1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package tcp
import (
"crypto/sha1"
"encoding/binary"
"fmt"
"hash"
"io"
"time"
"gvisor.dev/gvisor/pkg/rand"
"gvisor.dev/gvisor/pkg/sleep"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/tcpip/header"
"gvisor.dev/gvisor/pkg/tcpip/seqnum"
"gvisor.dev/gvisor/pkg/tcpip/stack"
"gvisor.dev/gvisor/pkg/waiter"
)
const (
// tsLen is the length, in bits, of the timestamp in the SYN cookie.
tsLen = 8
// tsMask is a mask for timestamp values (i.e., tsLen bits).
tsMask = (1 << tsLen) - 1
// tsOffset is the offset, in bits, of the timestamp in the SYN cookie.
tsOffset = 24
// hashMask is the mask for hash values (i.e., tsOffset bits).
hashMask = (1 << tsOffset) - 1
// maxTSDiff is the maximum allowed difference between a received cookie
// timestamp and the current timestamp. If the difference is greater
// than maxTSDiff, the cookie is expired.
maxTSDiff = 2
// SynRcvdCountThreshold is the default global maximum number of
// connections that are allowed to be in SYN-RCVD state before TCP
// starts using SYN cookies to accept connections.
SynRcvdCountThreshold uint64 = 1000
)
var (
// mssTable is a slice containing the possible MSS values that we
// encode in the SYN cookie with two bits.
mssTable = []uint16{536, 1300, 1440, 1460}
)
func encodeMSS(mss uint16) uint32 {
for i := len(mssTable) - 1; i > 0; i-- {
if mss >= mssTable[i] {
return uint32(i)
}
}
return 0
}
// listenContext is used by a listening endpoint to store state used while
// listening for connections. This struct is allocated by the listen goroutine
// and must not be accessed or have its methods called concurrently as they
// may mutate the stored objects.
type listenContext struct {
stack *stack.Stack
// synRcvdCount is a reference to the stack level synRcvdCount.
synRcvdCount *synRcvdCounter
// rcvWnd is the receive window that is sent by this listening context
// in the initial SYN-ACK.
rcvWnd seqnum.Size
// nonce are random bytes that are initialized once when the context
// is created and used to seed the hash function when generating
// the SYN cookie.
nonce [2][sha1.BlockSize]byte
// listenEP is a reference to the listening endpoint associated with
// this context. Can be nil if the context is created by the forwarder.
listenEP *endpoint
// hasherMu protects hasher.
hasherMu sync.Mutex
// hasher is the hash function used to generate a SYN cookie.
hasher hash.Hash
// v6Only is true if listenEP is a dual stack socket and has the
// IPV6_V6ONLY option set.
v6Only bool
// netProto indicates the network protocol(IPv4/v6) for the listening
// endpoint.
netProto tcpip.NetworkProtocolNumber
// pendingMu protects pendingEndpoints. This should only be accessed
// by the listening endpoint's worker goroutine.
//
// Lock Ordering: listenEP.workerMu -> pendingMu
pendingMu sync.Mutex
// pending is used to wait for all pendingEndpoints to finish when
// a socket is closed.
pending sync.WaitGroup
// pendingEndpoints is a map of all endpoints for which a handshake is
// in progress.
pendingEndpoints map[stack.TransportEndpointID]*endpoint
}
// timeStamp returns an 8-bit timestamp with a granularity of 64 seconds.
func timeStamp() uint32 {
return uint32(time.Now().Unix()>>6) & tsMask
}
// newListenContext creates a new listen context.
func newListenContext(stk *stack.Stack, listenEP *endpoint, rcvWnd seqnum.Size, v6Only bool, netProto tcpip.NetworkProtocolNumber) *listenContext {
l := &listenContext{
stack: stk,
rcvWnd: rcvWnd,
hasher: sha1.New(),
v6Only: v6Only,
netProto: netProto,
listenEP: listenEP,
pendingEndpoints: make(map[stack.TransportEndpointID]*endpoint),
}
p, ok := stk.TransportProtocolInstance(ProtocolNumber).(*protocol)
if !ok {
panic(fmt.Sprintf("unable to get TCP protocol instance from stack: %+v", stk))
}
l.synRcvdCount = p.SynRcvdCounter()
rand.Read(l.nonce[0][:])
rand.Read(l.nonce[1][:])
return l
}
// cookieHash calculates the cookieHash for the given id, timestamp and nonce
// index. The hash is used to create and validate cookies.
func (l *listenContext) cookieHash(id stack.TransportEndpointID, ts uint32, nonceIndex int) uint32 {
// Initialize block with fixed-size data: local ports and v.
var payload [8]byte
binary.BigEndian.PutUint16(payload[0:], id.LocalPort)
binary.BigEndian.PutUint16(payload[2:], id.RemotePort)
binary.BigEndian.PutUint32(payload[4:], ts)
// Feed everything to the hasher.
l.hasherMu.Lock()
l.hasher.Reset()
l.hasher.Write(payload[:])
l.hasher.Write(l.nonce[nonceIndex][:])
io.WriteString(l.hasher, string(id.LocalAddress))
io.WriteString(l.hasher, string(id.RemoteAddress))
// Finalize the calculation of the hash and return the first 4 bytes.
h := make([]byte, 0, sha1.Size)
h = l.hasher.Sum(h)
l.hasherMu.Unlock()
return binary.BigEndian.Uint32(h[:])
}
// createCookie creates a SYN cookie for the given id and incoming sequence
// number.
func (l *listenContext) createCookie(id stack.TransportEndpointID, seq seqnum.Value, data uint32) seqnum.Value {
ts := timeStamp()
v := l.cookieHash(id, 0, 0) + uint32(seq) + (ts << tsOffset)
v += (l.cookieHash(id, ts, 1) + data) & hashMask
return seqnum.Value(v)
}
// isCookieValid checks if the supplied cookie is valid for the given id and
// sequence number. If it is, it also returns the data originally encoded in the
// cookie when createCookie was called.
func (l *listenContext) isCookieValid(id stack.TransportEndpointID, cookie seqnum.Value, seq seqnum.Value) (uint32, bool) {
ts := timeStamp()
v := uint32(cookie) - l.cookieHash(id, 0, 0) - uint32(seq)
cookieTS := v >> tsOffset
if ((ts - cookieTS) & tsMask) > maxTSDiff {
return 0, false
}
return (v - l.cookieHash(id, cookieTS, 1)) & hashMask, true
}
// createConnectingEndpoint creates a new endpoint in a connecting state, with
// the connection parameters given by the arguments.
func (l *listenContext) createConnectingEndpoint(s *segment, iss seqnum.Value, irs seqnum.Value, rcvdSynOpts *header.TCPSynOptions, queue *waiter.Queue) *endpoint {
// Create a new endpoint.
netProto := l.netProto
if netProto == 0 {
netProto = s.route.NetProto
}
n := newEndpoint(l.stack, netProto, queue)
n.v6only = l.v6Only
n.ID = s.id
n.boundNICID = s.route.NICID()
n.route = s.route.Clone()
n.effectiveNetProtos = []tcpip.NetworkProtocolNumber{s.route.NetProto}
n.rcvBufSize = int(l.rcvWnd)
n.amss = calculateAdvertisedMSS(n.userMSS, n.route)
n.setEndpointState(StateConnecting)
n.maybeEnableTimestamp(rcvdSynOpts)
n.maybeEnableSACKPermitted(rcvdSynOpts)
n.initGSO()
// Bootstrap the auto tuning algorithm. Starting at zero will result in
// a large step function on the first window adjustment causing the
// window to grow to a really large value.
n.rcvAutoParams.prevCopied = n.initialReceiveWindow()
return n
}
// startHandshake creates a new endpoint in connecting state and then sends
// the SYN-ACK for the TCP 3-way handshake. It returns the state of the
// handshake in progress, which includes the new endpoint in the SYN-RCVD
// state.
//
// On success, a handshake h is returned with h.ep.mu held.
//
// Precondition: if l.listenEP != nil, l.listenEP.mu must be locked.
func (l *listenContext) startHandshake(s *segment, opts *header.TCPSynOptions, queue *waiter.Queue, owner tcpip.PacketOwner) (*handshake, *tcpip.Error) {
// Create new endpoint.
irs := s.sequenceNumber
isn := generateSecureISN(s.id, l.stack.Seed())
ep := l.createConnectingEndpoint(s, isn, irs, opts, queue)
// Lock the endpoint before registering to ensure that no out of
// band changes are possible due to incoming packets etc till
// the endpoint is done initializing.
ep.mu.Lock()
ep.owner = owner
// listenEP is nil when listenContext is used by tcp.Forwarder.
deferAccept := time.Duration(0)
if l.listenEP != nil {
if l.listenEP.EndpointState() != StateListen {
// Ensure we release any registrations done by the newly
// created endpoint.
ep.mu.Unlock()
ep.Close()
return nil, tcpip.ErrConnectionAborted
}
l.addPendingEndpoint(ep)
// Propagate any inheritable options from the listening endpoint
// to the newly created endpoint.
l.listenEP.propagateInheritableOptionsLocked(ep)
if !ep.reserveTupleLocked() {
ep.mu.Unlock()
ep.Close()
l.removePendingEndpoint(ep)
return nil, tcpip.ErrConnectionAborted
}
deferAccept = l.listenEP.deferAccept
}
// Register new endpoint so that packets are routed to it.
if err := ep.stack.RegisterTransportEndpoint(ep.boundNICID, ep.effectiveNetProtos, ProtocolNumber, ep.ID, ep, ep.boundPortFlags, ep.boundBindToDevice); err != nil {
ep.mu.Unlock()
ep.Close()
if l.listenEP != nil {
l.removePendingEndpoint(ep)
}
ep.drainClosingSegmentQueue()
return nil, err
}
ep.isRegistered = true
// Initialize and start the handshake.
h := ep.newPassiveHandshake(isn, irs, opts, deferAccept)
if err := h.start(); err != nil {
l.cleanupFailedHandshake(h)
return nil, err
}
return h, nil
}
// performHandshake performs a TCP 3-way handshake. On success, the new
// established endpoint is returned with e.mu held.
//
// Precondition: if l.listenEP != nil, l.listenEP.mu must be locked.
func (l *listenContext) performHandshake(s *segment, opts *header.TCPSynOptions, queue *waiter.Queue, owner tcpip.PacketOwner) (*endpoint, *tcpip.Error) {
h, err := l.startHandshake(s, opts, queue, owner)
if err != nil {
return nil, err
}
ep := h.ep
if err := h.complete(); err != nil {
ep.stack.Stats().TCP.FailedConnectionAttempts.Increment()
ep.stats.FailedConnectionAttempts.Increment()
l.cleanupFailedHandshake(h)
return nil, err
}
l.cleanupCompletedHandshake(h)
return ep, nil
}
func (l *listenContext) addPendingEndpoint(n *endpoint) {
l.pendingMu.Lock()
l.pendingEndpoints[n.ID] = n
l.pending.Add(1)
l.pendingMu.Unlock()
}
func (l *listenContext) removePendingEndpoint(n *endpoint) {
l.pendingMu.Lock()
delete(l.pendingEndpoints, n.ID)
l.pending.Done()
l.pendingMu.Unlock()
}
func (l *listenContext) closeAllPendingEndpoints() {
l.pendingMu.Lock()
for _, n := range l.pendingEndpoints {
n.notifyProtocolGoroutine(notifyClose)
}
l.pendingMu.Unlock()
l.pending.Wait()
}
// Precondition: h.ep.mu must be held.
func (l *listenContext) cleanupFailedHandshake(h *handshake) {
e := h.ep
e.mu.Unlock()
e.Close()
e.notifyAborted()
if l.listenEP != nil {
l.removePendingEndpoint(e)
}
e.drainClosingSegmentQueue()
e.h = nil
}
// cleanupCompletedHandshake transfers any state from the completed handshake to
// the new endpoint.
//
// Precondition: h.ep.mu must be held.
func (l *listenContext) cleanupCompletedHandshake(h *handshake) {
e := h.ep
if l.listenEP != nil {
l.removePendingEndpoint(e)
}
e.isConnectNotified = true
// Update the receive window scaling. We can't do it before the
// handshake because it's possible that the peer doesn't support window
// scaling.
e.rcv.rcvWndScale = e.h.effectiveRcvWndScale()
// Clean up handshake state stored in the endpoint so that it can be GCed.
e.h = nil
}
// deliverAccepted delivers the newly-accepted endpoint to the listener. If the
// endpoint has transitioned out of the listen state (acceptedChan is nil),
// the new endpoint is closed instead.
func (e *endpoint) deliverAccepted(n *endpoint) {
e.mu.Lock()
e.pendingAccepted.Add(1)
e.mu.Unlock()
defer e.pendingAccepted.Done()
e.acceptMu.Lock()
for {
if e.acceptedChan == nil {
e.acceptMu.Unlock()
n.notifyProtocolGoroutine(notifyReset)
return
}
select {
case e.acceptedChan <- n:
e.acceptMu.Unlock()
e.waiterQueue.Notify(waiter.EventIn)
return
default:
e.acceptCond.Wait()
}
}
}
// propagateInheritableOptionsLocked propagates any options set on the listening
// endpoint to the newly created endpoint.
//
// Precondition: e.mu and n.mu must be held.
func (e *endpoint) propagateInheritableOptionsLocked(n *endpoint) {
n.userTimeout = e.userTimeout
n.portFlags = e.portFlags
n.boundBindToDevice = e.boundBindToDevice
n.boundPortFlags = e.boundPortFlags
n.userMSS = e.userMSS
}
// reserveTupleLocked reserves an accepted endpoint's tuple.
//
// Preconditions:
// * propagateInheritableOptionsLocked has been called.
// * e.mu is held.
func (e *endpoint) reserveTupleLocked() bool {
dest := tcpip.FullAddress{Addr: e.ID.RemoteAddress, Port: e.ID.RemotePort}
if !e.stack.ReserveTuple(
e.effectiveNetProtos,
ProtocolNumber,
e.ID.LocalAddress,
e.ID.LocalPort,
e.boundPortFlags,
e.boundBindToDevice,
dest,
) {
return false
}
e.isPortReserved = true
e.boundDest = dest
return true
}
// notifyAborted wakes up any waiters on registered, but not accepted
// endpoints.
//
// This is strictly not required normally as a socket that was never accepted
// can't really have any registered waiters except when stack.Wait() is called
// which waits for all registered endpoints to stop and expects an EventHUp.
func (e *endpoint) notifyAborted() {
e.waiterQueue.Notify(waiter.EventHUp | waiter.EventErr | waiter.EventIn | waiter.EventOut)
}
// handleSynSegment is called in its own goroutine once the listening endpoint
// receives a SYN segment. It is responsible for completing the handshake and
// queueing the new endpoint for acceptance.
//
// A limited number of these goroutines are allowed before TCP starts using SYN
// cookies to accept connections.
//
// Precondition: if ctx.listenEP != nil, ctx.listenEP.mu must be locked.
func (e *endpoint) handleSynSegment(ctx *listenContext, s *segment, opts *header.TCPSynOptions) {
defer s.decRef()
h, err := ctx.startHandshake(s, opts, &waiter.Queue{}, e.owner)
n := h.ep
if err != nil {
e.stack.Stats().TCP.FailedConnectionAttempts.Increment()
e.stats.FailedConnectionAttempts.Increment()
e.decSynRcvdCount()
return
}
go func() {
defer ctx.synRcvdCount.dec()
if err := h.complete(); err != nil {
e.stack.Stats().TCP.FailedConnectionAttempts.Increment()
e.stats.FailedConnectionAttempts.Increment()
ctx.cleanupFailedHandshake(h)
e.decSynRcvdCount()
return
}
ctx.cleanupCompletedHandshake(h)
e.decSynRcvdCount()
n.startAcceptedLoop()
e.stack.Stats().TCP.PassiveConnectionOpenings.Increment()
e.deliverAccepted(n)
}() // S/R-SAFE: synRcvdCount is the barrier.
}
func (e *endpoint) incSynRcvdCount() bool {
e.acceptMu.Lock()
canInc := e.synRcvdCount < cap(e.acceptedChan)
e.acceptMu.Unlock()
if canInc {
e.synRcvdCount++
}
return canInc
}
func (e *endpoint) decSynRcvdCount() {
e.mu.Lock()
e.synRcvdCount--
e.mu.Unlock()
}
func (e *endpoint) acceptQueueIsFull() bool {
e.acceptMu.Lock()
full := len(e.acceptedChan)+e.synRcvdCount >= cap(e.acceptedChan)
e.acceptMu.Unlock()
return full
}
// handleListenSegment is called when a listening endpoint receives a segment
// and needs to handle it.
//
// Precondition: if ctx.listenEP != nil, ctx.listenEP.mu must be locked.
func (e *endpoint) handleListenSegment(ctx *listenContext, s *segment) {
e.rcvListMu.Lock()
rcvClosed := e.rcvClosed
e.rcvListMu.Unlock()
if rcvClosed || s.flagsAreSet(header.TCPFlagSyn|header.TCPFlagAck) {
// If the endpoint is shutdown, reply with reset.
//
// RFC 793 section 3.4 page 35 (figure 12) outlines that a RST
// must be sent in response to a SYN-ACK while in the listen
// state to prevent completing a handshake from an old SYN.
replyWithReset(s, e.sendTOS, e.ttl)
return
}
switch {
case s.flags == header.TCPFlagSyn:
opts := parseSynSegmentOptions(s)
if ctx.synRcvdCount.inc() {
// Only handle the syn if the following conditions hold
// - accept queue is not full.
// - number of connections in synRcvd state is less than the
// backlog.
if !e.acceptQueueIsFull() && e.incSynRcvdCount() {
s.incRef()
e.handleSynSegment(ctx, s, &opts)
return
}
ctx.synRcvdCount.dec()
e.stack.Stats().TCP.ListenOverflowSynDrop.Increment()
e.stats.ReceiveErrors.ListenOverflowSynDrop.Increment()
e.stack.Stats().DroppedPackets.Increment()
return
} else {
// If cookies are in use but the endpoint accept queue
// is full then drop the syn.
if e.acceptQueueIsFull() {
e.stack.Stats().TCP.ListenOverflowSynDrop.Increment()
e.stats.ReceiveErrors.ListenOverflowSynDrop.Increment()
e.stack.Stats().DroppedPackets.Increment()
return
}
cookie := ctx.createCookie(s.id, s.sequenceNumber, encodeMSS(opts.MSS))
// Send SYN without window scaling because we currently
// don't encode this information in the cookie.
//
// Enable Timestamp option if the original syn did have
// the timestamp option specified.
//
// Use the user supplied MSS on the listening socket for
// new connections, if available.
synOpts := header.TCPSynOptions{
WS: -1,
TS: opts.TS,
TSVal: tcpTimeStamp(time.Now(), timeStampOffset()),
TSEcr: opts.TSVal,
MSS: calculateAdvertisedMSS(e.userMSS, s.route),
}
e.sendSynTCP(&s.route, tcpFields{
id: s.id,
ttl: e.ttl,
tos: e.sendTOS,
flags: header.TCPFlagSyn | header.TCPFlagAck,
seq: cookie,
ack: s.sequenceNumber + 1,
rcvWnd: ctx.rcvWnd,
}, synOpts)
e.stack.Stats().TCP.ListenOverflowSynCookieSent.Increment()
}
case (s.flags & header.TCPFlagAck) != 0:
if e.acceptQueueIsFull() {
// Silently drop the ack as the application can't accept
// the connection at this point. The ack will be
// retransmitted by the sender anyway and we can
// complete the connection at the time of retransmit if
// the backlog has space.
e.stack.Stats().TCP.ListenOverflowAckDrop.Increment()
e.stats.ReceiveErrors.ListenOverflowAckDrop.Increment()
e.stack.Stats().DroppedPackets.Increment()
return
}
if !ctx.synRcvdCount.synCookiesInUse() {
// When not using SYN cookies, as per RFC 793, section 3.9, page 64:
// Any acknowledgment is bad if it arrives on a connection still in
// the LISTEN state. An acceptable reset segment should be formed
// for any arriving ACK-bearing segment. The RST should be
// formatted as follows:
//
// <SEQ=SEG.ACK><CTL=RST>
//
// Send a reset as this is an ACK for which there is no
// half open connections and we are not using cookies
// yet.
//
// The only time we should reach here when a connection
// was opened and closed really quickly and a delayed
// ACK was received from the sender.
replyWithReset(s, e.sendTOS, e.ttl)
return
}
iss := s.ackNumber - 1
irs := s.sequenceNumber - 1
// Since SYN cookies are in use this is potentially an ACK to a
// SYN-ACK we sent but don't have a half open connection state
// as cookies are being used to protect against a potential SYN
// flood. In such cases validate the cookie and if valid create
// a fully connected endpoint and deliver to the accept queue.
//
// If not, silently drop the ACK to avoid leaking information
// when under a potential syn flood attack.
//
// Validate the cookie.
data, ok := ctx.isCookieValid(s.id, iss, irs)
if !ok || int(data) >= len(mssTable) {
e.stack.Stats().TCP.ListenOverflowInvalidSynCookieRcvd.Increment()
e.stack.Stats().DroppedPackets.Increment()
return
}
e.stack.Stats().TCP.ListenOverflowSynCookieRcvd.Increment()
// Create newly accepted endpoint and deliver it.
rcvdSynOptions := &header.TCPSynOptions{
MSS: mssTable[data],
// Disable Window scaling as original SYN is
// lost.
WS: -1,
}
// When syn cookies are in use we enable timestamp only
// if the ack specifies the timestamp option assuming
// that the other end did in fact negotiate the
// timestamp option in the original SYN.
if s.parsedOptions.TS {
rcvdSynOptions.TS = true
rcvdSynOptions.TSVal = s.parsedOptions.TSVal
rcvdSynOptions.TSEcr = s.parsedOptions.TSEcr
}
n := ctx.createConnectingEndpoint(s, iss, irs, rcvdSynOptions, &waiter.Queue{})
n.mu.Lock()
// Propagate any inheritable options from the listening endpoint
// to the newly created endpoint.
e.propagateInheritableOptionsLocked(n)
if !n.reserveTupleLocked() {
n.mu.Unlock()
n.Close()
e.stack.Stats().TCP.FailedConnectionAttempts.Increment()
e.stats.FailedConnectionAttempts.Increment()
return
}
// Register new endpoint so that packets are routed to it.
if err := n.stack.RegisterTransportEndpoint(n.boundNICID, n.effectiveNetProtos, ProtocolNumber, n.ID, n, n.boundPortFlags, n.boundBindToDevice); err != nil {
n.mu.Unlock()
n.Close()
e.stack.Stats().TCP.FailedConnectionAttempts.Increment()
e.stats.FailedConnectionAttempts.Increment()
return
}
n.isRegistered = true
// clear the tsOffset for the newly created
// endpoint as the Timestamp was already
// randomly offset when the original SYN-ACK was
// sent above.
n.tsOffset = 0
// Switch state to connected.
n.isConnectNotified = true
n.transitionToStateEstablishedLocked(&handshake{
ep: n,
iss: iss,
ackNum: irs + 1,
rcvWnd: seqnum.Size(n.initialReceiveWindow()),
sndWnd: s.window,
rcvWndScale: e.rcvWndScaleForHandshake(),
sndWndScale: rcvdSynOptions.WS,
mss: rcvdSynOptions.MSS,
})
// Do the delivery in a separate goroutine so
// that we don't block the listen loop in case
// the application is slow to accept or stops
// accepting.
//
// NOTE: This won't result in an unbounded
// number of goroutines as we do check before
// entering here that there was at least some
// space available in the backlog.
// Start the protocol goroutine.
n.startAcceptedLoop()
e.stack.Stats().TCP.PassiveConnectionOpenings.Increment()
go e.deliverAccepted(n)
}
}
// protocolListenLoop is the main loop of a listening TCP endpoint. It runs in
// its own goroutine and is responsible for handling connection requests.
func (e *endpoint) protocolListenLoop(rcvWnd seqnum.Size) *tcpip.Error {
e.mu.Lock()
v6Only := e.v6only
ctx := newListenContext(e.stack, e, rcvWnd, v6Only, e.NetProto)
defer func() {
// Mark endpoint as closed. This will prevent goroutines running
// handleSynSegment() from attempting to queue new connections
// to the endpoint.
e.setEndpointState(StateClose)
// Close any endpoints in SYN-RCVD state.
ctx.closeAllPendingEndpoints()
// Do cleanup if needed.
e.completeWorkerLocked()
if e.drainDone != nil {
close(e.drainDone)
}
e.mu.Unlock()
e.drainClosingSegmentQueue()
// Notify waiters that the endpoint is shutdown.
e.waiterQueue.Notify(waiter.EventIn | waiter.EventOut | waiter.EventHUp | waiter.EventErr)
}()
s := sleep.Sleeper{}
s.AddWaker(&e.notificationWaker, wakerForNotification)
s.AddWaker(&e.newSegmentWaker, wakerForNewSegment)
for {
e.mu.Unlock()
index, _ := s.Fetch(true)
e.mu.Lock()
switch index {
case wakerForNotification:
n := e.fetchNotifications()
if n¬ifyClose != 0 {
return nil
}
if n¬ifyDrain != 0 {
for !e.segmentQueue.empty() {
s := e.segmentQueue.dequeue()
e.handleListenSegment(ctx, s)
s.decRef()
}
close(e.drainDone)
e.mu.Unlock()
<-e.undrain
e.mu.Lock()
}
case wakerForNewSegment:
// Process at most maxSegmentsPerWake segments.
mayRequeue := true
for i := 0; i < maxSegmentsPerWake; i++ {
s := e.segmentQueue.dequeue()
if s == nil {
mayRequeue = false
break
}
e.handleListenSegment(ctx, s)
s.decRef()
}
// If the queue is not empty, make sure we'll wake up
// in the next iteration.
if mayRequeue && !e.segmentQueue.empty() {
e.newSegmentWaker.Assert()
}
}
}
}
|