1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
|
// Copyright 2020 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package stack
import (
"encoding/binary"
"sync"
"time"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/tcpip/hash/jenkins"
"gvisor.dev/gvisor/pkg/tcpip/header"
"gvisor.dev/gvisor/pkg/tcpip/transport/tcpconntrack"
)
// Connection tracking is used to track and manipulate packets for NAT rules.
// The connection is created for a packet if it does not exist. Every
// connection contains two tuples (original and reply). The tuples are
// manipulated if there is a matching NAT rule. The packet is modified by
// looking at the tuples in the Prerouting and Output hooks.
//
// Currently, only TCP tracking is supported.
// Our hash table has 16K buckets.
// TODO(gvisor.dev/issue/170): These should be tunable.
const numBuckets = 1 << 14
// Direction of the tuple.
type direction int
const (
dirOriginal direction = iota
dirReply
)
// Manipulation type for the connection.
type manipType int
const (
manipDstPrerouting manipType = iota
manipDstOutput
)
// tuple holds a connection's identifying and manipulating data in one
// direction. It is immutable.
//
// +stateify savable
type tuple struct {
// tupleEntry is used to build an intrusive list of tuples.
tupleEntry
tupleID
// conn is the connection tracking entry this tuple belongs to.
conn *conn
// direction is the direction of the tuple.
direction direction
}
// tupleID uniquely identifies a connection in one direction. It currently
// contains enough information to distinguish between any TCP or UDP
// connection, and will need to be extended to support other protocols.
//
// +stateify savable
type tupleID struct {
srcAddr tcpip.Address
srcPort uint16
dstAddr tcpip.Address
dstPort uint16
transProto tcpip.TransportProtocolNumber
netProto tcpip.NetworkProtocolNumber
}
// reply creates the reply tupleID.
func (ti tupleID) reply() tupleID {
return tupleID{
srcAddr: ti.dstAddr,
srcPort: ti.dstPort,
dstAddr: ti.srcAddr,
dstPort: ti.srcPort,
transProto: ti.transProto,
netProto: ti.netProto,
}
}
// conn is a tracked connection.
//
// +stateify savable
type conn struct {
// original is the tuple in original direction. It is immutable.
original tuple
// reply is the tuple in reply direction. It is immutable.
reply tuple
// manip indicates if the packet should be manipulated. It is immutable.
manip manipType
// tcbHook indicates if the packet is inbound or outbound to
// update the state of tcb. It is immutable.
tcbHook Hook
// mu protects tcb.
mu sync.Mutex `state:"nosave"`
// tcb is TCB control block. It is used to keep track of states
// of tcp connection and is protected by mu.
tcb tcpconntrack.TCB
// lastUsed is the last time the connection saw a relevant packet, and
// is updated by each packet on the connection. It is protected by mu.
lastUsed time.Time `state:".(unixTime)"`
}
// timedOut returns whether the connection timed out based on its state.
func (cn *conn) timedOut(now time.Time) bool {
const establishedTimeout = 5 * 24 * time.Hour
const defaultTimeout = 120 * time.Second
cn.mu.Lock()
defer cn.mu.Unlock()
if cn.tcb.State() == tcpconntrack.ResultAlive {
// Use the same default as Linux, which doesn't delete
// established connections for 5(!) days.
return now.Sub(cn.lastUsed) > establishedTimeout
}
// Use the same default as Linux, which lets connections in most states
// other than established remain for <= 120 seconds.
return now.Sub(cn.lastUsed) > defaultTimeout
}
// ConnTrack tracks all connections created for NAT rules. Most users are
// expected to only call handlePacket and createConnFor.
//
// ConnTrack keeps all connections in a slice of buckets, each of which holds a
// linked list of tuples. This gives us some desirable properties:
// - Each bucket has its own lock, lessening lock contention.
// - The slice is large enough that lists stay short (<10 elements on average).
// Thus traversal is fast.
// - During linked list traversal we reap expired connections. This amortizes
// the cost of reaping them and makes reapUnused faster.
//
// Locks are ordered by their location in the buckets slice. That is, a
// goroutine that locks buckets[i] can only lock buckets[j] s.t. i < j.
//
// +stateify savable
type ConnTrack struct {
// seed is a one-time random value initialized at stack startup
// and is used in the calculation of hash keys for the list of buckets.
// It is immutable.
seed uint32
// mu protects the buckets slice, but not buckets' contents. Only take
// the write lock if you are modifying the slice or saving for S/R.
mu sync.RWMutex `state:"nosave"`
// buckets is protected by mu.
buckets []bucket
}
// +stateify savable
type bucket struct {
// mu protects tuples.
mu sync.Mutex `state:"nosave"`
tuples tupleList
}
// packetToTupleID converts packet to a tuple ID. It fails when pkt lacks a valid
// TCP header.
func packetToTupleID(pkt *PacketBuffer) (tupleID, *tcpip.Error) {
// TODO(gvisor.dev/issue/170): Need to support for other
// protocols as well.
netHeader := header.IPv4(pkt.NetworkHeader)
if netHeader == nil || netHeader.TransportProtocol() != header.TCPProtocolNumber {
return tupleID{}, tcpip.ErrUnknownProtocol
}
tcpHeader := header.TCP(pkt.TransportHeader)
if tcpHeader == nil {
return tupleID{}, tcpip.ErrUnknownProtocol
}
return tupleID{
srcAddr: netHeader.SourceAddress(),
srcPort: tcpHeader.SourcePort(),
dstAddr: netHeader.DestinationAddress(),
dstPort: tcpHeader.DestinationPort(),
transProto: netHeader.TransportProtocol(),
netProto: header.IPv4ProtocolNumber,
}, nil
}
// newConn creates new connection.
func newConn(orig, reply tupleID, manip manipType, hook Hook) *conn {
conn := conn{
manip: manip,
tcbHook: hook,
lastUsed: time.Now(),
}
conn.original = tuple{conn: &conn, tupleID: orig}
conn.reply = tuple{conn: &conn, tupleID: reply, direction: dirReply}
return &conn
}
// connFor gets the conn for pkt if it exists, or returns nil
// if it does not. It returns an error when pkt does not contain a valid TCP
// header.
// TODO(gvisor.dev/issue/170): Only TCP packets are supported. Need to support
// other transport protocols.
func (ct *ConnTrack) connFor(pkt *PacketBuffer) (*conn, direction) {
tid, err := packetToTupleID(pkt)
if err != nil {
return nil, dirOriginal
}
bucket := ct.bucket(tid)
now := time.Now()
ct.mu.RLock()
defer ct.mu.RUnlock()
ct.buckets[bucket].mu.Lock()
defer ct.buckets[bucket].mu.Unlock()
// Iterate over the tuples in a bucket, cleaning up any unused
// connections we find.
for other := ct.buckets[bucket].tuples.Front(); other != nil; other = other.Next() {
// Clean up any timed-out connections we happen to find.
if ct.reapTupleLocked(other, bucket, now) {
// The tuple expired.
continue
}
if tid == other.tupleID {
return other.conn, other.direction
}
}
return nil, dirOriginal
}
// createConnFor creates a new conn for pkt.
func (ct *ConnTrack) createConnFor(pkt *PacketBuffer, hook Hook, rt RedirectTarget) *conn {
tid, err := packetToTupleID(pkt)
if err != nil {
return nil
}
if hook != Prerouting && hook != Output {
return nil
}
// Create a new connection and change the port as per the iptables
// rule. This tuple will be used to manipulate the packet in
// handlePacket.
replyTID := tid.reply()
replyTID.srcAddr = rt.MinIP
replyTID.srcPort = rt.MinPort
var manip manipType
switch hook {
case Prerouting:
manip = manipDstPrerouting
case Output:
manip = manipDstOutput
}
conn := newConn(tid, replyTID, manip, hook)
// Lock the buckets in the correct order.
tupleBucket := ct.bucket(tid)
replyBucket := ct.bucket(replyTID)
ct.mu.RLock()
defer ct.mu.RUnlock()
if tupleBucket < replyBucket {
ct.buckets[tupleBucket].mu.Lock()
ct.buckets[replyBucket].mu.Lock()
} else if tupleBucket > replyBucket {
ct.buckets[replyBucket].mu.Lock()
ct.buckets[tupleBucket].mu.Lock()
} else {
// Both tuples are in the same bucket.
ct.buckets[tupleBucket].mu.Lock()
}
// Add the tuple to the map.
ct.buckets[tupleBucket].tuples.PushFront(&conn.original)
ct.buckets[replyBucket].tuples.PushFront(&conn.reply)
// Unlocking can happen in any order.
ct.buckets[tupleBucket].mu.Unlock()
if tupleBucket != replyBucket {
ct.buckets[replyBucket].mu.Unlock()
}
return conn
}
// handlePacketPrerouting manipulates ports for packets in Prerouting hook.
// TODO(gvisor.dev/issue/170): Change address for Prerouting hook.
func handlePacketPrerouting(pkt *PacketBuffer, conn *conn, dir direction) {
netHeader := header.IPv4(pkt.NetworkHeader)
tcpHeader := header.TCP(pkt.TransportHeader)
// For prerouting redirection, packets going in the original direction
// have their destinations modified and replies have their sources
// modified.
switch dir {
case dirOriginal:
port := conn.reply.srcPort
tcpHeader.SetDestinationPort(port)
netHeader.SetDestinationAddress(conn.reply.srcAddr)
case dirReply:
port := conn.original.dstPort
tcpHeader.SetSourcePort(port)
netHeader.SetSourceAddress(conn.original.dstAddr)
}
netHeader.SetChecksum(0)
netHeader.SetChecksum(^netHeader.CalculateChecksum())
}
// handlePacketOutput manipulates ports for packets in Output hook.
func handlePacketOutput(pkt *PacketBuffer, conn *conn, gso *GSO, r *Route, dir direction) {
netHeader := header.IPv4(pkt.NetworkHeader)
tcpHeader := header.TCP(pkt.TransportHeader)
// For output redirection, packets going in the original direction
// have their destinations modified and replies have their sources
// modified. For prerouting redirection, we only reach this point
// when replying, so packet sources are modified.
if conn.manip == manipDstOutput && dir == dirOriginal {
port := conn.reply.srcPort
tcpHeader.SetDestinationPort(port)
netHeader.SetDestinationAddress(conn.reply.srcAddr)
} else {
port := conn.original.dstPort
tcpHeader.SetSourcePort(port)
netHeader.SetSourceAddress(conn.original.dstAddr)
}
// Calculate the TCP checksum and set it.
tcpHeader.SetChecksum(0)
hdr := &pkt.Header
length := uint16(pkt.Data.Size()+hdr.UsedLength()) - uint16(netHeader.HeaderLength())
xsum := r.PseudoHeaderChecksum(header.TCPProtocolNumber, length)
if gso != nil && gso.NeedsCsum {
tcpHeader.SetChecksum(xsum)
} else if r.Capabilities()&CapabilityTXChecksumOffload == 0 {
xsum = header.ChecksumVVWithOffset(pkt.Data, xsum, int(tcpHeader.DataOffset()), pkt.Data.Size())
tcpHeader.SetChecksum(^tcpHeader.CalculateChecksum(xsum))
}
netHeader.SetChecksum(0)
netHeader.SetChecksum(^netHeader.CalculateChecksum())
}
// handlePacket will manipulate the port and address of the packet if the
// connection exists.
func (ct *ConnTrack) handlePacket(pkt *PacketBuffer, hook Hook, gso *GSO, r *Route) {
if pkt.NatDone {
return
}
if hook != Prerouting && hook != Output {
return
}
conn, dir := ct.connFor(pkt)
if conn == nil {
// Connection not found for the packet or the packet is invalid.
return
}
switch hook {
case Prerouting:
handlePacketPrerouting(pkt, conn, dir)
case Output:
handlePacketOutput(pkt, conn, gso, r, dir)
}
pkt.NatDone = true
// Update the state of tcb.
// TODO(gvisor.dev/issue/170): Add support in tcpcontrack to handle
// other tcp states.
conn.mu.Lock()
defer conn.mu.Unlock()
// Mark the connection as having been used recently so it isn't reaped.
conn.lastUsed = time.Now()
// Update connection state.
if tcpHeader := header.TCP(pkt.TransportHeader); conn.tcb.IsEmpty() {
conn.tcb.Init(tcpHeader)
conn.tcbHook = hook
} else if hook == conn.tcbHook {
conn.tcb.UpdateStateOutbound(tcpHeader)
} else {
conn.tcb.UpdateStateInbound(tcpHeader)
}
}
// bucket gets the conntrack bucket for a tupleID.
func (ct *ConnTrack) bucket(id tupleID) int {
h := jenkins.Sum32(ct.seed)
h.Write([]byte(id.srcAddr))
h.Write([]byte(id.dstAddr))
shortBuf := make([]byte, 2)
binary.LittleEndian.PutUint16(shortBuf, id.srcPort)
h.Write([]byte(shortBuf))
binary.LittleEndian.PutUint16(shortBuf, id.dstPort)
h.Write([]byte(shortBuf))
binary.LittleEndian.PutUint16(shortBuf, uint16(id.transProto))
h.Write([]byte(shortBuf))
binary.LittleEndian.PutUint16(shortBuf, uint16(id.netProto))
h.Write([]byte(shortBuf))
ct.mu.RLock()
defer ct.mu.RUnlock()
return int(h.Sum32()) % len(ct.buckets)
}
// reapUnused deletes timed out entries from the conntrack map. The rules for
// reaping are:
// - Most reaping occurs in connFor, which is called on each packet. connFor
// cleans up the bucket the packet's connection maps to. Thus calls to
// reapUnused should be fast.
// - Each call to reapUnused traverses a fraction of the conntrack table.
// Specifically, it traverses len(ct.buckets)/fractionPerReaping.
// - After reaping, reapUnused decides when it should next run based on the
// ratio of expired connections to examined connections. If the ratio is
// greater than maxExpiredPct, it schedules the next run quickly. Otherwise it
// slightly increases the interval between runs.
// - maxFullTraversal caps the time it takes to traverse the entire table.
//
// reapUnused returns the next bucket that should be checked and the time after
// which it should be called again.
func (ct *ConnTrack) reapUnused(start int, prevInterval time.Duration) (int, time.Duration) {
// TODO(gvisor.dev/issue/170): This can be more finely controlled, as
// it is in Linux via sysctl.
const fractionPerReaping = 128
const maxExpiredPct = 50
const maxFullTraversal = 60 * time.Second
const minInterval = 10 * time.Millisecond
const maxInterval = maxFullTraversal / fractionPerReaping
now := time.Now()
checked := 0
expired := 0
var idx int
ct.mu.RLock()
defer ct.mu.RUnlock()
for i := 0; i < len(ct.buckets)/fractionPerReaping; i++ {
idx = (i + start) % len(ct.buckets)
ct.buckets[idx].mu.Lock()
for tuple := ct.buckets[idx].tuples.Front(); tuple != nil; tuple = tuple.Next() {
checked++
if ct.reapTupleLocked(tuple, idx, now) {
expired++
}
}
ct.buckets[idx].mu.Unlock()
}
// We already checked buckets[idx].
idx++
// If half or more of the connections are expired, the table has gotten
// stale. Reschedule quickly.
expiredPct := 0
if checked != 0 {
expiredPct = expired * 100 / checked
}
if expiredPct > maxExpiredPct {
return idx, minInterval
}
if interval := prevInterval + minInterval; interval <= maxInterval {
// Increment the interval between runs.
return idx, interval
}
// We've hit the maximum interval.
return idx, maxInterval
}
// reapTupleLocked tries to remove tuple and its reply from the table. It
// returns whether the tuple's connection has timed out.
//
// Preconditions: ct.mu is locked for reading and bucket is locked.
func (ct *ConnTrack) reapTupleLocked(tuple *tuple, bucket int, now time.Time) bool {
if !tuple.conn.timedOut(now) {
return false
}
// To maintain lock order, we can only reap these tuples if the reply
// appears later in the table.
replyBucket := ct.bucket(tuple.reply())
if bucket > replyBucket {
return true
}
// Don't re-lock if both tuples are in the same bucket.
differentBuckets := bucket != replyBucket
if differentBuckets {
ct.buckets[replyBucket].mu.Lock()
}
// We have the buckets locked and can remove both tuples.
if tuple.direction == dirOriginal {
ct.buckets[replyBucket].tuples.Remove(&tuple.conn.reply)
} else {
ct.buckets[replyBucket].tuples.Remove(&tuple.conn.original)
}
ct.buckets[bucket].tuples.Remove(tuple)
// Don't re-unlock if both tuples are in the same bucket.
if differentBuckets {
ct.buckets[replyBucket].mu.Unlock()
}
return true
}
|