1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package stack
import (
"fmt"
"math/rand"
"reflect"
"sync/atomic"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/tcpip/header"
)
var _ NetworkInterface = (*NIC)(nil)
// NIC represents a "network interface card" to which the networking stack is
// attached.
type NIC struct {
LinkEndpoint
stack *Stack
id tcpip.NICID
name string
context NICContext
stats NICStats
neigh *neighborCache
// The network endpoints themselves may be modified by calling the interface's
// methods, but the map reference and entries must be constant.
networkEndpoints map[tcpip.NetworkProtocolNumber]NetworkEndpoint
// enabled is set to 1 when the NIC is enabled and 0 when it is disabled.
//
// Must be accessed using atomic operations.
enabled uint32
// linkResQueue holds packets that are waiting for link resolution to
// complete.
linkResQueue packetsPendingLinkResolution
linkAddrCache *linkAddrCache
mu struct {
sync.RWMutex
spoofing bool
promiscuous bool
// packetEPs is protected by mu, but the contained packetEndpointList are
// not.
packetEPs map[tcpip.NetworkProtocolNumber]*packetEndpointList
}
}
// NICStats hold statistics for a NIC.
type NICStats struct {
Tx DirectionStats
Rx DirectionStats
DisabledRx DirectionStats
Neighbor NeighborStats
}
func makeNICStats() NICStats {
var s NICStats
tcpip.InitStatCounters(reflect.ValueOf(&s).Elem())
return s
}
// DirectionStats includes packet and byte counts.
type DirectionStats struct {
Packets *tcpip.StatCounter
Bytes *tcpip.StatCounter
}
type packetEndpointList struct {
mu sync.RWMutex
// eps is protected by mu, but the contained PacketEndpoint values are not.
eps []PacketEndpoint
}
func (p *packetEndpointList) add(ep PacketEndpoint) {
p.mu.Lock()
defer p.mu.Unlock()
p.eps = append(p.eps, ep)
}
func (p *packetEndpointList) remove(ep PacketEndpoint) {
p.mu.Lock()
defer p.mu.Unlock()
for i, epOther := range p.eps {
if epOther == ep {
p.eps = append(p.eps[:i], p.eps[i+1:]...)
break
}
}
}
// forEach calls fn with each endpoints in p while holding the read lock on p.
func (p *packetEndpointList) forEach(fn func(PacketEndpoint)) {
p.mu.RLock()
defer p.mu.RUnlock()
for _, ep := range p.eps {
fn(ep)
}
}
// newNIC returns a new NIC using the default NDP configurations from stack.
func newNIC(stack *Stack, id tcpip.NICID, name string, ep LinkEndpoint, ctx NICContext) *NIC {
// TODO(b/141011931): Validate a LinkEndpoint (ep) is valid. For
// example, make sure that the link address it provides is a valid
// unicast ethernet address.
// TODO(b/143357959): RFC 8200 section 5 requires that IPv6 endpoints
// observe an MTU of at least 1280 bytes. Ensure that this requirement
// of IPv6 is supported on this endpoint's LinkEndpoint.
nic := &NIC{
LinkEndpoint: ep,
stack: stack,
id: id,
name: name,
context: ctx,
stats: makeNICStats(),
networkEndpoints: make(map[tcpip.NetworkProtocolNumber]NetworkEndpoint),
linkAddrCache: newLinkAddrCache(ageLimit, resolutionTimeout, resolutionAttempts),
}
nic.linkResQueue.init()
nic.mu.packetEPs = make(map[tcpip.NetworkProtocolNumber]*packetEndpointList)
// Check for Neighbor Unreachability Detection support.
var nud NUDHandler
if ep.Capabilities()&CapabilityResolutionRequired != 0 && len(stack.linkAddrResolvers) != 0 && stack.useNeighborCache {
rng := rand.New(rand.NewSource(stack.clock.NowNanoseconds()))
nic.neigh = &neighborCache{
nic: nic,
state: NewNUDState(stack.nudConfigs, rng),
cache: make(map[tcpip.Address]*neighborEntry, neighborCacheSize),
}
// An interface value that holds a nil pointer but non-nil type is not the
// same as the nil interface. Because of this, nud must only be assignd if
// nic.neigh is non-nil since a nil reference to a neighborCache is not
// valid.
//
// See https://golang.org/doc/faq#nil_error for more information.
nud = nic.neigh
}
// Register supported packet and network endpoint protocols.
for _, netProto := range header.Ethertypes {
nic.mu.packetEPs[netProto] = new(packetEndpointList)
}
for _, netProto := range stack.networkProtocols {
netNum := netProto.Number()
nic.mu.packetEPs[netNum] = new(packetEndpointList)
nic.networkEndpoints[netNum] = netProto.NewEndpoint(nic, nic.linkAddrCache, nud, nic)
}
nic.LinkEndpoint.Attach(nic)
return nic
}
func (n *NIC) getNetworkEndpoint(proto tcpip.NetworkProtocolNumber) NetworkEndpoint {
return n.networkEndpoints[proto]
}
// Enabled implements NetworkInterface.
func (n *NIC) Enabled() bool {
return atomic.LoadUint32(&n.enabled) == 1
}
// setEnabled sets the enabled status for the NIC.
//
// Returns true if the enabled status was updated.
func (n *NIC) setEnabled(v bool) bool {
if v {
return atomic.SwapUint32(&n.enabled, 1) == 0
}
return atomic.SwapUint32(&n.enabled, 0) == 1
}
// disable disables n.
//
// It undoes the work done by enable.
func (n *NIC) disable() {
n.mu.Lock()
n.disableLocked()
n.mu.Unlock()
}
// disableLocked disables n.
//
// It undoes the work done by enable.
//
// n MUST be locked.
func (n *NIC) disableLocked() {
if !n.Enabled() {
return
}
// TODO(gvisor.dev/issue/1491): Should Routes that are currently bound to n be
// invalidated? Currently, Routes will continue to work when a NIC is enabled
// again, and applications may not know that the underlying NIC was ever
// disabled.
for _, ep := range n.networkEndpoints {
ep.Disable()
}
// Clear the neighbour table (including static entries) as we cannot guarantee
// that the current neighbour table will be valid when the NIC is enabled
// again.
//
// This matches linux's behaviour at the time of writing:
// https://github.com/torvalds/linux/blob/71c061d2443814de15e177489d5cc00a4a253ef3/net/core/neighbour.c#L371
if err := n.clearNeighbors(); err != nil && err != tcpip.ErrNotSupported {
panic(fmt.Sprintf("n.clearNeighbors(): %s", err))
}
if !n.setEnabled(false) {
panic("should have only done work to disable the NIC if it was enabled")
}
}
// enable enables n.
//
// If the stack has IPv6 enabled, enable will join the IPv6 All-Nodes Multicast
// address (ff02::1), start DAD for permanent addresses, and start soliciting
// routers if the stack is not operating as a router. If the stack is also
// configured to auto-generate a link-local address, one will be generated.
func (n *NIC) enable() *tcpip.Error {
n.mu.Lock()
defer n.mu.Unlock()
if !n.setEnabled(true) {
return nil
}
for _, ep := range n.networkEndpoints {
if err := ep.Enable(); err != nil {
return err
}
}
return nil
}
// remove detaches NIC from the link endpoint and releases network endpoint
// resources. This guarantees no packets between this NIC and the network
// stack.
func (n *NIC) remove() *tcpip.Error {
n.mu.Lock()
defer n.mu.Unlock()
n.disableLocked()
for _, ep := range n.networkEndpoints {
ep.Close()
}
// Detach from link endpoint, so no packet comes in.
n.LinkEndpoint.Attach(nil)
return nil
}
// setPromiscuousMode enables or disables promiscuous mode.
func (n *NIC) setPromiscuousMode(enable bool) {
n.mu.Lock()
n.mu.promiscuous = enable
n.mu.Unlock()
}
// Promiscuous implements NetworkInterface.
func (n *NIC) Promiscuous() bool {
n.mu.RLock()
rv := n.mu.promiscuous
n.mu.RUnlock()
return rv
}
// IsLoopback implements NetworkInterface.
func (n *NIC) IsLoopback() bool {
return n.LinkEndpoint.Capabilities()&CapabilityLoopback != 0
}
// WritePacket implements NetworkLinkEndpoint.
func (n *NIC) WritePacket(r *Route, gso *GSO, protocol tcpip.NetworkProtocolNumber, pkt *PacketBuffer) *tcpip.Error {
// As per relevant RFCs, we should queue packets while we wait for link
// resolution to complete.
//
// RFC 1122 section 2.3.2.2 (for IPv4):
// The link layer SHOULD save (rather than discard) at least
// one (the latest) packet of each set of packets destined to
// the same unresolved IP address, and transmit the saved
// packet when the address has been resolved.
//
// RFC 4861 section 7.2.2 (for IPv6):
// While waiting for address resolution to complete, the sender MUST, for
// each neighbor, retain a small queue of packets waiting for address
// resolution to complete. The queue MUST hold at least one packet, and MAY
// contain more. However, the number of queued packets per neighbor SHOULD
// be limited to some small value. When a queue overflows, the new arrival
// SHOULD replace the oldest entry. Once address resolution completes, the
// node transmits any queued packets.
if ch, err := r.Resolve(nil); err != nil {
if err == tcpip.ErrWouldBlock {
r.Acquire()
n.linkResQueue.enqueue(ch, r, protocol, pkt)
return nil
}
return err
}
return n.writePacket(r.Fields(), gso, protocol, pkt)
}
// WritePacketToRemote implements NetworkInterface.
func (n *NIC) WritePacketToRemote(remoteLinkAddr tcpip.LinkAddress, gso *GSO, protocol tcpip.NetworkProtocolNumber, pkt *PacketBuffer) *tcpip.Error {
var r RouteInfo
r.NetProto = protocol
r.RemoteLinkAddress = remoteLinkAddr
return n.writePacket(r, gso, protocol, pkt)
}
func (n *NIC) writePacket(r RouteInfo, gso *GSO, protocol tcpip.NetworkProtocolNumber, pkt *PacketBuffer) *tcpip.Error {
// WritePacket takes ownership of pkt, calculate numBytes first.
numBytes := pkt.Size()
pkt.EgressRoute = r
pkt.GSOOptions = gso
pkt.NetworkProtocolNumber = protocol
if err := n.LinkEndpoint.WritePacket(r, gso, protocol, pkt); err != nil {
return err
}
n.stats.Tx.Packets.Increment()
n.stats.Tx.Bytes.IncrementBy(uint64(numBytes))
return nil
}
// WritePackets implements NetworkLinkEndpoint.
func (n *NIC) WritePackets(r *Route, gso *GSO, pkts PacketBufferList, protocol tcpip.NetworkProtocolNumber) (int, *tcpip.Error) {
// As per relevant RFCs, we should queue packets while we wait for link
// resolution to complete.
//
// RFC 1122 section 2.3.2.2 (for IPv4):
// The link layer SHOULD save (rather than discard) at least
// one (the latest) packet of each set of packets destined to
// the same unresolved IP address, and transmit the saved
// packet when the address has been resolved.
//
// RFC 4861 section 7.2.2 (for IPv6):
// While waiting for address resolution to complete, the sender MUST, for
// each neighbor, retain a small queue of packets waiting for address
// resolution to complete. The queue MUST hold at least one packet, and MAY
// contain more. However, the number of queued packets per neighbor SHOULD
// be limited to some small value. When a queue overflows, the new arrival
// SHOULD replace the oldest entry. Once address resolution completes, the
// node transmits any queued packets.
if ch, err := r.Resolve(nil); err != nil {
if err == tcpip.ErrWouldBlock {
r.Acquire()
n.linkResQueue.enqueue(ch, r, protocol, &pkts)
return pkts.Len(), nil
}
return 0, err
}
return n.writePackets(r.Fields(), gso, protocol, pkts)
}
func (n *NIC) writePackets(r RouteInfo, gso *GSO, protocol tcpip.NetworkProtocolNumber, pkts PacketBufferList) (int, *tcpip.Error) {
for pkt := pkts.Front(); pkt != nil; pkt = pkt.Next() {
pkt.EgressRoute = r
pkt.GSOOptions = gso
pkt.NetworkProtocolNumber = protocol
}
writtenPackets, err := n.LinkEndpoint.WritePackets(r, gso, pkts, protocol)
n.stats.Tx.Packets.IncrementBy(uint64(writtenPackets))
writtenBytes := 0
for i, pb := 0, pkts.Front(); i < writtenPackets && pb != nil; i, pb = i+1, pb.Next() {
writtenBytes += pb.Size()
}
n.stats.Tx.Bytes.IncrementBy(uint64(writtenBytes))
return writtenPackets, err
}
// setSpoofing enables or disables address spoofing.
func (n *NIC) setSpoofing(enable bool) {
n.mu.Lock()
n.mu.spoofing = enable
n.mu.Unlock()
}
// primaryAddress returns an address that can be used to communicate with
// remoteAddr.
func (n *NIC) primaryEndpoint(protocol tcpip.NetworkProtocolNumber, remoteAddr tcpip.Address) AssignableAddressEndpoint {
ep, ok := n.networkEndpoints[protocol]
if !ok {
return nil
}
addressableEndpoint, ok := ep.(AddressableEndpoint)
if !ok {
return nil
}
n.mu.RLock()
spoofing := n.mu.spoofing
n.mu.RUnlock()
return addressableEndpoint.AcquireOutgoingPrimaryAddress(remoteAddr, spoofing)
}
type getAddressBehaviour int
const (
// spoofing indicates that the NIC's spoofing flag should be observed when
// getting a NIC's address endpoint.
spoofing getAddressBehaviour = iota
// promiscuous indicates that the NIC's promiscuous flag should be observed
// when getting a NIC's address endpoint.
promiscuous
)
func (n *NIC) getAddress(protocol tcpip.NetworkProtocolNumber, dst tcpip.Address) AssignableAddressEndpoint {
return n.getAddressOrCreateTemp(protocol, dst, CanBePrimaryEndpoint, promiscuous)
}
func (n *NIC) hasAddress(protocol tcpip.NetworkProtocolNumber, addr tcpip.Address) bool {
ep := n.getAddressOrCreateTempInner(protocol, addr, false, NeverPrimaryEndpoint)
if ep != nil {
ep.DecRef()
return true
}
return false
}
// findEndpoint finds the endpoint, if any, with the given address.
func (n *NIC) findEndpoint(protocol tcpip.NetworkProtocolNumber, address tcpip.Address, peb PrimaryEndpointBehavior) AssignableAddressEndpoint {
return n.getAddressOrCreateTemp(protocol, address, peb, spoofing)
}
// getAddressEpOrCreateTemp returns the address endpoint for the given protocol
// and address.
//
// If none exists a temporary one may be created if we are in promiscuous mode
// or spoofing. Promiscuous mode will only be checked if promiscuous is true.
// Similarly, spoofing will only be checked if spoofing is true.
//
// If the address is the IPv4 broadcast address for an endpoint's network, that
// endpoint will be returned.
func (n *NIC) getAddressOrCreateTemp(protocol tcpip.NetworkProtocolNumber, address tcpip.Address, peb PrimaryEndpointBehavior, tempRef getAddressBehaviour) AssignableAddressEndpoint {
n.mu.RLock()
var spoofingOrPromiscuous bool
switch tempRef {
case spoofing:
spoofingOrPromiscuous = n.mu.spoofing
case promiscuous:
spoofingOrPromiscuous = n.mu.promiscuous
}
n.mu.RUnlock()
return n.getAddressOrCreateTempInner(protocol, address, spoofingOrPromiscuous, peb)
}
// getAddressOrCreateTempInner is like getAddressEpOrCreateTemp except a boolean
// is passed to indicate whether or not we should generate temporary endpoints.
func (n *NIC) getAddressOrCreateTempInner(protocol tcpip.NetworkProtocolNumber, address tcpip.Address, createTemp bool, peb PrimaryEndpointBehavior) AssignableAddressEndpoint {
ep, ok := n.networkEndpoints[protocol]
if !ok {
return nil
}
addressableEndpoint, ok := ep.(AddressableEndpoint)
if !ok {
return nil
}
return addressableEndpoint.AcquireAssignedAddress(address, createTemp, peb)
}
// addAddress adds a new address to n, so that it starts accepting packets
// targeted at the given address (and network protocol).
func (n *NIC) addAddress(protocolAddress tcpip.ProtocolAddress, peb PrimaryEndpointBehavior) *tcpip.Error {
ep, ok := n.networkEndpoints[protocolAddress.Protocol]
if !ok {
return tcpip.ErrUnknownProtocol
}
addressableEndpoint, ok := ep.(AddressableEndpoint)
if !ok {
return tcpip.ErrNotSupported
}
addressEndpoint, err := addressableEndpoint.AddAndAcquirePermanentAddress(protocolAddress.AddressWithPrefix, peb, AddressConfigStatic, false /* deprecated */)
if err == nil {
// We have no need for the address endpoint.
addressEndpoint.DecRef()
}
return err
}
// allPermanentAddresses returns all permanent addresses associated with
// this NIC.
func (n *NIC) allPermanentAddresses() []tcpip.ProtocolAddress {
var addrs []tcpip.ProtocolAddress
for p, ep := range n.networkEndpoints {
addressableEndpoint, ok := ep.(AddressableEndpoint)
if !ok {
continue
}
for _, a := range addressableEndpoint.PermanentAddresses() {
addrs = append(addrs, tcpip.ProtocolAddress{Protocol: p, AddressWithPrefix: a})
}
}
return addrs
}
// primaryAddresses returns the primary addresses associated with this NIC.
func (n *NIC) primaryAddresses() []tcpip.ProtocolAddress {
var addrs []tcpip.ProtocolAddress
for p, ep := range n.networkEndpoints {
addressableEndpoint, ok := ep.(AddressableEndpoint)
if !ok {
continue
}
for _, a := range addressableEndpoint.PrimaryAddresses() {
addrs = append(addrs, tcpip.ProtocolAddress{Protocol: p, AddressWithPrefix: a})
}
}
return addrs
}
// primaryAddress returns the primary address associated with this NIC.
//
// primaryAddress will return the first non-deprecated address if such an
// address exists. If no non-deprecated address exists, the first deprecated
// address will be returned.
func (n *NIC) primaryAddress(proto tcpip.NetworkProtocolNumber) tcpip.AddressWithPrefix {
ep, ok := n.networkEndpoints[proto]
if !ok {
return tcpip.AddressWithPrefix{}
}
addressableEndpoint, ok := ep.(AddressableEndpoint)
if !ok {
return tcpip.AddressWithPrefix{}
}
return addressableEndpoint.MainAddress()
}
// removeAddress removes an address from n.
func (n *NIC) removeAddress(addr tcpip.Address) *tcpip.Error {
for _, ep := range n.networkEndpoints {
addressableEndpoint, ok := ep.(AddressableEndpoint)
if !ok {
continue
}
if err := addressableEndpoint.RemovePermanentAddress(addr); err == tcpip.ErrBadLocalAddress {
continue
} else {
return err
}
}
return tcpip.ErrBadLocalAddress
}
func (n *NIC) getNeighborLinkAddress(addr, localAddr tcpip.Address, linkRes LinkAddressResolver, onResolve func(tcpip.LinkAddress, bool)) (tcpip.LinkAddress, <-chan struct{}, *tcpip.Error) {
if n.neigh != nil {
entry, ch, err := n.neigh.entry(addr, localAddr, linkRes, onResolve)
return entry.LinkAddr, ch, err
}
return n.linkAddrCache.get(addr, linkRes, localAddr, n, onResolve)
}
func (n *NIC) neighbors() ([]NeighborEntry, *tcpip.Error) {
if n.neigh == nil {
return nil, tcpip.ErrNotSupported
}
return n.neigh.entries(), nil
}
func (n *NIC) addStaticNeighbor(addr tcpip.Address, linkAddress tcpip.LinkAddress) *tcpip.Error {
if n.neigh == nil {
return tcpip.ErrNotSupported
}
n.neigh.addStaticEntry(addr, linkAddress)
return nil
}
func (n *NIC) removeNeighbor(addr tcpip.Address) *tcpip.Error {
if n.neigh == nil {
return tcpip.ErrNotSupported
}
if !n.neigh.removeEntry(addr) {
return tcpip.ErrBadAddress
}
return nil
}
func (n *NIC) clearNeighbors() *tcpip.Error {
if n.neigh == nil {
return tcpip.ErrNotSupported
}
n.neigh.clear()
return nil
}
// joinGroup adds a new endpoint for the given multicast address, if none
// exists yet. Otherwise it just increments its count.
func (n *NIC) joinGroup(protocol tcpip.NetworkProtocolNumber, addr tcpip.Address) *tcpip.Error {
// TODO(b/143102137): When implementing MLD, make sure MLD packets are
// not sent unless a valid link-local address is available for use on n
// as an MLD packet's source address must be a link-local address as
// outlined in RFC 3810 section 5.
ep, ok := n.networkEndpoints[protocol]
if !ok {
return tcpip.ErrNotSupported
}
gep, ok := ep.(GroupAddressableEndpoint)
if !ok {
return tcpip.ErrNotSupported
}
return gep.JoinGroup(addr)
}
// leaveGroup decrements the count for the given multicast address, and when it
// reaches zero removes the endpoint for this address.
func (n *NIC) leaveGroup(protocol tcpip.NetworkProtocolNumber, addr tcpip.Address) *tcpip.Error {
ep, ok := n.networkEndpoints[protocol]
if !ok {
return tcpip.ErrNotSupported
}
gep, ok := ep.(GroupAddressableEndpoint)
if !ok {
return tcpip.ErrNotSupported
}
return gep.LeaveGroup(addr)
}
// isInGroup returns true if n has joined the multicast group addr.
func (n *NIC) isInGroup(addr tcpip.Address) bool {
for _, ep := range n.networkEndpoints {
gep, ok := ep.(GroupAddressableEndpoint)
if !ok {
continue
}
if gep.IsInGroup(addr) {
return true
}
}
return false
}
// DeliverNetworkPacket finds the appropriate network protocol endpoint and
// hands the packet over for further processing. This function is called when
// the NIC receives a packet from the link endpoint.
// Note that the ownership of the slice backing vv is retained by the caller.
// This rule applies only to the slice itself, not to the items of the slice;
// the ownership of the items is not retained by the caller.
func (n *NIC) DeliverNetworkPacket(remote, local tcpip.LinkAddress, protocol tcpip.NetworkProtocolNumber, pkt *PacketBuffer) {
n.mu.RLock()
enabled := n.Enabled()
// If the NIC is not yet enabled, don't receive any packets.
if !enabled {
n.mu.RUnlock()
n.stats.DisabledRx.Packets.Increment()
n.stats.DisabledRx.Bytes.IncrementBy(uint64(pkt.Data.Size()))
return
}
n.stats.Rx.Packets.Increment()
n.stats.Rx.Bytes.IncrementBy(uint64(pkt.Data.Size()))
networkEndpoint, ok := n.networkEndpoints[protocol]
if !ok {
n.mu.RUnlock()
n.stack.stats.UnknownProtocolRcvdPackets.Increment()
return
}
// If no local link layer address is provided, assume it was sent
// directly to this NIC.
if local == "" {
local = n.LinkEndpoint.LinkAddress()
}
pkt.RXTransportChecksumValidated = n.LinkEndpoint.Capabilities()&CapabilityRXChecksumOffload != 0
// Are any packet type sockets listening for this network protocol?
protoEPs := n.mu.packetEPs[protocol]
// Other packet type sockets that are listening for all protocols.
anyEPs := n.mu.packetEPs[header.EthernetProtocolAll]
n.mu.RUnlock()
// Deliver to interested packet endpoints without holding NIC lock.
deliverPacketEPs := func(ep PacketEndpoint) {
p := pkt.Clone()
p.PktType = tcpip.PacketHost
ep.HandlePacket(n.id, local, protocol, p)
}
if protoEPs != nil {
protoEPs.forEach(deliverPacketEPs)
}
if anyEPs != nil {
anyEPs.forEach(deliverPacketEPs)
}
// Parse headers.
netProto := n.stack.NetworkProtocolInstance(protocol)
transProtoNum, hasTransportHdr, ok := netProto.Parse(pkt)
if !ok {
// The packet is too small to contain a network header.
n.stack.stats.MalformedRcvdPackets.Increment()
return
}
if hasTransportHdr {
pkt.TransportProtocolNumber = transProtoNum
// Parse the transport header if present.
if state, ok := n.stack.transportProtocols[transProtoNum]; ok {
state.proto.Parse(pkt)
}
}
if n.stack.handleLocal && !n.IsLoopback() {
src, _ := netProto.ParseAddresses(pkt.NetworkHeader().View())
if r := n.getAddress(protocol, src); r != nil {
r.DecRef()
// The source address is one of our own, so we never should have gotten a
// packet like this unless handleLocal is false. Loopback also calls this
// function even though the packets didn't come from the physical interface
// so don't drop those.
n.stack.stats.IP.InvalidSourceAddressesReceived.Increment()
return
}
}
networkEndpoint.HandlePacket(pkt)
}
// DeliverOutboundPacket implements NetworkDispatcher.DeliverOutboundPacket.
func (n *NIC) DeliverOutboundPacket(remote, local tcpip.LinkAddress, protocol tcpip.NetworkProtocolNumber, pkt *PacketBuffer) {
n.mu.RLock()
// We do not deliver to protocol specific packet endpoints as on Linux
// only ETH_P_ALL endpoints get outbound packets.
// Add any other packet sockets that maybe listening for all protocols.
eps := n.mu.packetEPs[header.EthernetProtocolAll]
n.mu.RUnlock()
eps.forEach(func(ep PacketEndpoint) {
p := pkt.Clone()
p.PktType = tcpip.PacketOutgoing
// Add the link layer header as outgoing packets are intercepted
// before the link layer header is created.
n.LinkEndpoint.AddHeader(local, remote, protocol, p)
ep.HandlePacket(n.id, local, protocol, p)
})
}
// DeliverTransportPacket delivers the packets to the appropriate transport
// protocol endpoint.
func (n *NIC) DeliverTransportPacket(protocol tcpip.TransportProtocolNumber, pkt *PacketBuffer) TransportPacketDisposition {
state, ok := n.stack.transportProtocols[protocol]
if !ok {
n.stack.stats.UnknownProtocolRcvdPackets.Increment()
return TransportPacketProtocolUnreachable
}
transProto := state.proto
// Raw socket packets are delivered based solely on the transport
// protocol number. We do not inspect the payload to ensure it's
// validly formed.
n.stack.demux.deliverRawPacket(protocol, pkt)
// TransportHeader is empty only when pkt is an ICMP packet or was reassembled
// from fragments.
if pkt.TransportHeader().View().IsEmpty() {
// TODO(gvisor.dev/issue/170): ICMP packets don't have their TransportHeader
// fields set yet, parse it here. See icmp/protocol.go:protocol.Parse for a
// full explanation.
if protocol == header.ICMPv4ProtocolNumber || protocol == header.ICMPv6ProtocolNumber {
// ICMP packets may be longer, but until icmp.Parse is implemented, here
// we parse it using the minimum size.
if _, ok := pkt.TransportHeader().Consume(transProto.MinimumPacketSize()); !ok {
n.stack.stats.MalformedRcvdPackets.Increment()
// We consider a malformed transport packet handled because there is
// nothing the caller can do.
return TransportPacketHandled
}
} else if !transProto.Parse(pkt) {
n.stack.stats.MalformedRcvdPackets.Increment()
return TransportPacketHandled
}
}
srcPort, dstPort, err := transProto.ParsePorts(pkt.TransportHeader().View())
if err != nil {
n.stack.stats.MalformedRcvdPackets.Increment()
return TransportPacketHandled
}
netProto, ok := n.stack.networkProtocols[pkt.NetworkProtocolNumber]
if !ok {
panic(fmt.Sprintf("expected network protocol = %d, have = %#v", pkt.NetworkProtocolNumber, n.stack.networkProtocolNumbers()))
}
src, dst := netProto.ParseAddresses(pkt.NetworkHeader().View())
id := TransportEndpointID{
LocalPort: dstPort,
LocalAddress: dst,
RemotePort: srcPort,
RemoteAddress: src,
}
if n.stack.demux.deliverPacket(protocol, pkt, id) {
return TransportPacketHandled
}
// Try to deliver to per-stack default handler.
if state.defaultHandler != nil {
if state.defaultHandler(id, pkt) {
return TransportPacketHandled
}
}
// We could not find an appropriate destination for this packet so
// give the protocol specific error handler a chance to handle it.
// If it doesn't handle it then we should do so.
switch res := transProto.HandleUnknownDestinationPacket(id, pkt); res {
case UnknownDestinationPacketMalformed:
n.stack.stats.MalformedRcvdPackets.Increment()
return TransportPacketHandled
case UnknownDestinationPacketUnhandled:
return TransportPacketDestinationPortUnreachable
case UnknownDestinationPacketHandled:
return TransportPacketHandled
default:
panic(fmt.Sprintf("unrecognized result from HandleUnknownDestinationPacket = %d", res))
}
}
// DeliverTransportControlPacket delivers control packets to the appropriate
// transport protocol endpoint.
func (n *NIC) DeliverTransportControlPacket(local, remote tcpip.Address, net tcpip.NetworkProtocolNumber, trans tcpip.TransportProtocolNumber, typ ControlType, extra uint32, pkt *PacketBuffer) {
state, ok := n.stack.transportProtocols[trans]
if !ok {
return
}
transProto := state.proto
// ICMPv4 only guarantees that 8 bytes of the transport protocol will
// be present in the payload. We know that the ports are within the
// first 8 bytes for all known transport protocols.
transHeader, ok := pkt.Data.PullUp(8)
if !ok {
return
}
srcPort, dstPort, err := transProto.ParsePorts(transHeader)
if err != nil {
return
}
id := TransportEndpointID{srcPort, local, dstPort, remote}
if n.stack.demux.deliverControlPacket(n, net, trans, typ, extra, pkt, id) {
return
}
}
// ID implements NetworkInterface.
func (n *NIC) ID() tcpip.NICID {
return n.id
}
// Name implements NetworkInterface.
func (n *NIC) Name() string {
return n.name
}
// nudConfigs gets the NUD configurations for n.
func (n *NIC) nudConfigs() (NUDConfigurations, *tcpip.Error) {
if n.neigh == nil {
return NUDConfigurations{}, tcpip.ErrNotSupported
}
return n.neigh.config(), nil
}
// setNUDConfigs sets the NUD configurations for n.
//
// Note, if c contains invalid NUD configuration values, it will be fixed to
// use default values for the erroneous values.
func (n *NIC) setNUDConfigs(c NUDConfigurations) *tcpip.Error {
if n.neigh == nil {
return tcpip.ErrNotSupported
}
c.resetInvalidFields()
n.neigh.setConfig(c)
return nil
}
func (n *NIC) registerPacketEndpoint(netProto tcpip.NetworkProtocolNumber, ep PacketEndpoint) *tcpip.Error {
n.mu.Lock()
defer n.mu.Unlock()
eps, ok := n.mu.packetEPs[netProto]
if !ok {
return tcpip.ErrNotSupported
}
eps.add(ep)
return nil
}
func (n *NIC) unregisterPacketEndpoint(netProto tcpip.NetworkProtocolNumber, ep PacketEndpoint) {
n.mu.Lock()
defer n.mu.Unlock()
eps, ok := n.mu.packetEPs[netProto]
if !ok {
return
}
eps.remove(ep)
}
// isValidForOutgoing returns true if the endpoint can be used to send out a
// packet. It requires the endpoint to not be marked expired (i.e., its address
// has been removed) unless the NIC is in spoofing mode, or temporary.
func (n *NIC) isValidForOutgoing(ep AssignableAddressEndpoint) bool {
n.mu.RLock()
spoofing := n.mu.spoofing
n.mu.RUnlock()
return n.Enabled() && ep.IsAssigned(spoofing)
}
|