(%d, %#v) = %s", header.TCPProtocolNumber, ss, err))
}
return tcpip.ReceiveBufferSizeOption{
Min: ss.Min,
Default: ss.Default,
Max: ss.Max,
}
}
// computeTCPSendBufferSize implements auto tuning of send buffer size and
// returns the new send buffer size.
func (e *endpoint) computeTCPSendBufferSize() int64 {
curSndBufSz := int64(e.getSendBufferSize())
// Auto tuning is disabled when the user explicitly sets the send
// buffer size with SO_SNDBUF option.
if disabled := atomic.LoadUint32(&e.sndQueueInfo.TCPSndBufState.AutoTuneSndBufDisabled); disabled == 1 {
return curSndBufSz
}
const packetOverheadFactor = 2
curMSS := e.snd.MaxPayloadSize
numSeg := InitialCwnd
if numSeg < e.snd.SndCwnd {
numSeg = e.snd.SndCwnd
}
// SndCwnd indicates the number of segments that can be sent. This means
// that the sender can send upto #SndCwnd segments and the send buffer
// size should be set to SndCwnd*MSS to accommodate sending of all the
// segments.
newSndBufSz := int64(numSeg * curMSS * packetOverheadFactor)
if newSndBufSz < curSndBufSz {
return curSndBufSz
}
if ss := GetTCPSendBufferLimits(e.stack); int64(ss.Max) < newSndBufSz {
newSndBufSz = int64(ss.Max)
}
return newSndBufSz
}
|