summaryrefslogtreecommitdiffhomepage
path: root/pkg/tcpip/stack/conntrack.go
blob: c489506bbf148ff918278f15309b21898a54370d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
// Copyright 2020 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package stack

import (
	"encoding/binary"
	"fmt"
	"sync"
	"time"

	"gvisor.dev/gvisor/pkg/tcpip"
	"gvisor.dev/gvisor/pkg/tcpip/hash/jenkins"
	"gvisor.dev/gvisor/pkg/tcpip/header"
	"gvisor.dev/gvisor/pkg/tcpip/transport/tcpconntrack"
)

// Connection tracking is used to track and manipulate packets for NAT rules.
// The connection is created for a packet if it does not exist. Every
// connection contains two tuples (original and reply). The tuples are
// manipulated if there is a matching NAT rule. The packet is modified by
// looking at the tuples in each hook.
//
// Currently, only TCP tracking is supported.

// Our hash table has 16K buckets.
const numBuckets = 1 << 14

const (
	establishedTimeout   time.Duration = 5 * 24 * time.Hour
	unestablishedTimeout time.Duration = 120 * time.Second
)

// tuple holds a connection's identifying and manipulating data in one
// direction. It is immutable.
//
// +stateify savable
type tuple struct {
	// tupleEntry is used to build an intrusive list of tuples.
	tupleEntry

	// conn is the connection tracking entry this tuple belongs to.
	conn *conn

	// reply is true iff the tuple's direction is opposite that of the first
	// packet seen on the connection.
	reply bool

	mu sync.RWMutex `state:"nosave"`
	// +checklocks:mu
	tupleID tupleID
}

func (t *tuple) id() tupleID {
	t.mu.RLock()
	defer t.mu.RUnlock()
	return t.tupleID
}

// tupleID uniquely identifies a connection in one direction. It currently
// contains enough information to distinguish between any TCP or UDP
// connection, and will need to be extended to support other protocols.
//
// +stateify savable
type tupleID struct {
	srcAddr    tcpip.Address
	srcPort    uint16
	dstAddr    tcpip.Address
	dstPort    uint16
	transProto tcpip.TransportProtocolNumber
	netProto   tcpip.NetworkProtocolNumber
}

// reply creates the reply tupleID.
func (ti tupleID) reply() tupleID {
	return tupleID{
		srcAddr:    ti.dstAddr,
		srcPort:    ti.dstPort,
		dstAddr:    ti.srcAddr,
		dstPort:    ti.srcPort,
		transProto: ti.transProto,
		netProto:   ti.netProto,
	}
}

// conn is a tracked connection.
//
// +stateify savable
type conn struct {
	ct *ConnTrack

	// original is the tuple in original direction. It is immutable.
	original tuple

	// reply is the tuple in reply direction.
	reply tuple

	mu sync.RWMutex `state:"nosave"`
	// Indicates that the connection has been finalized and may handle replies.
	//
	// +checklocks:mu
	finalized bool
	// sourceManip indicates the packet's source is manipulated.
	//
	// +checklocks:mu
	sourceManip bool
	// destinationManip indicates the packet's destination is manipulated.
	//
	// +checklocks:mu
	destinationManip bool
	// tcb is TCB control block. It is used to keep track of states
	// of tcp connection.
	//
	// +checklocks:mu
	tcb tcpconntrack.TCB
	// lastUsed is the last time the connection saw a relevant packet, and
	// is updated by each packet on the connection.
	//
	// +checklocks:mu
	lastUsed tcpip.MonotonicTime
}

// timedOut returns whether the connection timed out based on its state.
func (cn *conn) timedOut(now tcpip.MonotonicTime) bool {
	cn.mu.RLock()
	defer cn.mu.RUnlock()
	if cn.tcb.State() == tcpconntrack.ResultAlive {
		// Use the same default as Linux, which doesn't delete
		// established connections for 5(!) days.
		return now.Sub(cn.lastUsed) > establishedTimeout
	}
	// Use the same default as Linux, which lets connections in most states
	// other than established remain for <= 120 seconds.
	return now.Sub(cn.lastUsed) > unestablishedTimeout
}

// update the connection tracking state.
//
// +checklocks:cn.mu
func (cn *conn) updateLocked(pkt *PacketBuffer, reply bool) {
	if pkt.TransportProtocolNumber != header.TCPProtocolNumber {
		return
	}

	tcpHeader := header.TCP(pkt.TransportHeader().View())

	// Update the state of tcb. tcb assumes it's always initialized on the
	// client. However, we only need to know whether the connection is
	// established or not, so the client/server distinction isn't important.
	if cn.tcb.IsEmpty() {
		cn.tcb.Init(tcpHeader)
		return
	}

	if reply {
		cn.tcb.UpdateStateReply(tcpHeader)
	} else {
		cn.tcb.UpdateStateOriginal(tcpHeader)
	}
}

// ConnTrack tracks all connections created for NAT rules. Most users are
// expected to only call handlePacket, insertRedirectConn, and maybeInsertNoop.
//
// ConnTrack keeps all connections in a slice of buckets, each of which holds a
// linked list of tuples. This gives us some desirable properties:
// - Each bucket has its own lock, lessening lock contention.
// - The slice is large enough that lists stay short (<10 elements on average).
//   Thus traversal is fast.
// - During linked list traversal we reap expired connections. This amortizes
//   the cost of reaping them and makes reapUnused faster.
//
// Locks are ordered by their location in the buckets slice. That is, a
// goroutine that locks buckets[i] can only lock buckets[j] s.t. i < j.
//
// +stateify savable
type ConnTrack struct {
	// seed is a one-time random value initialized at stack startup
	// and is used in the calculation of hash keys for the list of buckets.
	// It is immutable.
	seed uint32

	// clock provides timing used to determine conntrack reapings.
	clock tcpip.Clock

	mu sync.RWMutex `state:"nosave"`
	// mu protects the buckets slice, but not buckets' contents. Only take
	// the write lock if you are modifying the slice or saving for S/R.
	//
	// +checklocks:mu
	buckets []bucket
}

// +stateify savable
type bucket struct {
	mu sync.RWMutex `state:"nosave"`
	// +checklocks:mu
	tuples tupleList
}

func getEmbeddedNetAndTransHeaders(pkt *PacketBuffer, netHdrLength int, netHdrFunc func([]byte) header.Network) (header.Network, header.ChecksummableTransport, bool) {
	switch pkt.tuple.id().transProto {
	case header.TCPProtocolNumber:
		if netAndTransHeader, ok := pkt.Data().PullUp(netHdrLength + header.TCPMinimumSize); ok {
			netHeader := netHdrFunc(netAndTransHeader)
			return netHeader, header.TCP(netHeader.Payload()), true
		}
	case header.UDPProtocolNumber:
		if netAndTransHeader, ok := pkt.Data().PullUp(netHdrLength + header.UDPMinimumSize); ok {
			netHeader := netHdrFunc(netAndTransHeader)
			return netHeader, header.UDP(netHeader.Payload()), true
		}
	}
	return nil, nil, false
}

func getHeaders(pkt *PacketBuffer) (netHdr header.Network, transHdr header.ChecksummableTransport, isICMPError bool, ok bool) {
	switch pkt.TransportProtocolNumber {
	case header.TCPProtocolNumber:
		if tcpHeader := header.TCP(pkt.TransportHeader().View()); len(tcpHeader) >= header.TCPMinimumSize {
			return pkt.Network(), tcpHeader, false, true
		}
	case header.UDPProtocolNumber:
		if udpHeader := header.UDP(pkt.TransportHeader().View()); len(udpHeader) >= header.UDPMinimumSize {
			return pkt.Network(), udpHeader, false, true
		}
	case header.ICMPv4ProtocolNumber:
		h, ok := pkt.Data().PullUp(header.IPv4MinimumSize)
		if !ok {
			panic(fmt.Sprintf("should have a valid IPv4 packet; only have %d bytes, want at least %d bytes", pkt.Data().Size(), header.IPv4MinimumSize))
		}

		if header.IPv4(h).HeaderLength() > header.IPv4MinimumSize {
			// TODO(https://gvisor.dev/issue/6765): Handle IPv4 options.
			panic("should have dropped packets with IPv4 options")
		}

		if netHdr, transHdr, ok := getEmbeddedNetAndTransHeaders(pkt, header.IPv4MinimumSize, func(b []byte) header.Network { return header.IPv4(b) }); ok {
			return netHdr, transHdr, true, true
		}
	case header.ICMPv6ProtocolNumber:
		h, ok := pkt.Data().PullUp(header.IPv6MinimumSize)
		if !ok {
			panic(fmt.Sprintf("should have a valid IPv6 packet; only have %d bytes, want at least %d bytes", pkt.Data().Size(), header.IPv6MinimumSize))
		}

		// We do not support extension headers in ICMP errors so the next header
		// in the IPv6 packet should be a tracked protocol if we reach this point.
		//
		// TODO(https://gvisor.dev/issue/6789): Support extension headers.
		transProto := pkt.tuple.id().transProto
		if got := header.IPv6(h).TransportProtocol(); got != transProto {
			panic(fmt.Sprintf("got TransportProtocol() = %d, want = %d", got, transProto))
		}

		if netHdr, transHdr, ok := getEmbeddedNetAndTransHeaders(pkt, header.IPv6MinimumSize, func(b []byte) header.Network { return header.IPv6(b) }); ok {
			return netHdr, transHdr, true, true
		}
	}

	return nil, nil, false, false
}

func getTupleIDForRegularPacket(netHdr header.Network, netProto tcpip.NetworkProtocolNumber, transHdr header.Transport, transProto tcpip.TransportProtocolNumber) tupleID {
	return tupleID{
		srcAddr:    netHdr.SourceAddress(),
		srcPort:    transHdr.SourcePort(),
		dstAddr:    netHdr.DestinationAddress(),
		dstPort:    transHdr.DestinationPort(),
		transProto: transProto,
		netProto:   netProto,
	}
}

func getTupleIDForPacketInICMPError(pkt *PacketBuffer, netHdrFunc func([]byte) header.Network, netProto tcpip.NetworkProtocolNumber, netLen int, transProto tcpip.TransportProtocolNumber) (tupleID, bool) {
	switch transProto {
	case header.TCPProtocolNumber:
		if netAndTransHeader, ok := pkt.Data().PullUp(netLen + header.TCPMinimumSize); ok {
			netHdr := netHdrFunc(netAndTransHeader)
			transHdr := header.TCP(netHdr.Payload())
			return tupleID{
				srcAddr:    netHdr.DestinationAddress(),
				srcPort:    transHdr.DestinationPort(),
				dstAddr:    netHdr.SourceAddress(),
				dstPort:    transHdr.SourcePort(),
				transProto: transProto,
				netProto:   netProto,
			}, true
		}
	case header.UDPProtocolNumber:
		if netAndTransHeader, ok := pkt.Data().PullUp(netLen + header.UDPMinimumSize); ok {
			netHdr := netHdrFunc(netAndTransHeader)
			transHdr := header.UDP(netHdr.Payload())
			return tupleID{
				srcAddr:    netHdr.DestinationAddress(),
				srcPort:    transHdr.DestinationPort(),
				dstAddr:    netHdr.SourceAddress(),
				dstPort:    transHdr.SourcePort(),
				transProto: transProto,
				netProto:   netProto,
			}, true
		}
	}

	return tupleID{}, false
}

func getTupleID(pkt *PacketBuffer) (tid tupleID, isICMPError bool, ok bool) {
	switch pkt.TransportProtocolNumber {
	case header.TCPProtocolNumber:
		if transHeader := header.TCP(pkt.TransportHeader().View()); len(transHeader) >= header.TCPMinimumSize {
			return getTupleIDForRegularPacket(pkt.Network(), pkt.NetworkProtocolNumber, transHeader, pkt.TransportProtocolNumber), false, true
		}
	case header.UDPProtocolNumber:
		if transHeader := header.UDP(pkt.TransportHeader().View()); len(transHeader) >= header.UDPMinimumSize {
			return getTupleIDForRegularPacket(pkt.Network(), pkt.NetworkProtocolNumber, transHeader, pkt.TransportProtocolNumber), false, true
		}
	case header.ICMPv4ProtocolNumber:
		icmp := header.ICMPv4(pkt.TransportHeader().View())
		if len(icmp) < header.ICMPv4MinimumSize {
			return tupleID{}, false, false
		}

		switch icmp.Type() {
		case header.ICMPv4DstUnreachable, header.ICMPv4TimeExceeded, header.ICMPv4ParamProblem:
		default:
			return tupleID{}, false, false
		}

		h, ok := pkt.Data().PullUp(header.IPv4MinimumSize)
		if !ok {
			return tupleID{}, false, false
		}

		ipv4 := header.IPv4(h)
		if ipv4.HeaderLength() > header.IPv4MinimumSize {
			// TODO(https://gvisor.dev/issue/6765): Handle IPv4 options.
			return tupleID{}, false, false
		}

		if tid, ok := getTupleIDForPacketInICMPError(pkt, func(b []byte) header.Network { return header.IPv4(b) }, header.IPv4ProtocolNumber, header.IPv4MinimumSize, ipv4.TransportProtocol()); ok {
			return tid, true, true
		}
	case header.ICMPv6ProtocolNumber:
		icmp := header.ICMPv6(pkt.TransportHeader().View())
		if len(icmp) < header.ICMPv6MinimumSize {
			return tupleID{}, false, false
		}

		switch icmp.Type() {
		case header.ICMPv6DstUnreachable, header.ICMPv6PacketTooBig, header.ICMPv6TimeExceeded, header.ICMPv6ParamProblem:
		default:
			return tupleID{}, false, false
		}

		h, ok := pkt.Data().PullUp(header.IPv6MinimumSize)
		if !ok {
			return tupleID{}, false, false
		}

		// TODO(https://gvisor.dev/issue/6789): Handle extension headers.
		if tid, ok := getTupleIDForPacketInICMPError(pkt, func(b []byte) header.Network { return header.IPv6(b) }, header.IPv6ProtocolNumber, header.IPv6MinimumSize, header.IPv6(h).TransportProtocol()); ok {
			return tid, true, true
		}
	}

	return tupleID{}, false, false
}

func (ct *ConnTrack) init() {
	ct.mu.Lock()
	defer ct.mu.Unlock()
	ct.buckets = make([]bucket, numBuckets)
}

func (ct *ConnTrack) getConnOrMaybeInsertNoop(pkt *PacketBuffer) *tuple {
	tid, isICMPError, ok := getTupleID(pkt)
	if !ok {
		return nil
	}

	bktID := ct.bucket(tid)

	ct.mu.RLock()
	bkt := &ct.buckets[bktID]
	ct.mu.RUnlock()

	now := ct.clock.NowMonotonic()
	if t := bkt.connForTID(tid, now); t != nil {
		return t
	}

	if isICMPError {
		// Do not create a noop entry in response to an ICMP error.
		return nil
	}

	bkt.mu.Lock()
	defer bkt.mu.Unlock()

	// Make sure a connection wasn't added between when we last checked the
	// bucket and acquired the bucket's write lock.
	if t := bkt.connForTIDRLocked(tid, now); t != nil {
		return t
	}

	// This is the first packet we're seeing for the connection. Create an entry
	// for this new connection.
	conn := &conn{
		ct:       ct,
		original: tuple{tupleID: tid},
		reply:    tuple{tupleID: tid.reply(), reply: true},
		lastUsed: now,
	}
	conn.original.conn = conn
	conn.reply.conn = conn

	// For now, we only map an entry for the packet's original tuple as NAT may be
	// performed on this connection. Until the packet goes through all the hooks
	// and its final address/port is known, we cannot know what the response
	// packet's addresses/ports will look like.
	//
	// This is okay because the destination cannot send its response until it
	// receives the packet; the packet will only be received once all the hooks
	// have been performed.
	//
	// See (*conn).finalize.
	bkt.tuples.PushFront(&conn.original)
	return &conn.original
}

func (ct *ConnTrack) connForTID(tid tupleID) *tuple {
	bktID := ct.bucket(tid)

	ct.mu.RLock()
	bkt := &ct.buckets[bktID]
	ct.mu.RUnlock()

	return bkt.connForTID(tid, ct.clock.NowMonotonic())
}

func (bkt *bucket) connForTID(tid tupleID, now tcpip.MonotonicTime) *tuple {
	bkt.mu.RLock()
	defer bkt.mu.RUnlock()
	return bkt.connForTIDRLocked(tid, now)
}

// +checklocksread:bkt.mu
func (bkt *bucket) connForTIDRLocked(tid tupleID, now tcpip.MonotonicTime) *tuple {
	for other := bkt.tuples.Front(); other != nil; other = other.Next() {
		if tid == other.id() && !other.conn.timedOut(now) {
			return other
		}
	}
	return nil
}

func (ct *ConnTrack) finalize(cn *conn) {
	tid := cn.reply.id()
	id := ct.bucket(tid)

	ct.mu.RLock()
	bkt := &ct.buckets[id]
	ct.mu.RUnlock()

	bkt.mu.Lock()
	defer bkt.mu.Unlock()

	if t := bkt.connForTIDRLocked(tid, ct.clock.NowMonotonic()); t != nil {
		// Another connection for the reply already exists. We can't do much about
		// this so we leave the connection cn represents in a state where it can
		// send packets but its responses will be mapped to some other connection.
		// This may be okay if the connection only expects to send packets without
		// any responses.
		return
	}

	bkt.tuples.PushFront(&cn.reply)
}

func (cn *conn) finalize() {
	{
		cn.mu.RLock()
		finalized := cn.finalized
		cn.mu.RUnlock()
		if finalized {
			return
		}
	}

	cn.mu.Lock()
	finalized := cn.finalized
	cn.finalized = true
	cn.mu.Unlock()
	if finalized {
		return
	}

	cn.ct.finalize(cn)
}

// performNAT setups up the connection for the specified NAT.
//
// Generally, only the first packet of a connection reaches this method; other
// other packets will be manipulated without needing to modify the connection.
func (cn *conn) performNAT(pkt *PacketBuffer, hook Hook, r *Route, port uint16, address tcpip.Address, dnat bool) {
	cn.performNATIfNoop(port, address, dnat)
	cn.handlePacket(pkt, hook, r)
}

func (cn *conn) performNATIfNoop(port uint16, address tcpip.Address, dnat bool) {
	cn.mu.Lock()
	defer cn.mu.Unlock()

	if cn.finalized {
		return
	}

	if dnat {
		if cn.destinationManip {
			return
		}
		cn.destinationManip = true
	} else {
		if cn.sourceManip {
			return
		}
		cn.sourceManip = true
	}

	cn.reply.mu.Lock()
	defer cn.reply.mu.Unlock()

	if dnat {
		cn.reply.tupleID.srcAddr = address
		cn.reply.tupleID.srcPort = port
	} else {
		cn.reply.tupleID.dstAddr = address
		cn.reply.tupleID.dstPort = port
	}
}

// handlePacket attempts to handle a packet and perform NAT if the connection
// has had NAT performed on it.
//
// Returns true if the packet can skip the NAT table.
func (cn *conn) handlePacket(pkt *PacketBuffer, hook Hook, rt *Route) bool {
	netHdr, transHdr, isICMPError, ok := getHeaders(pkt)
	if !ok {
		return false
	}

	fullChecksum := false
	updatePseudoHeader := false
	natDone := &pkt.SNATDone
	dnat := false
	switch hook {
	case Prerouting:
		// Packet came from outside the stack so it must have a checksum set
		// already.
		fullChecksum = true
		updatePseudoHeader = true

		natDone = &pkt.DNATDone
		dnat = true
	case Input:
	case Forward:
		panic("should not handle packet in the forwarding hook")
	case Output:
		natDone = &pkt.DNATDone
		dnat = true
		fallthrough
	case Postrouting:
		if pkt.TransportProtocolNumber == header.TCPProtocolNumber && pkt.GSOOptions.Type != GSONone && pkt.GSOOptions.NeedsCsum {
			updatePseudoHeader = true
		} else if rt.RequiresTXTransportChecksum() {
			fullChecksum = true
			updatePseudoHeader = true
		}
	default:
		panic(fmt.Sprintf("unrecognized hook = %d", hook))
	}

	if *natDone {
		panic(fmt.Sprintf("packet already had NAT(dnat=%t) performed at hook=%s; pkt=%#v", dnat, hook, pkt))
	}

	// TODO(gvisor.dev/issue/5748): TCP checksums on inbound packets should be
	// validated if checksum offloading is off. It may require IP defrag if the
	// packets are fragmented.

	reply := pkt.tuple.reply
	tid, performManip := func() (tupleID, bool) {
		cn.mu.Lock()
		defer cn.mu.Unlock()

		// Mark the connection as having been used recently so it isn't reaped.
		cn.lastUsed = cn.ct.clock.NowMonotonic()
		// Update connection state.
		cn.updateLocked(pkt, reply)

		var tuple *tuple
		if reply {
			if dnat {
				if !cn.sourceManip {
					return tupleID{}, false
				}
			} else if !cn.destinationManip {
				return tupleID{}, false
			}

			tuple = &cn.original
		} else {
			if dnat {
				if !cn.destinationManip {
					return tupleID{}, false
				}
			} else if !cn.sourceManip {
				return tupleID{}, false
			}

			tuple = &cn.reply
		}

		return tuple.id(), true
	}()
	if !performManip {
		return false
	}

	newPort := tid.dstPort
	newAddr := tid.dstAddr
	if dnat {
		newPort = tid.srcPort
		newAddr = tid.srcAddr
	}

	rewritePacket(
		netHdr,
		transHdr,
		!dnat != isICMPError,
		fullChecksum,
		updatePseudoHeader,
		newPort,
		newAddr,
	)

	*natDone = true

	if !isICMPError {
		return true
	}

	// We performed NAT on (erroneous) packet that triggered an ICMP response, but
	// not the ICMP packet itself.
	switch pkt.TransportProtocolNumber {
	case header.ICMPv4ProtocolNumber:
		icmp := header.ICMPv4(pkt.TransportHeader().View())
		// TODO(https://gvisor.dev/issue/6788): Incrementally update ICMP checksum.
		icmp.SetChecksum(0)
		icmp.SetChecksum(header.ICMPv4Checksum(icmp, pkt.Data().AsRange().Checksum()))

		network := header.IPv4(pkt.NetworkHeader().View())
		if dnat {
			network.SetDestinationAddressWithChecksumUpdate(tid.srcAddr)
		} else {
			network.SetSourceAddressWithChecksumUpdate(tid.dstAddr)
		}
	case header.ICMPv6ProtocolNumber:
		network := header.IPv6(pkt.NetworkHeader().View())
		srcAddr := network.SourceAddress()
		dstAddr := network.DestinationAddress()
		if dnat {
			dstAddr = tid.srcAddr
		} else {
			srcAddr = tid.dstAddr
		}

		icmp := header.ICMPv6(pkt.TransportHeader().View())
		// TODO(https://gvisor.dev/issue/6788): Incrementally update ICMP checksum.
		icmp.SetChecksum(0)
		payload := pkt.Data()
		icmp.SetChecksum(header.ICMPv6Checksum(header.ICMPv6ChecksumParams{
			Header:      icmp,
			Src:         srcAddr,
			Dst:         dstAddr,
			PayloadCsum: payload.AsRange().Checksum(),
			PayloadLen:  payload.Size(),
		}))

		if dnat {
			network.SetDestinationAddress(dstAddr)
		} else {
			network.SetSourceAddress(srcAddr)
		}
	}

	return true
}

// bucket gets the conntrack bucket for a tupleID.
func (ct *ConnTrack) bucket(id tupleID) int {
	h := jenkins.Sum32(ct.seed)
	h.Write([]byte(id.srcAddr))
	h.Write([]byte(id.dstAddr))
	shortBuf := make([]byte, 2)
	binary.LittleEndian.PutUint16(shortBuf, id.srcPort)
	h.Write([]byte(shortBuf))
	binary.LittleEndian.PutUint16(shortBuf, id.dstPort)
	h.Write([]byte(shortBuf))
	binary.LittleEndian.PutUint16(shortBuf, uint16(id.transProto))
	h.Write([]byte(shortBuf))
	binary.LittleEndian.PutUint16(shortBuf, uint16(id.netProto))
	h.Write([]byte(shortBuf))
	ct.mu.RLock()
	defer ct.mu.RUnlock()
	return int(h.Sum32()) % len(ct.buckets)
}

// reapUnused deletes timed out entries from the conntrack map. The rules for
// reaping are:
// - Most reaping occurs in connFor, which is called on each packet. connFor
//   cleans up the bucket the packet's connection maps to. Thus calls to
//   reapUnused should be fast.
// - Each call to reapUnused traverses a fraction of the conntrack table.
//   Specifically, it traverses len(ct.buckets)/fractionPerReaping.
// - After reaping, reapUnused decides when it should next run based on the
//   ratio of expired connections to examined connections. If the ratio is
//   greater than maxExpiredPct, it schedules the next run quickly. Otherwise it
//   slightly increases the interval between runs.
// - maxFullTraversal caps the time it takes to traverse the entire table.
//
// reapUnused returns the next bucket that should be checked and the time after
// which it should be called again.
func (ct *ConnTrack) reapUnused(start int, prevInterval time.Duration) (int, time.Duration) {
	const fractionPerReaping = 128
	const maxExpiredPct = 50
	const maxFullTraversal = 60 * time.Second
	const minInterval = 10 * time.Millisecond
	const maxInterval = maxFullTraversal / fractionPerReaping

	now := ct.clock.NowMonotonic()
	checked := 0
	expired := 0
	var idx int
	ct.mu.RLock()
	defer ct.mu.RUnlock()
	for i := 0; i < len(ct.buckets)/fractionPerReaping; i++ {
		idx = (i + start) % len(ct.buckets)
		bkt := &ct.buckets[idx]
		bkt.mu.Lock()
		for tuple := bkt.tuples.Front(); tuple != nil; {
			// reapTupleLocked updates tuple's next pointer so we grab it here.
			nextTuple := tuple.Next()

			checked++
			if ct.reapTupleLocked(tuple, idx, bkt, now) {
				expired++
			}

			tuple = nextTuple
		}
		bkt.mu.Unlock()
	}
	// We already checked buckets[idx].
	idx++

	// If half or more of the connections are expired, the table has gotten
	// stale. Reschedule quickly.
	expiredPct := 0
	if checked != 0 {
		expiredPct = expired * 100 / checked
	}
	if expiredPct > maxExpiredPct {
		return idx, minInterval
	}
	if interval := prevInterval + minInterval; interval <= maxInterval {
		// Increment the interval between runs.
		return idx, interval
	}
	// We've hit the maximum interval.
	return idx, maxInterval
}

// reapTupleLocked tries to remove tuple and its reply from the table. It
// returns whether the tuple's connection has timed out.
//
// Precondition: ct.mu is read locked and bkt.mu is write locked.
// +checklocksread:ct.mu
// +checklocks:bkt.mu
func (ct *ConnTrack) reapTupleLocked(tuple *tuple, bktID int, bkt *bucket, now tcpip.MonotonicTime) bool {
	if !tuple.conn.timedOut(now) {
		return false
	}

	// To maintain lock order, we can only reap both tuples if the reply appears
	// later in the table.
	replyBktID := ct.bucket(tuple.id().reply())
	tuple.conn.mu.RLock()
	replyTupleInserted := tuple.conn.finalized
	tuple.conn.mu.RUnlock()
	if bktID > replyBktID && replyTupleInserted {
		return true
	}

	// Reap the reply.
	if replyTupleInserted {
		// Don't re-lock if both tuples are in the same bucket.
		if bktID != replyBktID {
			replyBkt := &ct.buckets[replyBktID]
			replyBkt.mu.Lock()
			removeConnFromBucket(replyBkt, tuple)
			replyBkt.mu.Unlock()
		} else {
			removeConnFromBucket(bkt, tuple)
		}
	}

	bkt.tuples.Remove(tuple)
	return true
}

// +checklocks:b.mu
func removeConnFromBucket(b *bucket, tuple *tuple) {
	if tuple.reply {
		b.tuples.Remove(&tuple.conn.original)
	} else {
		b.tuples.Remove(&tuple.conn.reply)
	}
}

func (ct *ConnTrack) originalDst(epID TransportEndpointID, netProto tcpip.NetworkProtocolNumber, transProto tcpip.TransportProtocolNumber) (tcpip.Address, uint16, tcpip.Error) {
	// Lookup the connection. The reply's original destination
	// describes the original address.
	tid := tupleID{
		srcAddr:    epID.LocalAddress,
		srcPort:    epID.LocalPort,
		dstAddr:    epID.RemoteAddress,
		dstPort:    epID.RemotePort,
		transProto: transProto,
		netProto:   netProto,
	}
	t := ct.connForTID(tid)
	if t == nil {
		// Not a tracked connection.
		return "", 0, &tcpip.ErrNotConnected{}
	}

	t.conn.mu.RLock()
	defer t.conn.mu.RUnlock()
	if !t.conn.destinationManip {
		// Unmanipulated destination.
		return "", 0, &tcpip.ErrInvalidOptionValue{}
	}

	id := t.conn.original.id()
	return id.dstAddr, id.dstPort, nil
}