1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
|
// Copyright 2018 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package stack
import (
"math/rand"
"sync"
"gvisor.googlesource.com/gvisor/pkg/tcpip"
"gvisor.googlesource.com/gvisor/pkg/tcpip/buffer"
"gvisor.googlesource.com/gvisor/pkg/tcpip/hash/jenkins"
"gvisor.googlesource.com/gvisor/pkg/tcpip/header"
)
type protocolIDs struct {
network tcpip.NetworkProtocolNumber
transport tcpip.TransportProtocolNumber
}
// transportEndpoints manages all endpoints of a given protocol. It has its own
// mutex so as to reduce interference between protocols.
type transportEndpoints struct {
mu sync.RWMutex
endpoints map[TransportEndpointID]TransportEndpoint
}
// unregisterEndpoint unregisters the endpoint with the given id such that it
// won't receive any more packets.
func (eps *transportEndpoints) unregisterEndpoint(id TransportEndpointID, ep TransportEndpoint) {
eps.mu.Lock()
defer eps.mu.Unlock()
e, ok := eps.endpoints[id]
if !ok {
return
}
if multiPortEp, ok := e.(*multiPortEndpoint); ok {
if !multiPortEp.unregisterEndpoint(ep) {
return
}
}
delete(eps.endpoints, id)
}
// transportDemuxer demultiplexes packets targeted at a transport endpoint
// (i.e., after they've been parsed by the network layer). It does two levels
// of demultiplexing: first based on the network and transport protocols, then
// based on endpoints IDs.
type transportDemuxer struct {
protocol map[protocolIDs]*transportEndpoints
}
func newTransportDemuxer(stack *Stack) *transportDemuxer {
d := &transportDemuxer{protocol: make(map[protocolIDs]*transportEndpoints)}
// Add each network and transport pair to the demuxer.
for netProto := range stack.networkProtocols {
for proto := range stack.transportProtocols {
d.protocol[protocolIDs{netProto, proto}] = &transportEndpoints{endpoints: make(map[TransportEndpointID]TransportEndpoint)}
}
}
return d
}
// registerEndpoint registers the given endpoint with the dispatcher such that
// packets that match the endpoint ID are delivered to it.
func (d *transportDemuxer) registerEndpoint(netProtos []tcpip.NetworkProtocolNumber, protocol tcpip.TransportProtocolNumber, id TransportEndpointID, ep TransportEndpoint, reusePort bool) *tcpip.Error {
for i, n := range netProtos {
if err := d.singleRegisterEndpoint(n, protocol, id, ep, reusePort); err != nil {
d.unregisterEndpoint(netProtos[:i], protocol, id, ep)
return err
}
}
return nil
}
// multiPortEndpoint is a container for TransportEndpoints which are bound to
// the same pair of address and port.
type multiPortEndpoint struct {
mu sync.RWMutex
endpointsArr []TransportEndpoint
endpointsMap map[TransportEndpoint]int
// seed is a random secret for a jenkins hash.
seed uint32
}
// reciprocalScale scales a value into range [0, n).
//
// This is similar to val % n, but faster.
// See http://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
func reciprocalScale(val, n uint32) uint32 {
return uint32((uint64(val) * uint64(n)) >> 32)
}
// selectEndpoint calculates a hash of destination and source addresses and
// ports then uses it to select a socket. In this case, all packets from one
// address will be sent to same endpoint.
func (ep *multiPortEndpoint) selectEndpoint(id TransportEndpointID) TransportEndpoint {
ep.mu.RLock()
defer ep.mu.RUnlock()
payload := []byte{
byte(id.LocalPort),
byte(id.LocalPort >> 8),
byte(id.RemotePort),
byte(id.RemotePort >> 8),
}
h := jenkins.Sum32(ep.seed)
h.Write(payload)
h.Write([]byte(id.LocalAddress))
h.Write([]byte(id.RemoteAddress))
hash := h.Sum32()
idx := reciprocalScale(hash, uint32(len(ep.endpointsArr)))
return ep.endpointsArr[idx]
}
// HandlePacket is called by the stack when new packets arrive to this transport
// endpoint.
func (ep *multiPortEndpoint) HandlePacket(r *Route, id TransportEndpointID, vv buffer.VectorisedView) {
ep.selectEndpoint(id).HandlePacket(r, id, vv)
}
// HandleControlPacket implements stack.TransportEndpoint.HandleControlPacket.
func (ep *multiPortEndpoint) HandleControlPacket(id TransportEndpointID, typ ControlType, extra uint32, vv buffer.VectorisedView) {
ep.selectEndpoint(id).HandleControlPacket(id, typ, extra, vv)
}
func (ep *multiPortEndpoint) singleRegisterEndpoint(t TransportEndpoint) {
ep.mu.Lock()
defer ep.mu.Unlock()
// A new endpoint is added into endpointsArr and its index there is
// saved in endpointsMap. This will allows to remove endpoint from
// the array fast.
ep.endpointsMap[ep] = len(ep.endpointsArr)
ep.endpointsArr = append(ep.endpointsArr, t)
}
// unregisterEndpoint returns true if multiPortEndpoint has to be unregistered.
func (ep *multiPortEndpoint) unregisterEndpoint(t TransportEndpoint) bool {
ep.mu.Lock()
defer ep.mu.Unlock()
idx, ok := ep.endpointsMap[t]
if !ok {
return false
}
delete(ep.endpointsMap, t)
l := len(ep.endpointsArr)
if l > 1 {
// The last endpoint in endpointsArr is moved instead of the deleted one.
lastEp := ep.endpointsArr[l-1]
ep.endpointsArr[idx] = lastEp
ep.endpointsMap[lastEp] = idx
ep.endpointsArr = ep.endpointsArr[0 : l-1]
return false
}
return true
}
func (d *transportDemuxer) singleRegisterEndpoint(netProto tcpip.NetworkProtocolNumber, protocol tcpip.TransportProtocolNumber, id TransportEndpointID, ep TransportEndpoint, reusePort bool) *tcpip.Error {
if id.RemotePort != 0 {
reusePort = false
}
eps, ok := d.protocol[protocolIDs{netProto, protocol}]
if !ok {
return nil
}
eps.mu.Lock()
defer eps.mu.Unlock()
var multiPortEp *multiPortEndpoint
if _, ok := eps.endpoints[id]; ok {
if !reusePort {
return tcpip.ErrPortInUse
}
multiPortEp, ok = eps.endpoints[id].(*multiPortEndpoint)
if !ok {
return tcpip.ErrPortInUse
}
}
if reusePort {
if multiPortEp == nil {
multiPortEp = &multiPortEndpoint{}
multiPortEp.endpointsMap = make(map[TransportEndpoint]int)
multiPortEp.seed = rand.Uint32()
eps.endpoints[id] = multiPortEp
}
multiPortEp.singleRegisterEndpoint(ep)
return nil
}
eps.endpoints[id] = ep
return nil
}
// unregisterEndpoint unregisters the endpoint with the given id such that it
// won't receive any more packets.
func (d *transportDemuxer) unregisterEndpoint(netProtos []tcpip.NetworkProtocolNumber, protocol tcpip.TransportProtocolNumber, id TransportEndpointID, ep TransportEndpoint) {
for _, n := range netProtos {
if eps, ok := d.protocol[protocolIDs{n, protocol}]; ok {
eps.unregisterEndpoint(id, ep)
}
}
}
// deliverPacket attempts to deliver the given packet. Returns true if it found
// an endpoint, false otherwise.
func (d *transportDemuxer) deliverPacket(r *Route, protocol tcpip.TransportProtocolNumber, vv buffer.VectorisedView, id TransportEndpointID) bool {
eps, ok := d.protocol[protocolIDs{r.NetProto, protocol}]
if !ok {
return false
}
eps.mu.RLock()
ep := d.findEndpointLocked(eps, vv, id)
eps.mu.RUnlock()
// Fail if we didn't find one.
if ep == nil {
// UDP packet could not be delivered to an unknown destination port.
if protocol == header.UDPProtocolNumber {
r.Stats().UDP.UnknownPortErrors.Increment()
}
return false
}
// Deliver the packet.
ep.HandlePacket(r, id, vv)
return true
}
// deliverControlPacket attempts to deliver the given control packet. Returns
// true if it found an endpoint, false otherwise.
func (d *transportDemuxer) deliverControlPacket(net tcpip.NetworkProtocolNumber, trans tcpip.TransportProtocolNumber, typ ControlType, extra uint32, vv buffer.VectorisedView, id TransportEndpointID) bool {
eps, ok := d.protocol[protocolIDs{net, trans}]
if !ok {
return false
}
// Try to find the endpoint.
eps.mu.RLock()
ep := d.findEndpointLocked(eps, vv, id)
eps.mu.RUnlock()
// Fail if we didn't find one.
if ep == nil {
return false
}
// Deliver the packet.
ep.HandleControlPacket(id, typ, extra, vv)
return true
}
func (d *transportDemuxer) findEndpointLocked(eps *transportEndpoints, vv buffer.VectorisedView, id TransportEndpointID) TransportEndpoint {
// Try to find a match with the id as provided.
if ep := eps.endpoints[id]; ep != nil {
return ep
}
// Try to find a match with the id minus the local address.
nid := id
nid.LocalAddress = ""
if ep := eps.endpoints[nid]; ep != nil {
return ep
}
// Try to find a match with the id minus the remote part.
nid.LocalAddress = id.LocalAddress
nid.RemoteAddress = ""
nid.RemotePort = 0
if ep := eps.endpoints[nid]; ep != nil {
return ep
}
// Try to find a match with only the local port.
nid.LocalAddress = ""
return eps.endpoints[nid]
}
|