1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package stack
import (
"strings"
"sync"
"sync/atomic"
"gvisor.dev/gvisor/pkg/ilist"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/tcpip/buffer"
"gvisor.dev/gvisor/pkg/tcpip/header"
)
// NIC represents a "network interface card" to which the networking stack is
// attached.
type NIC struct {
stack *Stack
id tcpip.NICID
name string
linkEP LinkEndpoint
loopback bool
mu sync.RWMutex
spoofing bool
promiscuous bool
primary map[tcpip.NetworkProtocolNumber]*ilist.List
endpoints map[NetworkEndpointID]*referencedNetworkEndpoint
addressRanges []tcpip.Subnet
mcastJoins map[NetworkEndpointID]int32
stats NICStats
ndp ndpState
}
// NICStats includes transmitted and received stats.
type NICStats struct {
Tx DirectionStats
Rx DirectionStats
}
// DirectionStats includes packet and byte counts.
type DirectionStats struct {
Packets *tcpip.StatCounter
Bytes *tcpip.StatCounter
}
// PrimaryEndpointBehavior is an enumeration of an endpoint's primacy behavior.
type PrimaryEndpointBehavior int
const (
// CanBePrimaryEndpoint indicates the endpoint can be used as a primary
// endpoint for new connections with no local address. This is the
// default when calling NIC.AddAddress.
CanBePrimaryEndpoint PrimaryEndpointBehavior = iota
// FirstPrimaryEndpoint indicates the endpoint should be the first
// primary endpoint considered. If there are multiple endpoints with
// this behavior, the most recently-added one will be first.
FirstPrimaryEndpoint
// NeverPrimaryEndpoint indicates the endpoint should never be a
// primary endpoint.
NeverPrimaryEndpoint
)
func newNIC(stack *Stack, id tcpip.NICID, name string, ep LinkEndpoint, loopback bool) *NIC {
return &NIC{
stack: stack,
id: id,
name: name,
linkEP: ep,
loopback: loopback,
primary: make(map[tcpip.NetworkProtocolNumber]*ilist.List),
endpoints: make(map[NetworkEndpointID]*referencedNetworkEndpoint),
mcastJoins: make(map[NetworkEndpointID]int32),
stats: NICStats{
Tx: DirectionStats{
Packets: &tcpip.StatCounter{},
Bytes: &tcpip.StatCounter{},
},
Rx: DirectionStats{
Packets: &tcpip.StatCounter{},
Bytes: &tcpip.StatCounter{},
},
},
ndp: ndpState{
dad: make(map[tcpip.Address]dadState),
},
}
}
// enable enables the NIC. enable will attach the link to its LinkEndpoint and
// join the IPv6 All-Nodes Multicast address (ff02::1).
func (n *NIC) enable() *tcpip.Error {
n.attachLinkEndpoint()
// Create an endpoint to receive broadcast packets on this interface.
if _, ok := n.stack.networkProtocols[header.IPv4ProtocolNumber]; ok {
if err := n.AddAddress(tcpip.ProtocolAddress{
Protocol: header.IPv4ProtocolNumber,
AddressWithPrefix: tcpip.AddressWithPrefix{header.IPv4Broadcast, 8 * header.IPv4AddressSize},
}, NeverPrimaryEndpoint); err != nil {
return err
}
}
// Join the IPv6 All-Nodes Multicast group if the stack is configured to
// use IPv6. This is required to ensure that this node properly receives
// and responds to the various NDP messages that are destined to the
// all-nodes multicast address. An example is the Neighbor Advertisement
// when we perform Duplicate Address Detection, or Router Advertisement
// when we do Router Discovery. See RFC 4862, section 5.4.2 and RFC 4861
// section 4.2 for more information.
if _, ok := n.stack.networkProtocols[header.IPv6ProtocolNumber]; ok {
return n.joinGroup(header.IPv6ProtocolNumber, header.IPv6AllNodesMulticastAddress)
}
return nil
}
// attachLinkEndpoint attaches the NIC to the endpoint, which will enable it
// to start delivering packets.
func (n *NIC) attachLinkEndpoint() {
n.linkEP.Attach(n)
}
// setPromiscuousMode enables or disables promiscuous mode.
func (n *NIC) setPromiscuousMode(enable bool) {
n.mu.Lock()
n.promiscuous = enable
n.mu.Unlock()
}
func (n *NIC) isPromiscuousMode() bool {
n.mu.RLock()
rv := n.promiscuous
n.mu.RUnlock()
return rv
}
// setSpoofing enables or disables address spoofing.
func (n *NIC) setSpoofing(enable bool) {
n.mu.Lock()
n.spoofing = enable
n.mu.Unlock()
}
// primaryEndpoint returns the primary endpoint of n for the given network
// protocol.
func (n *NIC) primaryEndpoint(protocol tcpip.NetworkProtocolNumber) *referencedNetworkEndpoint {
n.mu.RLock()
defer n.mu.RUnlock()
list := n.primary[protocol]
if list == nil {
return nil
}
for e := list.Front(); e != nil; e = e.Next() {
r := e.(*referencedNetworkEndpoint)
if r.isValidForOutgoing() && r.tryIncRef() {
return r
}
}
return nil
}
func (n *NIC) getRef(protocol tcpip.NetworkProtocolNumber, dst tcpip.Address) *referencedNetworkEndpoint {
return n.getRefOrCreateTemp(protocol, dst, CanBePrimaryEndpoint, n.promiscuous)
}
// findEndpoint finds the endpoint, if any, with the given address.
func (n *NIC) findEndpoint(protocol tcpip.NetworkProtocolNumber, address tcpip.Address, peb PrimaryEndpointBehavior) *referencedNetworkEndpoint {
return n.getRefOrCreateTemp(protocol, address, peb, n.spoofing)
}
// getRefEpOrCreateTemp returns the referenced network endpoint for the given
// protocol and address. If none exists a temporary one may be created if
// we are in promiscuous mode or spoofing.
func (n *NIC) getRefOrCreateTemp(protocol tcpip.NetworkProtocolNumber, address tcpip.Address, peb PrimaryEndpointBehavior, spoofingOrPromiscuous bool) *referencedNetworkEndpoint {
id := NetworkEndpointID{address}
n.mu.RLock()
if ref, ok := n.endpoints[id]; ok {
// An endpoint with this id exists, check if it can be used and return it.
switch ref.getKind() {
case permanentExpired:
if !spoofingOrPromiscuous {
n.mu.RUnlock()
return nil
}
fallthrough
case temporary, permanent:
if ref.tryIncRef() {
n.mu.RUnlock()
return ref
}
}
}
// A usable reference was not found, create a temporary one if requested by
// the caller or if the address is found in the NIC's subnets.
createTempEP := spoofingOrPromiscuous
if !createTempEP {
for _, sn := range n.addressRanges {
// Skip the subnet address.
if address == sn.ID() {
continue
}
// For now just skip the broadcast address, until we support it.
// FIXME(b/137608825): Add support for sending/receiving directed
// (subnet) broadcast.
if address == sn.Broadcast() {
continue
}
if sn.Contains(address) {
createTempEP = true
break
}
}
}
n.mu.RUnlock()
if !createTempEP {
return nil
}
// Try again with the lock in exclusive mode. If we still can't get the
// endpoint, create a new "temporary" endpoint. It will only exist while
// there's a route through it.
n.mu.Lock()
if ref, ok := n.endpoints[id]; ok {
// No need to check the type as we are ok with expired endpoints at this
// point.
if ref.tryIncRef() {
n.mu.Unlock()
return ref
}
// tryIncRef failing means the endpoint is scheduled to be removed once the
// lock is released. Remove it here so we can create a new (temporary) one.
// The removal logic waiting for the lock handles this case.
n.removeEndpointLocked(ref)
}
// Add a new temporary endpoint.
netProto, ok := n.stack.networkProtocols[protocol]
if !ok {
n.mu.Unlock()
return nil
}
ref, _ := n.addAddressLocked(tcpip.ProtocolAddress{
Protocol: protocol,
AddressWithPrefix: tcpip.AddressWithPrefix{
Address: address,
PrefixLen: netProto.DefaultPrefixLen(),
},
}, peb, temporary)
n.mu.Unlock()
return ref
}
func (n *NIC) addPermanentAddressLocked(protocolAddress tcpip.ProtocolAddress, peb PrimaryEndpointBehavior) (*referencedNetworkEndpoint, *tcpip.Error) {
id := NetworkEndpointID{protocolAddress.AddressWithPrefix.Address}
if ref, ok := n.endpoints[id]; ok {
switch ref.getKind() {
case permanentTentative, permanent:
// The NIC already have a permanent endpoint with that address.
return nil, tcpip.ErrDuplicateAddress
case permanentExpired, temporary:
// Promote the endpoint to become permanent.
if ref.tryIncRef() {
ref.setKind(permanent)
return ref, nil
}
// tryIncRef failing means the endpoint is scheduled to be removed once
// the lock is released. Remove it here so we can create a new
// (permanent) one. The removal logic waiting for the lock handles this
// case.
n.removeEndpointLocked(ref)
}
}
return n.addAddressLocked(protocolAddress, peb, permanent)
}
func (n *NIC) addAddressLocked(protocolAddress tcpip.ProtocolAddress, peb PrimaryEndpointBehavior, kind networkEndpointKind) (*referencedNetworkEndpoint, *tcpip.Error) {
// TODO(b/141022673): Validate IP address before adding them.
// Sanity check.
id := NetworkEndpointID{protocolAddress.AddressWithPrefix.Address}
if _, ok := n.endpoints[id]; ok {
// Endpoint already exists.
return nil, tcpip.ErrDuplicateAddress
}
netProto, ok := n.stack.networkProtocols[protocolAddress.Protocol]
if !ok {
return nil, tcpip.ErrUnknownProtocol
}
// Create the new network endpoint.
ep, err := netProto.NewEndpoint(n.id, protocolAddress.AddressWithPrefix, n.stack, n, n.linkEP)
if err != nil {
return nil, err
}
isIPv6Unicast := protocolAddress.Protocol == header.IPv6ProtocolNumber && header.IsV6UnicastAddress(protocolAddress.AddressWithPrefix.Address)
// If the address is an IPv6 address and it is a permanent address,
// mark it as tentative so it goes through the DAD process.
if isIPv6Unicast && kind == permanent {
kind = permanentTentative
}
ref := &referencedNetworkEndpoint{
refs: 1,
ep: ep,
nic: n,
protocol: protocolAddress.Protocol,
kind: kind,
}
// Set up cache if link address resolution exists for this protocol.
if n.linkEP.Capabilities()&CapabilityResolutionRequired != 0 {
if _, ok := n.stack.linkAddrResolvers[protocolAddress.Protocol]; ok {
ref.linkCache = n.stack
}
}
// If we are adding an IPv6 unicast address, join the solicited-node
// multicast address.
if isIPv6Unicast {
snmc := header.SolicitedNodeAddr(protocolAddress.AddressWithPrefix.Address)
if err := n.joinGroupLocked(protocolAddress.Protocol, snmc); err != nil {
return nil, err
}
}
n.endpoints[id] = ref
l, ok := n.primary[protocolAddress.Protocol]
if !ok {
l = &ilist.List{}
n.primary[protocolAddress.Protocol] = l
}
switch peb {
case CanBePrimaryEndpoint:
l.PushBack(ref)
case FirstPrimaryEndpoint:
l.PushFront(ref)
}
// If we are adding a tentative IPv6 address, start DAD.
if isIPv6Unicast && kind == permanentTentative {
if err := n.ndp.startDuplicateAddressDetection(n, protocolAddress.AddressWithPrefix.Address, ref); err != nil {
return nil, err
}
}
return ref, nil
}
// AddAddress adds a new address to n, so that it starts accepting packets
// targeted at the given address (and network protocol).
func (n *NIC) AddAddress(protocolAddress tcpip.ProtocolAddress, peb PrimaryEndpointBehavior) *tcpip.Error {
// Add the endpoint.
n.mu.Lock()
_, err := n.addPermanentAddressLocked(protocolAddress, peb)
n.mu.Unlock()
return err
}
// AllAddresses returns all addresses (primary and non-primary) associated with
// this NIC.
func (n *NIC) AllAddresses() []tcpip.ProtocolAddress {
n.mu.RLock()
defer n.mu.RUnlock()
addrs := make([]tcpip.ProtocolAddress, 0, len(n.endpoints))
for nid, ref := range n.endpoints {
// Don't include tentative, expired or temporary endpoints to
// avoid confusion and prevent the caller from using those.
switch ref.getKind() {
case permanentTentative, permanentExpired, temporary:
// TODO(b/140898488): Should tentative addresses be
// returned?
continue
}
addrs = append(addrs, tcpip.ProtocolAddress{
Protocol: ref.protocol,
AddressWithPrefix: tcpip.AddressWithPrefix{
Address: nid.LocalAddress,
PrefixLen: ref.ep.PrefixLen(),
},
})
}
return addrs
}
// PrimaryAddresses returns the primary addresses associated with this NIC.
func (n *NIC) PrimaryAddresses() []tcpip.ProtocolAddress {
n.mu.RLock()
defer n.mu.RUnlock()
var addrs []tcpip.ProtocolAddress
for proto, list := range n.primary {
for e := list.Front(); e != nil; e = e.Next() {
ref := e.(*referencedNetworkEndpoint)
// Don't include tentative, expired or tempory endpoints
// to avoid confusion and prevent the caller from using
// those.
switch ref.getKind() {
case permanentTentative, permanentExpired, temporary:
continue
}
addrs = append(addrs, tcpip.ProtocolAddress{
Protocol: proto,
AddressWithPrefix: tcpip.AddressWithPrefix{
Address: ref.ep.ID().LocalAddress,
PrefixLen: ref.ep.PrefixLen(),
},
})
}
}
return addrs
}
// AddAddressRange adds a range of addresses to n, so that it starts accepting
// packets targeted at the given addresses and network protocol. The range is
// given by a subnet address, and all addresses contained in the subnet are
// used except for the subnet address itself and the subnet's broadcast
// address.
func (n *NIC) AddAddressRange(protocol tcpip.NetworkProtocolNumber, subnet tcpip.Subnet) {
n.mu.Lock()
n.addressRanges = append(n.addressRanges, subnet)
n.mu.Unlock()
}
// RemoveAddressRange removes the given address range from n.
func (n *NIC) RemoveAddressRange(subnet tcpip.Subnet) {
n.mu.Lock()
// Use the same underlying array.
tmp := n.addressRanges[:0]
for _, sub := range n.addressRanges {
if sub != subnet {
tmp = append(tmp, sub)
}
}
n.addressRanges = tmp
n.mu.Unlock()
}
// Subnets returns the Subnets associated with this NIC.
func (n *NIC) AddressRanges() []tcpip.Subnet {
n.mu.RLock()
defer n.mu.RUnlock()
sns := make([]tcpip.Subnet, 0, len(n.addressRanges)+len(n.endpoints))
for nid := range n.endpoints {
sn, err := tcpip.NewSubnet(nid.LocalAddress, tcpip.AddressMask(strings.Repeat("\xff", len(nid.LocalAddress))))
if err != nil {
// This should never happen as the mask has been carefully crafted to
// match the address.
panic("Invalid endpoint subnet: " + err.Error())
}
sns = append(sns, sn)
}
return append(sns, n.addressRanges...)
}
func (n *NIC) removeEndpointLocked(r *referencedNetworkEndpoint) {
id := *r.ep.ID()
// Nothing to do if the reference has already been replaced with a different
// one. This happens in the case where 1) this endpoint's ref count hit zero
// and was waiting (on the lock) to be removed and 2) the same address was
// re-added in the meantime by removing this endpoint from the list and
// adding a new one.
if n.endpoints[id] != r {
return
}
if r.getKind() == permanent {
panic("Reference count dropped to zero before being removed")
}
delete(n.endpoints, id)
wasInList := r.Next() != nil || r.Prev() != nil || r == n.primary[r.protocol].Front()
if wasInList {
n.primary[r.protocol].Remove(r)
}
r.ep.Close()
}
func (n *NIC) removeEndpoint(r *referencedNetworkEndpoint) {
n.mu.Lock()
n.removeEndpointLocked(r)
n.mu.Unlock()
}
func (n *NIC) removePermanentAddressLocked(addr tcpip.Address) *tcpip.Error {
r, ok := n.endpoints[NetworkEndpointID{addr}]
if !ok {
return tcpip.ErrBadLocalAddress
}
kind := r.getKind()
if kind != permanent && kind != permanentTentative {
return tcpip.ErrBadLocalAddress
}
isIPv6Unicast := r.protocol == header.IPv6ProtocolNumber && header.IsV6UnicastAddress(addr)
// If we are removing a tentative IPv6 unicast address, stop DAD.
if isIPv6Unicast && kind == permanentTentative {
n.ndp.stopDuplicateAddressDetection(addr)
}
r.setKind(permanentExpired)
if !r.decRefLocked() {
// The endpoint still has references to it.
return nil
}
// At this point the endpoint is deleted.
// If we are removing an IPv6 unicast address, leave the solicited-node
// multicast address.
if isIPv6Unicast {
snmc := header.SolicitedNodeAddr(addr)
if err := n.leaveGroupLocked(snmc); err != nil {
return err
}
}
return nil
}
// RemoveAddress removes an address from n.
func (n *NIC) RemoveAddress(addr tcpip.Address) *tcpip.Error {
n.mu.Lock()
defer n.mu.Unlock()
return n.removePermanentAddressLocked(addr)
}
// joinGroup adds a new endpoint for the given multicast address, if none
// exists yet. Otherwise it just increments its count.
func (n *NIC) joinGroup(protocol tcpip.NetworkProtocolNumber, addr tcpip.Address) *tcpip.Error {
n.mu.Lock()
defer n.mu.Unlock()
return n.joinGroupLocked(protocol, addr)
}
// joinGroupLocked adds a new endpoint for the given multicast address, if none
// exists yet. Otherwise it just increments its count. n MUST be locked before
// joinGroupLocked is called.
func (n *NIC) joinGroupLocked(protocol tcpip.NetworkProtocolNumber, addr tcpip.Address) *tcpip.Error {
id := NetworkEndpointID{addr}
joins := n.mcastJoins[id]
if joins == 0 {
netProto, ok := n.stack.networkProtocols[protocol]
if !ok {
return tcpip.ErrUnknownProtocol
}
if _, err := n.addPermanentAddressLocked(tcpip.ProtocolAddress{
Protocol: protocol,
AddressWithPrefix: tcpip.AddressWithPrefix{
Address: addr,
PrefixLen: netProto.DefaultPrefixLen(),
},
}, NeverPrimaryEndpoint); err != nil {
return err
}
}
n.mcastJoins[id] = joins + 1
return nil
}
// leaveGroup decrements the count for the given multicast address, and when it
// reaches zero removes the endpoint for this address.
func (n *NIC) leaveGroup(addr tcpip.Address) *tcpip.Error {
n.mu.Lock()
defer n.mu.Unlock()
return n.leaveGroupLocked(addr)
}
// leaveGroupLocked decrements the count for the given multicast address, and
// when it reaches zero removes the endpoint for this address. n MUST be locked
// before leaveGroupLocked is called.
func (n *NIC) leaveGroupLocked(addr tcpip.Address) *tcpip.Error {
id := NetworkEndpointID{addr}
joins := n.mcastJoins[id]
switch joins {
case 0:
// There are no joins with this address on this NIC.
return tcpip.ErrBadLocalAddress
case 1:
// This is the last one, clean up.
if err := n.removePermanentAddressLocked(addr); err != nil {
return err
}
}
n.mcastJoins[id] = joins - 1
return nil
}
func handlePacket(protocol tcpip.NetworkProtocolNumber, dst, src tcpip.Address, localLinkAddr, remotelinkAddr tcpip.LinkAddress, ref *referencedNetworkEndpoint, vv buffer.VectorisedView) {
r := makeRoute(protocol, dst, src, localLinkAddr, ref, false /* handleLocal */, false /* multicastLoop */)
r.RemoteLinkAddress = remotelinkAddr
ref.ep.HandlePacket(&r, vv)
ref.decRef()
}
// DeliverNetworkPacket finds the appropriate network protocol endpoint and
// hands the packet over for further processing. This function is called when
// the NIC receives a packet from the physical interface.
// Note that the ownership of the slice backing vv is retained by the caller.
// This rule applies only to the slice itself, not to the items of the slice;
// the ownership of the items is not retained by the caller.
func (n *NIC) DeliverNetworkPacket(linkEP LinkEndpoint, remote, _ tcpip.LinkAddress, protocol tcpip.NetworkProtocolNumber, vv buffer.VectorisedView) {
n.stats.Rx.Packets.Increment()
n.stats.Rx.Bytes.IncrementBy(uint64(vv.Size()))
netProto, ok := n.stack.networkProtocols[protocol]
if !ok {
n.stack.stats.UnknownProtocolRcvdPackets.Increment()
return
}
if netProto.Number() == header.IPv4ProtocolNumber || netProto.Number() == header.IPv6ProtocolNumber {
n.stack.stats.IP.PacketsReceived.Increment()
}
if len(vv.First()) < netProto.MinimumPacketSize() {
n.stack.stats.MalformedRcvdPackets.Increment()
return
}
src, dst := netProto.ParseAddresses(vv.First())
if ref := n.getRef(protocol, dst); ref != nil {
handlePacket(protocol, dst, src, linkEP.LinkAddress(), remote, ref, vv)
return
}
// This NIC doesn't care about the packet. Find a NIC that cares about the
// packet and forward it to the NIC.
//
// TODO: Should we be forwarding the packet even if promiscuous?
if n.stack.Forwarding() {
r, err := n.stack.FindRoute(0, "", dst, protocol, false /* multicastLoop */)
if err != nil {
n.stack.stats.IP.InvalidAddressesReceived.Increment()
return
}
defer r.Release()
r.LocalLinkAddress = n.linkEP.LinkAddress()
r.RemoteLinkAddress = remote
// Found a NIC.
n := r.ref.nic
n.mu.RLock()
ref, ok := n.endpoints[NetworkEndpointID{dst}]
ok = ok && ref.isValidForOutgoing() && ref.tryIncRef()
n.mu.RUnlock()
if ok {
r.RemoteAddress = src
// TODO(b/123449044): Update the source NIC as well.
ref.ep.HandlePacket(&r, vv)
ref.decRef()
} else {
// n doesn't have a destination endpoint.
// Send the packet out of n.
hdr := buffer.NewPrependableFromView(vv.First())
vv.RemoveFirst()
// TODO(b/128629022): use route.WritePacket.
if err := n.linkEP.WritePacket(&r, nil /* gso */, hdr, vv, protocol); err != nil {
r.Stats().IP.OutgoingPacketErrors.Increment()
} else {
n.stats.Tx.Packets.Increment()
n.stats.Tx.Bytes.IncrementBy(uint64(hdr.UsedLength() + vv.Size()))
}
}
return
}
n.stack.stats.IP.InvalidAddressesReceived.Increment()
}
// DeliverTransportPacket delivers the packets to the appropriate transport
// protocol endpoint.
func (n *NIC) DeliverTransportPacket(r *Route, protocol tcpip.TransportProtocolNumber, netHeader buffer.View, vv buffer.VectorisedView) {
state, ok := n.stack.transportProtocols[protocol]
if !ok {
n.stack.stats.UnknownProtocolRcvdPackets.Increment()
return
}
transProto := state.proto
// Raw socket packets are delivered based solely on the transport
// protocol number. We do not inspect the payload to ensure it's
// validly formed.
n.stack.demux.deliverRawPacket(r, protocol, netHeader, vv)
if len(vv.First()) < transProto.MinimumPacketSize() {
n.stack.stats.MalformedRcvdPackets.Increment()
return
}
srcPort, dstPort, err := transProto.ParsePorts(vv.First())
if err != nil {
n.stack.stats.MalformedRcvdPackets.Increment()
return
}
id := TransportEndpointID{dstPort, r.LocalAddress, srcPort, r.RemoteAddress}
if n.stack.demux.deliverPacket(r, protocol, netHeader, vv, id) {
return
}
// Try to deliver to per-stack default handler.
if state.defaultHandler != nil {
if state.defaultHandler(r, id, netHeader, vv) {
return
}
}
// We could not find an appropriate destination for this packet, so
// deliver it to the global handler.
if !transProto.HandleUnknownDestinationPacket(r, id, netHeader, vv) {
n.stack.stats.MalformedRcvdPackets.Increment()
}
}
// DeliverTransportControlPacket delivers control packets to the appropriate
// transport protocol endpoint.
func (n *NIC) DeliverTransportControlPacket(local, remote tcpip.Address, net tcpip.NetworkProtocolNumber, trans tcpip.TransportProtocolNumber, typ ControlType, extra uint32, vv buffer.VectorisedView) {
state, ok := n.stack.transportProtocols[trans]
if !ok {
return
}
transProto := state.proto
// ICMPv4 only guarantees that 8 bytes of the transport protocol will
// be present in the payload. We know that the ports are within the
// first 8 bytes for all known transport protocols.
if len(vv.First()) < 8 {
return
}
srcPort, dstPort, err := transProto.ParsePorts(vv.First())
if err != nil {
return
}
id := TransportEndpointID{srcPort, local, dstPort, remote}
if n.stack.demux.deliverControlPacket(n, net, trans, typ, extra, vv, id) {
return
}
}
// ID returns the identifier of n.
func (n *NIC) ID() tcpip.NICID {
return n.id
}
// Stack returns the instance of the Stack that owns this NIC.
func (n *NIC) Stack() *Stack {
return n.stack
}
// isAddrTentative returns true if addr is tentative on n.
//
// Note that if addr is not associated with n, then this function will return
// false. It will only return true if the address is associated with the NIC
// AND it is tentative.
func (n *NIC) isAddrTentative(addr tcpip.Address) bool {
ref, ok := n.endpoints[NetworkEndpointID{addr}]
if !ok {
return false
}
return ref.getKind() == permanentTentative
}
// dupTentativeAddrDetected attempts to inform n that a tentative addr
// is a duplicate on a link.
//
// dupTentativeAddrDetected will delete the tentative address if it exists.
func (n *NIC) dupTentativeAddrDetected(addr tcpip.Address) *tcpip.Error {
n.mu.Lock()
defer n.mu.Unlock()
ref, ok := n.endpoints[NetworkEndpointID{addr}]
if !ok {
return tcpip.ErrBadAddress
}
if ref.getKind() != permanentTentative {
return tcpip.ErrInvalidEndpointState
}
return n.removePermanentAddressLocked(addr)
}
type networkEndpointKind int32
const (
// A permanentTentative endpoint is a permanent address that is not yet
// considered to be fully bound to an interface in the traditional
// sense. That is, the address is associated with a NIC, but packets
// destined to the address MUST NOT be accepted and MUST be silently
// dropped, and the address MUST NOT be used as a source address for
// outgoing packets. For IPv6, addresses will be of this kind until
// NDP's Duplicate Address Detection has resolved, or be deleted if
// the process results in detecting a duplicate address.
permanentTentative networkEndpointKind = iota
// A permanent endpoint is created by adding a permanent address (vs. a
// temporary one) to the NIC. Its reference count is biased by 1 to avoid
// removal when no route holds a reference to it. It is removed by explicitly
// removing the permanent address from the NIC.
permanent
// An expired permanent endoint is a permanent endoint that had its address
// removed from the NIC, and it is waiting to be removed once no more routes
// hold a reference to it. This is achieved by decreasing its reference count
// by 1. If its address is re-added before the endpoint is removed, its type
// changes back to permanent and its reference count increases by 1 again.
permanentExpired
// A temporary endpoint is created for spoofing outgoing packets, or when in
// promiscuous mode and accepting incoming packets that don't match any
// permanent endpoint. Its reference count is not biased by 1 and the
// endpoint is removed immediately when no more route holds a reference to
// it. A temporary endpoint can be promoted to permanent if its address
// is added permanently.
temporary
)
type referencedNetworkEndpoint struct {
ilist.Entry
ep NetworkEndpoint
nic *NIC
protocol tcpip.NetworkProtocolNumber
// linkCache is set if link address resolution is enabled for this
// protocol. Set to nil otherwise.
linkCache LinkAddressCache
// refs is counting references held for this endpoint. When refs hits zero it
// triggers the automatic removal of the endpoint from the NIC.
refs int32
// networkEndpointKind must only be accessed using {get,set}Kind().
kind networkEndpointKind
}
func (r *referencedNetworkEndpoint) getKind() networkEndpointKind {
return networkEndpointKind(atomic.LoadInt32((*int32)(&r.kind)))
}
func (r *referencedNetworkEndpoint) setKind(kind networkEndpointKind) {
atomic.StoreInt32((*int32)(&r.kind), int32(kind))
}
// isValidForOutgoing returns true if the endpoint can be used to send out a
// packet. It requires the endpoint to not be marked expired (i.e., its address
// has been removed), or the NIC to be in spoofing mode.
func (r *referencedNetworkEndpoint) isValidForOutgoing() bool {
return r.getKind() != permanentExpired || r.nic.spoofing
}
// isValidForIncoming returns true if the endpoint can accept an incoming
// packet. It requires the endpoint to not be marked expired (i.e., its address
// has been removed), or the NIC to be in promiscuous mode.
func (r *referencedNetworkEndpoint) isValidForIncoming() bool {
return r.getKind() != permanentExpired || r.nic.promiscuous
}
// decRef decrements the ref count and cleans up the endpoint once it reaches
// zero.
func (r *referencedNetworkEndpoint) decRef() {
if atomic.AddInt32(&r.refs, -1) == 0 {
r.nic.removeEndpoint(r)
}
}
// decRefLocked is the same as decRef but assumes that the NIC.mu mutex is
// locked. Returns true if the endpoint was removed.
func (r *referencedNetworkEndpoint) decRefLocked() bool {
if atomic.AddInt32(&r.refs, -1) == 0 {
r.nic.removeEndpointLocked(r)
return true
}
return false
}
// incRef increments the ref count. It must only be called when the caller is
// known to be holding a reference to the endpoint, otherwise tryIncRef should
// be used.
func (r *referencedNetworkEndpoint) incRef() {
atomic.AddInt32(&r.refs, 1)
}
// tryIncRef attempts to increment the ref count from n to n+1, but only if n is
// not zero. That is, it will increment the count if the endpoint is still
// alive, and do nothing if it has already been clean up.
func (r *referencedNetworkEndpoint) tryIncRef() bool {
for {
v := atomic.LoadInt32(&r.refs)
if v == 0 {
return false
}
if atomic.CompareAndSwapInt32(&r.refs, v, v+1) {
return true
}
}
}
// stack returns the Stack instance that owns the underlying endpoint.
func (r *referencedNetworkEndpoint) stack() *Stack {
return r.nic.stack
}
|