1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package stack
import (
"fmt"
"math/rand"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/tcpip/hash/jenkins"
"gvisor.dev/gvisor/pkg/tcpip/header"
"gvisor.dev/gvisor/pkg/tcpip/ports"
)
type protocolIDs struct {
network tcpip.NetworkProtocolNumber
transport tcpip.TransportProtocolNumber
}
// transportEndpoints manages all endpoints of a given protocol. It has its own
// mutex so as to reduce interference between protocols.
type transportEndpoints struct {
// mu protects all fields of the transportEndpoints.
mu sync.RWMutex
endpoints map[TransportEndpointID]*endpointsByNIC
// rawEndpoints contains endpoints for raw sockets, which receive all
// traffic of a given protocol regardless of port.
rawEndpoints []RawTransportEndpoint
}
// unregisterEndpoint unregisters the endpoint with the given id such that it
// won't receive any more packets.
func (eps *transportEndpoints) unregisterEndpoint(id TransportEndpointID, ep TransportEndpoint, flags ports.Flags, bindToDevice tcpip.NICID) {
eps.mu.Lock()
defer eps.mu.Unlock()
epsByNIC, ok := eps.endpoints[id]
if !ok {
return
}
if !epsByNIC.unregisterEndpoint(bindToDevice, ep, flags) {
return
}
delete(eps.endpoints, id)
}
func (eps *transportEndpoints) transportEndpoints() []TransportEndpoint {
eps.mu.RLock()
defer eps.mu.RUnlock()
es := make([]TransportEndpoint, 0, len(eps.endpoints))
for _, e := range eps.endpoints {
es = append(es, e.transportEndpoints()...)
}
return es
}
// iterEndpointsLocked yields all endpointsByNIC in eps that match id, in
// descending order of match quality. If a call to yield returns false,
// iterEndpointsLocked stops iteration and returns immediately.
//
// Preconditions: eps.mu must be locked.
func (eps *transportEndpoints) iterEndpointsLocked(id TransportEndpointID, yield func(*endpointsByNIC) bool) {
// Try to find a match with the id as provided.
if ep, ok := eps.endpoints[id]; ok {
if !yield(ep) {
return
}
}
// Try to find a match with the id minus the local address.
nid := id
nid.LocalAddress = ""
if ep, ok := eps.endpoints[nid]; ok {
if !yield(ep) {
return
}
}
// Try to find a match with the id minus the remote part.
nid.LocalAddress = id.LocalAddress
nid.RemoteAddress = ""
nid.RemotePort = 0
if ep, ok := eps.endpoints[nid]; ok {
if !yield(ep) {
return
}
}
// Try to find a match with only the local port.
nid.LocalAddress = ""
if ep, ok := eps.endpoints[nid]; ok {
if !yield(ep) {
return
}
}
}
// findAllEndpointsLocked returns all endpointsByNIC in eps that match id, in
// descending order of match quality.
//
// Preconditions: eps.mu must be locked.
func (eps *transportEndpoints) findAllEndpointsLocked(id TransportEndpointID) []*endpointsByNIC {
var matchedEPs []*endpointsByNIC
eps.iterEndpointsLocked(id, func(ep *endpointsByNIC) bool {
matchedEPs = append(matchedEPs, ep)
return true
})
return matchedEPs
}
// findEndpointLocked returns the endpoint that most closely matches the given id.
//
// Preconditions: eps.mu must be locked.
func (eps *transportEndpoints) findEndpointLocked(id TransportEndpointID) *endpointsByNIC {
var matchedEP *endpointsByNIC
eps.iterEndpointsLocked(id, func(ep *endpointsByNIC) bool {
matchedEP = ep
return false
})
return matchedEP
}
type endpointsByNIC struct {
mu sync.RWMutex
endpoints map[tcpip.NICID]*multiPortEndpoint
// seed is a random secret for a jenkins hash.
seed uint32
}
func (epsByNIC *endpointsByNIC) transportEndpoints() []TransportEndpoint {
epsByNIC.mu.RLock()
defer epsByNIC.mu.RUnlock()
var eps []TransportEndpoint
for _, ep := range epsByNIC.endpoints {
eps = append(eps, ep.transportEndpoints()...)
}
return eps
}
// HandlePacket is called by the stack when new packets arrive to this transport
// endpoint.
func (epsByNIC *endpointsByNIC) handlePacket(id TransportEndpointID, pkt *PacketBuffer) {
epsByNIC.mu.RLock()
mpep, ok := epsByNIC.endpoints[pkt.NICID]
if !ok {
if mpep, ok = epsByNIC.endpoints[0]; !ok {
epsByNIC.mu.RUnlock() // Don't use defer for performance reasons.
return
}
}
// If this is a broadcast or multicast datagram, deliver the datagram to all
// endpoints bound to the right device.
if isInboundMulticastOrBroadcast(pkt, id.LocalAddress) {
mpep.handlePacketAll(id, pkt)
epsByNIC.mu.RUnlock() // Don't use defer for performance reasons.
return
}
// multiPortEndpoints are guaranteed to have at least one element.
transEP := selectEndpoint(id, mpep, epsByNIC.seed)
if queuedProtocol, mustQueue := mpep.demux.queuedProtocols[protocolIDs{mpep.netProto, mpep.transProto}]; mustQueue {
queuedProtocol.QueuePacket(transEP, id, pkt)
epsByNIC.mu.RUnlock()
return
}
transEP.HandlePacket(id, pkt)
epsByNIC.mu.RUnlock() // Don't use defer for performance reasons.
}
// HandleControlPacket implements stack.TransportEndpoint.HandleControlPacket.
func (epsByNIC *endpointsByNIC) handleControlPacket(n *NIC, id TransportEndpointID, typ ControlType, extra uint32, pkt *PacketBuffer) {
epsByNIC.mu.RLock()
defer epsByNIC.mu.RUnlock()
mpep, ok := epsByNIC.endpoints[n.ID()]
if !ok {
mpep, ok = epsByNIC.endpoints[0]
}
if !ok {
return
}
// TODO(eyalsoha): Why don't we look at id to see if this packet needs to
// broadcast like we are doing with handlePacket above?
// multiPortEndpoints are guaranteed to have at least one element.
selectEndpoint(id, mpep, epsByNIC.seed).HandleControlPacket(id, typ, extra, pkt)
}
// registerEndpoint returns true if it succeeds. It fails and returns
// false if ep already has an element with the same key.
func (epsByNIC *endpointsByNIC) registerEndpoint(d *transportDemuxer, netProto tcpip.NetworkProtocolNumber, transProto tcpip.TransportProtocolNumber, t TransportEndpoint, flags ports.Flags, bindToDevice tcpip.NICID) *tcpip.Error {
epsByNIC.mu.Lock()
defer epsByNIC.mu.Unlock()
multiPortEp, ok := epsByNIC.endpoints[bindToDevice]
if !ok {
multiPortEp = &multiPortEndpoint{
demux: d,
netProto: netProto,
transProto: transProto,
}
epsByNIC.endpoints[bindToDevice] = multiPortEp
}
return multiPortEp.singleRegisterEndpoint(t, flags)
}
func (epsByNIC *endpointsByNIC) checkEndpoint(d *transportDemuxer, netProto tcpip.NetworkProtocolNumber, transProto tcpip.TransportProtocolNumber, flags ports.Flags, bindToDevice tcpip.NICID) *tcpip.Error {
epsByNIC.mu.RLock()
defer epsByNIC.mu.RUnlock()
multiPortEp, ok := epsByNIC.endpoints[bindToDevice]
if !ok {
return nil
}
return multiPortEp.singleCheckEndpoint(flags)
}
// unregisterEndpoint returns true if endpointsByNIC has to be unregistered.
func (epsByNIC *endpointsByNIC) unregisterEndpoint(bindToDevice tcpip.NICID, t TransportEndpoint, flags ports.Flags) bool {
epsByNIC.mu.Lock()
defer epsByNIC.mu.Unlock()
multiPortEp, ok := epsByNIC.endpoints[bindToDevice]
if !ok {
return false
}
if multiPortEp.unregisterEndpoint(t, flags) {
delete(epsByNIC.endpoints, bindToDevice)
}
return len(epsByNIC.endpoints) == 0
}
// transportDemuxer demultiplexes packets targeted at a transport endpoint
// (i.e., after they've been parsed by the network layer). It does two levels
// of demultiplexing: first based on the network and transport protocols, then
// based on endpoints IDs. It should only be instantiated via
// newTransportDemuxer.
type transportDemuxer struct {
stack *Stack
// protocol is immutable.
protocol map[protocolIDs]*transportEndpoints
queuedProtocols map[protocolIDs]queuedTransportProtocol
}
// queuedTransportProtocol if supported by a protocol implementation will cause
// the dispatcher to delivery packets to the QueuePacket method instead of
// calling HandlePacket directly on the endpoint.
type queuedTransportProtocol interface {
QueuePacket(ep TransportEndpoint, id TransportEndpointID, pkt *PacketBuffer)
}
func newTransportDemuxer(stack *Stack) *transportDemuxer {
d := &transportDemuxer{
stack: stack,
protocol: make(map[protocolIDs]*transportEndpoints),
queuedProtocols: make(map[protocolIDs]queuedTransportProtocol),
}
// Add each network and transport pair to the demuxer.
for netProto := range stack.networkProtocols {
for proto := range stack.transportProtocols {
protoIDs := protocolIDs{netProto, proto}
d.protocol[protoIDs] = &transportEndpoints{
endpoints: make(map[TransportEndpointID]*endpointsByNIC),
}
qTransProto, isQueued := (stack.transportProtocols[proto].proto).(queuedTransportProtocol)
if isQueued {
d.queuedProtocols[protoIDs] = qTransProto
}
}
}
return d
}
// registerEndpoint registers the given endpoint with the dispatcher such that
// packets that match the endpoint ID are delivered to it.
func (d *transportDemuxer) registerEndpoint(netProtos []tcpip.NetworkProtocolNumber, protocol tcpip.TransportProtocolNumber, id TransportEndpointID, ep TransportEndpoint, flags ports.Flags, bindToDevice tcpip.NICID) *tcpip.Error {
for i, n := range netProtos {
if err := d.singleRegisterEndpoint(n, protocol, id, ep, flags, bindToDevice); err != nil {
d.unregisterEndpoint(netProtos[:i], protocol, id, ep, flags, bindToDevice)
return err
}
}
return nil
}
// checkEndpoint checks if an endpoint can be registered with the dispatcher.
func (d *transportDemuxer) checkEndpoint(netProtos []tcpip.NetworkProtocolNumber, protocol tcpip.TransportProtocolNumber, id TransportEndpointID, flags ports.Flags, bindToDevice tcpip.NICID) *tcpip.Error {
for _, n := range netProtos {
if err := d.singleCheckEndpoint(n, protocol, id, flags, bindToDevice); err != nil {
return err
}
}
return nil
}
// multiPortEndpoint is a container for TransportEndpoints which are bound to
// the same pair of address and port. endpointsArr always has at least one
// element.
//
// FIXME(gvisor.dev/issue/873): Restore this properly. Currently, we just save
// this to ensure that the underlying endpoints get saved/restored, but not not
// use the restored copy.
//
// +stateify savable
type multiPortEndpoint struct {
mu sync.RWMutex `state:"nosave"`
demux *transportDemuxer
netProto tcpip.NetworkProtocolNumber
transProto tcpip.TransportProtocolNumber
// endpoints stores the transport endpoints in the order in which they
// were bound. This is required for UDP SO_REUSEADDR.
endpoints []TransportEndpoint
flags ports.FlagCounter
}
func (ep *multiPortEndpoint) transportEndpoints() []TransportEndpoint {
ep.mu.RLock()
eps := append([]TransportEndpoint(nil), ep.endpoints...)
ep.mu.RUnlock()
return eps
}
// reciprocalScale scales a value into range [0, n).
//
// This is similar to val % n, but faster.
// See http://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
func reciprocalScale(val, n uint32) uint32 {
return uint32((uint64(val) * uint64(n)) >> 32)
}
// selectEndpoint calculates a hash of destination and source addresses and
// ports then uses it to select a socket. In this case, all packets from one
// address will be sent to same endpoint.
func selectEndpoint(id TransportEndpointID, mpep *multiPortEndpoint, seed uint32) TransportEndpoint {
if len(mpep.endpoints) == 1 {
return mpep.endpoints[0]
}
if mpep.flags.IntersectionRefs().ToFlags().Effective().MostRecent {
return mpep.endpoints[len(mpep.endpoints)-1]
}
payload := []byte{
byte(id.LocalPort),
byte(id.LocalPort >> 8),
byte(id.RemotePort),
byte(id.RemotePort >> 8),
}
h := jenkins.Sum32(seed)
h.Write(payload)
h.Write([]byte(id.LocalAddress))
h.Write([]byte(id.RemoteAddress))
hash := h.Sum32()
idx := reciprocalScale(hash, uint32(len(mpep.endpoints)))
return mpep.endpoints[idx]
}
func (ep *multiPortEndpoint) handlePacketAll(id TransportEndpointID, pkt *PacketBuffer) {
ep.mu.RLock()
queuedProtocol, mustQueue := ep.demux.queuedProtocols[protocolIDs{ep.netProto, ep.transProto}]
// HandlePacket takes ownership of pkt, so each endpoint needs
// its own copy except for the final one.
for _, endpoint := range ep.endpoints[:len(ep.endpoints)-1] {
if mustQueue {
queuedProtocol.QueuePacket(endpoint, id, pkt.Clone())
} else {
endpoint.HandlePacket(id, pkt.Clone())
}
}
if endpoint := ep.endpoints[len(ep.endpoints)-1]; mustQueue {
queuedProtocol.QueuePacket(endpoint, id, pkt)
} else {
endpoint.HandlePacket(id, pkt)
}
ep.mu.RUnlock() // Don't use defer for performance reasons.
}
// singleRegisterEndpoint tries to add an endpoint to the multiPortEndpoint
// list. The list might be empty already.
func (ep *multiPortEndpoint) singleRegisterEndpoint(t TransportEndpoint, flags ports.Flags) *tcpip.Error {
ep.mu.Lock()
defer ep.mu.Unlock()
bits := flags.Bits() & ports.MultiBindFlagMask
if len(ep.endpoints) != 0 {
// If it was previously bound, we need to check if we can bind again.
if ep.flags.TotalRefs() > 0 && bits&ep.flags.IntersectionRefs() == 0 {
return tcpip.ErrPortInUse
}
}
ep.endpoints = append(ep.endpoints, t)
ep.flags.AddRef(bits)
return nil
}
func (ep *multiPortEndpoint) singleCheckEndpoint(flags ports.Flags) *tcpip.Error {
ep.mu.RLock()
defer ep.mu.RUnlock()
bits := flags.Bits() & ports.MultiBindFlagMask
if len(ep.endpoints) != 0 {
// If it was previously bound, we need to check if we can bind again.
if ep.flags.TotalRefs() > 0 && bits&ep.flags.IntersectionRefs() == 0 {
return tcpip.ErrPortInUse
}
}
return nil
}
// unregisterEndpoint returns true if multiPortEndpoint has to be unregistered.
func (ep *multiPortEndpoint) unregisterEndpoint(t TransportEndpoint, flags ports.Flags) bool {
ep.mu.Lock()
defer ep.mu.Unlock()
for i, endpoint := range ep.endpoints {
if endpoint == t {
copy(ep.endpoints[i:], ep.endpoints[i+1:])
ep.endpoints[len(ep.endpoints)-1] = nil
ep.endpoints = ep.endpoints[:len(ep.endpoints)-1]
ep.flags.DropRef(flags.Bits() & ports.MultiBindFlagMask)
break
}
}
return len(ep.endpoints) == 0
}
func (d *transportDemuxer) singleRegisterEndpoint(netProto tcpip.NetworkProtocolNumber, protocol tcpip.TransportProtocolNumber, id TransportEndpointID, ep TransportEndpoint, flags ports.Flags, bindToDevice tcpip.NICID) *tcpip.Error {
if id.RemotePort != 0 {
// SO_REUSEPORT only applies to bound/listening endpoints.
flags.LoadBalanced = false
}
eps, ok := d.protocol[protocolIDs{netProto, protocol}]
if !ok {
return tcpip.ErrUnknownProtocol
}
eps.mu.Lock()
defer eps.mu.Unlock()
epsByNIC, ok := eps.endpoints[id]
if !ok {
epsByNIC = &endpointsByNIC{
endpoints: make(map[tcpip.NICID]*multiPortEndpoint),
seed: rand.Uint32(),
}
eps.endpoints[id] = epsByNIC
}
return epsByNIC.registerEndpoint(d, netProto, protocol, ep, flags, bindToDevice)
}
func (d *transportDemuxer) singleCheckEndpoint(netProto tcpip.NetworkProtocolNumber, protocol tcpip.TransportProtocolNumber, id TransportEndpointID, flags ports.Flags, bindToDevice tcpip.NICID) *tcpip.Error {
if id.RemotePort != 0 {
// SO_REUSEPORT only applies to bound/listening endpoints.
flags.LoadBalanced = false
}
eps, ok := d.protocol[protocolIDs{netProto, protocol}]
if !ok {
return tcpip.ErrUnknownProtocol
}
eps.mu.RLock()
defer eps.mu.RUnlock()
epsByNIC, ok := eps.endpoints[id]
if !ok {
return nil
}
return epsByNIC.checkEndpoint(d, netProto, protocol, flags, bindToDevice)
}
// unregisterEndpoint unregisters the endpoint with the given id such that it
// won't receive any more packets.
func (d *transportDemuxer) unregisterEndpoint(netProtos []tcpip.NetworkProtocolNumber, protocol tcpip.TransportProtocolNumber, id TransportEndpointID, ep TransportEndpoint, flags ports.Flags, bindToDevice tcpip.NICID) {
if id.RemotePort != 0 {
// SO_REUSEPORT only applies to bound/listening endpoints.
flags.LoadBalanced = false
}
for _, n := range netProtos {
if eps, ok := d.protocol[protocolIDs{n, protocol}]; ok {
eps.unregisterEndpoint(id, ep, flags, bindToDevice)
}
}
}
// deliverPacket attempts to find one or more matching transport endpoints, and
// then, if matches are found, delivers the packet to them. Returns true if
// the packet no longer needs to be handled.
func (d *transportDemuxer) deliverPacket(protocol tcpip.TransportProtocolNumber, pkt *PacketBuffer, id TransportEndpointID) bool {
eps, ok := d.protocol[protocolIDs{pkt.NetworkProtocolNumber, protocol}]
if !ok {
return false
}
// If the packet is a UDP broadcast or multicast, then find all matching
// transport endpoints.
if protocol == header.UDPProtocolNumber && isInboundMulticastOrBroadcast(pkt, id.LocalAddress) {
eps.mu.RLock()
destEPs := eps.findAllEndpointsLocked(id)
eps.mu.RUnlock()
// Fail if we didn't find at least one matching transport endpoint.
if len(destEPs) == 0 {
d.stack.stats.UDP.UnknownPortErrors.Increment()
return false
}
// handlePacket takes ownership of pkt, so each endpoint needs its own
// copy except for the final one.
for _, ep := range destEPs[:len(destEPs)-1] {
ep.handlePacket(id, pkt.Clone())
}
destEPs[len(destEPs)-1].handlePacket(id, pkt)
return true
}
// If the packet is a TCP packet with a unspecified source or non-unicast
// destination address, then do nothing further and instruct the caller to do
// the same. The network layer handles address validation for specified source
// addresses.
if protocol == header.TCPProtocolNumber && (!isSpecified(id.LocalAddress) || !isSpecified(id.RemoteAddress) || isInboundMulticastOrBroadcast(pkt, id.LocalAddress)) {
// TCP can only be used to communicate between a single source and a
// single destination; the addresses must be unicast.e
d.stack.stats.TCP.InvalidSegmentsReceived.Increment()
return true
}
eps.mu.RLock()
ep := eps.findEndpointLocked(id)
eps.mu.RUnlock()
if ep == nil {
if protocol == header.UDPProtocolNumber {
d.stack.stats.UDP.UnknownPortErrors.Increment()
}
return false
}
ep.handlePacket(id, pkt)
return true
}
// deliverRawPacket attempts to deliver the given packet and returns whether it
// was delivered successfully.
func (d *transportDemuxer) deliverRawPacket(protocol tcpip.TransportProtocolNumber, pkt *PacketBuffer) bool {
eps, ok := d.protocol[protocolIDs{pkt.NetworkProtocolNumber, protocol}]
if !ok {
return false
}
// As in net/ipv4/ip_input.c:ip_local_deliver, attempt to deliver via
// raw endpoint first. If there are multiple raw endpoints, they all
// receive the packet.
foundRaw := false
eps.mu.RLock()
for _, rawEP := range eps.rawEndpoints {
// Each endpoint gets its own copy of the packet for the sake
// of save/restore.
rawEP.HandlePacket(pkt.Clone())
foundRaw = true
}
eps.mu.RUnlock()
return foundRaw
}
// deliverControlPacket attempts to deliver the given control packet. Returns
// true if it found an endpoint, false otherwise.
func (d *transportDemuxer) deliverControlPacket(n *NIC, net tcpip.NetworkProtocolNumber, trans tcpip.TransportProtocolNumber, typ ControlType, extra uint32, pkt *PacketBuffer, id TransportEndpointID) bool {
eps, ok := d.protocol[protocolIDs{net, trans}]
if !ok {
return false
}
eps.mu.RLock()
ep := eps.findEndpointLocked(id)
eps.mu.RUnlock()
if ep == nil {
return false
}
ep.handleControlPacket(n, id, typ, extra, pkt)
return true
}
// findTransportEndpoint find a single endpoint that most closely matches the provided id.
func (d *transportDemuxer) findTransportEndpoint(netProto tcpip.NetworkProtocolNumber, transProto tcpip.TransportProtocolNumber, id TransportEndpointID, nicID tcpip.NICID) TransportEndpoint {
eps, ok := d.protocol[protocolIDs{netProto, transProto}]
if !ok {
return nil
}
eps.mu.RLock()
epsByNIC := eps.findEndpointLocked(id)
if epsByNIC == nil {
eps.mu.RUnlock()
return nil
}
epsByNIC.mu.RLock()
eps.mu.RUnlock()
mpep, ok := epsByNIC.endpoints[nicID]
if !ok {
if mpep, ok = epsByNIC.endpoints[0]; !ok {
epsByNIC.mu.RUnlock() // Don't use defer for performance reasons.
return nil
}
}
ep := selectEndpoint(id, mpep, epsByNIC.seed)
epsByNIC.mu.RUnlock()
return ep
}
// registerRawEndpoint registers the given endpoint with the dispatcher such
// that packets of the appropriate protocol are delivered to it. A single
// packet can be sent to one or more raw endpoints along with a non-raw
// endpoint.
func (d *transportDemuxer) registerRawEndpoint(netProto tcpip.NetworkProtocolNumber, transProto tcpip.TransportProtocolNumber, ep RawTransportEndpoint) *tcpip.Error {
eps, ok := d.protocol[protocolIDs{netProto, transProto}]
if !ok {
return tcpip.ErrNotSupported
}
eps.mu.Lock()
eps.rawEndpoints = append(eps.rawEndpoints, ep)
eps.mu.Unlock()
return nil
}
// unregisterRawEndpoint unregisters the raw endpoint for the given transport
// protocol such that it won't receive any more packets.
func (d *transportDemuxer) unregisterRawEndpoint(netProto tcpip.NetworkProtocolNumber, transProto tcpip.TransportProtocolNumber, ep RawTransportEndpoint) {
eps, ok := d.protocol[protocolIDs{netProto, transProto}]
if !ok {
panic(fmt.Errorf("tried to unregister endpoint with unsupported network and transport protocol pair: %d, %d", netProto, transProto))
}
eps.mu.Lock()
for i, rawEP := range eps.rawEndpoints {
if rawEP == ep {
lastIdx := len(eps.rawEndpoints) - 1
eps.rawEndpoints[i] = eps.rawEndpoints[lastIdx]
eps.rawEndpoints[lastIdx] = nil
eps.rawEndpoints = eps.rawEndpoints[:lastIdx]
break
}
}
eps.mu.Unlock()
}
func isInboundMulticastOrBroadcast(pkt *PacketBuffer, localAddr tcpip.Address) bool {
return pkt.NetworkPacketInfo.LocalAddressBroadcast || header.IsV4MulticastAddress(localAddr) || header.IsV6MulticastAddress(localAddr)
}
func isSpecified(addr tcpip.Address) bool {
return addr != header.IPv4Any && addr != header.IPv6Any
}
|