summaryrefslogtreecommitdiffhomepage
path: root/pkg/tcpip/stack/conntrack.go
blob: 3583d93c6f036da1e6de7047121065007ad89a77 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
// Copyright 2020 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package stack

import (
	"encoding/binary"
	"fmt"
	"sync"
	"time"

	"gvisor.dev/gvisor/pkg/tcpip"
	"gvisor.dev/gvisor/pkg/tcpip/hash/jenkins"
	"gvisor.dev/gvisor/pkg/tcpip/header"
	"gvisor.dev/gvisor/pkg/tcpip/transport/tcpconntrack"
)

// Connection tracking is used to track and manipulate packets for NAT rules.
// The connection is created for a packet if it does not exist. Every
// connection contains two tuples (original and reply). The tuples are
// manipulated if there is a matching NAT rule. The packet is modified by
// looking at the tuples in each hook.
//
// Currently, only TCP tracking is supported.

// Our hash table has 16K buckets.
const numBuckets = 1 << 14

// tuple holds a connection's identifying and manipulating data in one
// direction. It is immutable.
//
// +stateify savable
type tuple struct {
	// tupleEntry is used to build an intrusive list of tuples.
	tupleEntry

	// conn is the connection tracking entry this tuple belongs to.
	conn *conn

	// reply is true iff the tuple's direction is opposite that of the first
	// packet seen on the connection.
	reply bool

	mu sync.RWMutex `state:"nosave"`
	// +checklocks:mu
	tupleID tupleID
}

func (t *tuple) id() tupleID {
	t.mu.RLock()
	defer t.mu.RUnlock()
	return t.tupleID
}

// tupleID uniquely identifies a connection in one direction. It currently
// contains enough information to distinguish between any TCP or UDP
// connection, and will need to be extended to support other protocols.
//
// +stateify savable
type tupleID struct {
	srcAddr    tcpip.Address
	srcPort    uint16
	dstAddr    tcpip.Address
	dstPort    uint16
	transProto tcpip.TransportProtocolNumber
	netProto   tcpip.NetworkProtocolNumber
}

// reply creates the reply tupleID.
func (ti tupleID) reply() tupleID {
	return tupleID{
		srcAddr:    ti.dstAddr,
		srcPort:    ti.dstPort,
		dstAddr:    ti.srcAddr,
		dstPort:    ti.srcPort,
		transProto: ti.transProto,
		netProto:   ti.netProto,
	}
}

// conn is a tracked connection.
//
// +stateify savable
type conn struct {
	ct *ConnTrack

	// original is the tuple in original direction. It is immutable.
	original tuple

	// reply is the tuple in reply direction.
	reply tuple

	mu sync.RWMutex `state:"nosave"`
	// Indicates that the connection has been finalized and may handle replies.
	//
	// +checklocks:mu
	finalized bool
	// sourceManip indicates the packet's source is manipulated.
	//
	// +checklocks:mu
	sourceManip bool
	// destinationManip indicates the packet's destination is manipulated.
	//
	// +checklocks:mu
	destinationManip bool
	// tcb is TCB control block. It is used to keep track of states
	// of tcp connection.
	//
	// +checklocks:mu
	tcb tcpconntrack.TCB
	// lastUsed is the last time the connection saw a relevant packet, and
	// is updated by each packet on the connection.
	//
	// +checklocks:mu
	lastUsed tcpip.MonotonicTime
}

// timedOut returns whether the connection timed out based on its state.
func (cn *conn) timedOut(now tcpip.MonotonicTime) bool {
	const establishedTimeout = 5 * 24 * time.Hour
	const defaultTimeout = 120 * time.Second
	cn.mu.RLock()
	defer cn.mu.RUnlock()
	if cn.tcb.State() == tcpconntrack.ResultAlive {
		// Use the same default as Linux, which doesn't delete
		// established connections for 5(!) days.
		return now.Sub(cn.lastUsed) > establishedTimeout
	}
	// Use the same default as Linux, which lets connections in most states
	// other than established remain for <= 120 seconds.
	return now.Sub(cn.lastUsed) > defaultTimeout
}

// update the connection tracking state.
//
// +checklocks:cn.mu
func (cn *conn) updateLocked(pkt *PacketBuffer, reply bool) {
	if pkt.TransportProtocolNumber != header.TCPProtocolNumber {
		return
	}

	tcpHeader := header.TCP(pkt.TransportHeader().View())

	// Update the state of tcb. tcb assumes it's always initialized on the
	// client. However, we only need to know whether the connection is
	// established or not, so the client/server distinction isn't important.
	if cn.tcb.IsEmpty() {
		cn.tcb.Init(tcpHeader)
		return
	}

	if reply {
		cn.tcb.UpdateStateInbound(tcpHeader)
	} else {
		cn.tcb.UpdateStateOutbound(tcpHeader)
	}
}

// ConnTrack tracks all connections created for NAT rules. Most users are
// expected to only call handlePacket, insertRedirectConn, and maybeInsertNoop.
//
// ConnTrack keeps all connections in a slice of buckets, each of which holds a
// linked list of tuples. This gives us some desirable properties:
// - Each bucket has its own lock, lessening lock contention.
// - The slice is large enough that lists stay short (<10 elements on average).
//   Thus traversal is fast.
// - During linked list traversal we reap expired connections. This amortizes
//   the cost of reaping them and makes reapUnused faster.
//
// Locks are ordered by their location in the buckets slice. That is, a
// goroutine that locks buckets[i] can only lock buckets[j] s.t. i < j.
//
// +stateify savable
type ConnTrack struct {
	// seed is a one-time random value initialized at stack startup
	// and is used in the calculation of hash keys for the list of buckets.
	// It is immutable.
	seed uint32

	// clock provides timing used to determine conntrack reapings.
	clock tcpip.Clock

	mu sync.RWMutex `state:"nosave"`
	// mu protects the buckets slice, but not buckets' contents. Only take
	// the write lock if you are modifying the slice or saving for S/R.
	//
	// +checklocks:mu
	buckets []bucket
}

// +stateify savable
type bucket struct {
	mu sync.RWMutex `state:"nosave"`
	// +checklocks:mu
	tuples tupleList
}

func getTransportHeader(pkt *PacketBuffer) (header.ChecksummableTransport, bool) {
	switch pkt.TransportProtocolNumber {
	case header.TCPProtocolNumber:
		if tcpHeader := header.TCP(pkt.TransportHeader().View()); len(tcpHeader) >= header.TCPMinimumSize {
			return tcpHeader, true
		}
	case header.UDPProtocolNumber:
		if udpHeader := header.UDP(pkt.TransportHeader().View()); len(udpHeader) >= header.UDPMinimumSize {
			return udpHeader, true
		}
	}

	return nil, false
}

func (ct *ConnTrack) init() {
	ct.mu.Lock()
	defer ct.mu.Unlock()
	ct.buckets = make([]bucket, numBuckets)
}

func (ct *ConnTrack) getConnOrMaybeInsertNoop(pkt *PacketBuffer) *tuple {
	netHeader := pkt.Network()
	transportHeader, ok := getTransportHeader(pkt)
	if !ok {
		return nil
	}

	tid := tupleID{
		srcAddr:    netHeader.SourceAddress(),
		srcPort:    transportHeader.SourcePort(),
		dstAddr:    netHeader.DestinationAddress(),
		dstPort:    transportHeader.DestinationPort(),
		transProto: pkt.TransportProtocolNumber,
		netProto:   pkt.NetworkProtocolNumber,
	}

	bktID := ct.bucket(tid)

	ct.mu.RLock()
	bkt := &ct.buckets[bktID]
	ct.mu.RUnlock()

	now := ct.clock.NowMonotonic()
	if t := bkt.connForTID(tid, now); t != nil {
		return t
	}

	bkt.mu.Lock()
	defer bkt.mu.Unlock()

	// Make sure a connection wasn't added between when we last checked the
	// bucket and acquired the bucket's write lock.
	if t := bkt.connForTIDRLocked(tid, now); t != nil {
		return t
	}

	// This is the first packet we're seeing for the connection. Create an entry
	// for this new connection.
	conn := &conn{
		ct:       ct,
		original: tuple{tupleID: tid},
		reply:    tuple{tupleID: tid.reply(), reply: true},
		lastUsed: now,
	}
	conn.original.conn = conn
	conn.reply.conn = conn

	// For now, we only map an entry for the packet's original tuple as NAT may be
	// performed on this connection. Until the packet goes through all the hooks
	// and its final address/port is known, we cannot know what the response
	// packet's addresses/ports will look like.
	//
	// This is okay because the destination cannot send its response until it
	// receives the packet; the packet will only be received once all the hooks
	// have been performed.
	//
	// See (*conn).finalize.
	bkt.tuples.PushFront(&conn.original)
	return &conn.original
}

func (ct *ConnTrack) connForTID(tid tupleID) *tuple {
	bktID := ct.bucket(tid)

	ct.mu.RLock()
	bkt := &ct.buckets[bktID]
	ct.mu.RUnlock()

	return bkt.connForTID(tid, ct.clock.NowMonotonic())
}

func (bkt *bucket) connForTID(tid tupleID, now tcpip.MonotonicTime) *tuple {
	bkt.mu.RLock()
	defer bkt.mu.RUnlock()
	return bkt.connForTIDRLocked(tid, now)
}

// +checklocksread:bkt.mu
func (bkt *bucket) connForTIDRLocked(tid tupleID, now tcpip.MonotonicTime) *tuple {
	for other := bkt.tuples.Front(); other != nil; other = other.Next() {
		if tid == other.id() && !other.conn.timedOut(now) {
			return other
		}
	}
	return nil
}

func (ct *ConnTrack) finalize(cn *conn) {
	tid := cn.reply.id()
	id := ct.bucket(tid)

	ct.mu.RLock()
	bkt := &ct.buckets[id]
	ct.mu.RUnlock()

	bkt.mu.Lock()
	defer bkt.mu.Unlock()

	if t := bkt.connForTIDRLocked(tid, ct.clock.NowMonotonic()); t != nil {
		// Another connection for the reply already exists. We can't do much about
		// this so we leave the connection cn represents in a state where it can
		// send packets but its responses will be mapped to some other connection.
		// This may be okay if the connection only expects to send packets without
		// any responses.
		return
	}

	bkt.tuples.PushFront(&cn.reply)
}

func (cn *conn) finalize() {
	{
		cn.mu.RLock()
		finalized := cn.finalized
		cn.mu.RUnlock()
		if finalized {
			return
		}
	}

	cn.mu.Lock()
	finalized := cn.finalized
	cn.finalized = true
	cn.mu.Unlock()
	if finalized {
		return
	}

	cn.ct.finalize(cn)
}

// performNAT setups up the connection for the specified NAT.
//
// Generally, only the first packet of a connection reaches this method; other
// other packets will be manipulated without needing to modify the connection.
func (cn *conn) performNAT(pkt *PacketBuffer, hook Hook, r *Route, port uint16, address tcpip.Address, dnat bool) {
	cn.performNATIfNoop(port, address, dnat)
	cn.handlePacket(pkt, hook, r)
}

func (cn *conn) performNATIfNoop(port uint16, address tcpip.Address, dnat bool) {
	cn.mu.Lock()
	defer cn.mu.Unlock()

	if cn.finalized {
		return
	}

	if dnat {
		if cn.destinationManip {
			return
		}
		cn.destinationManip = true
	} else {
		if cn.sourceManip {
			return
		}
		cn.sourceManip = true
	}

	cn.reply.mu.Lock()
	defer cn.reply.mu.Unlock()

	if dnat {
		cn.reply.tupleID.srcAddr = address
		cn.reply.tupleID.srcPort = port
	} else {
		cn.reply.tupleID.dstAddr = address
		cn.reply.tupleID.dstPort = port
	}
}

// handlePacket attempts to handle a packet and perform NAT if the connection
// has had NAT performed on it.
//
// Returns true if the packet can skip the NAT table.
func (cn *conn) handlePacket(pkt *PacketBuffer, hook Hook, r *Route) bool {
	transportHeader, ok := getTransportHeader(pkt)
	if !ok {
		return false
	}

	fullChecksum := false
	updatePseudoHeader := false
	natDone := &pkt.SNATDone
	dnat := false
	switch hook {
	case Prerouting:
		// Packet came from outside the stack so it must have a checksum set
		// already.
		fullChecksum = true
		updatePseudoHeader = true

		natDone = &pkt.DNATDone
		dnat = true
	case Input:
	case Forward:
		panic("should not handle packet in the forwarding hook")
	case Output:
		natDone = &pkt.DNATDone
		dnat = true
		fallthrough
	case Postrouting:
		if pkt.TransportProtocolNumber == header.TCPProtocolNumber && pkt.GSOOptions.Type != GSONone && pkt.GSOOptions.NeedsCsum {
			updatePseudoHeader = true
		} else if r.RequiresTXTransportChecksum() {
			fullChecksum = true
			updatePseudoHeader = true
		}
	default:
		panic(fmt.Sprintf("unrecognized hook = %d", hook))
	}

	if *natDone {
		panic(fmt.Sprintf("packet already had NAT(dnat=%t) performed at hook=%s; pkt=%#v", dnat, hook, pkt))
	}

	// TODO(gvisor.dev/issue/5748): TCP checksums on inbound packets should be
	// validated if checksum offloading is off. It may require IP defrag if the
	// packets are fragmented.

	reply := pkt.tuple.reply
	tid, performManip := func() (tupleID, bool) {
		cn.mu.Lock()
		defer cn.mu.Unlock()

		var tuple *tuple
		if reply {
			if dnat {
				if !cn.sourceManip {
					return tupleID{}, false
				}
			} else if !cn.destinationManip {
				return tupleID{}, false
			}

			tuple = &cn.original
		} else {
			if dnat {
				if !cn.destinationManip {
					return tupleID{}, false
				}
			} else if !cn.sourceManip {
				return tupleID{}, false
			}

			tuple = &cn.reply
		}

		// Mark the connection as having been used recently so it isn't reaped.
		cn.lastUsed = cn.ct.clock.NowMonotonic()
		// Update connection state.
		cn.updateLocked(pkt, reply)

		return tuple.id(), true
	}()
	if !performManip {
		return false
	}

	newPort := tid.dstPort
	newAddr := tid.dstAddr
	if dnat {
		newPort = tid.srcPort
		newAddr = tid.srcAddr
	}

	rewritePacket(
		pkt.Network(),
		transportHeader,
		!dnat,
		fullChecksum,
		updatePseudoHeader,
		newPort,
		newAddr,
	)

	*natDone = true
	return true
}

// bucket gets the conntrack bucket for a tupleID.
func (ct *ConnTrack) bucket(id tupleID) int {
	h := jenkins.Sum32(ct.seed)
	h.Write([]byte(id.srcAddr))
	h.Write([]byte(id.dstAddr))
	shortBuf := make([]byte, 2)
	binary.LittleEndian.PutUint16(shortBuf, id.srcPort)
	h.Write([]byte(shortBuf))
	binary.LittleEndian.PutUint16(shortBuf, id.dstPort)
	h.Write([]byte(shortBuf))
	binary.LittleEndian.PutUint16(shortBuf, uint16(id.transProto))
	h.Write([]byte(shortBuf))
	binary.LittleEndian.PutUint16(shortBuf, uint16(id.netProto))
	h.Write([]byte(shortBuf))
	ct.mu.RLock()
	defer ct.mu.RUnlock()
	return int(h.Sum32()) % len(ct.buckets)
}

// reapUnused deletes timed out entries from the conntrack map. The rules for
// reaping are:
// - Most reaping occurs in connFor, which is called on each packet. connFor
//   cleans up the bucket the packet's connection maps to. Thus calls to
//   reapUnused should be fast.
// - Each call to reapUnused traverses a fraction of the conntrack table.
//   Specifically, it traverses len(ct.buckets)/fractionPerReaping.
// - After reaping, reapUnused decides when it should next run based on the
//   ratio of expired connections to examined connections. If the ratio is
//   greater than maxExpiredPct, it schedules the next run quickly. Otherwise it
//   slightly increases the interval between runs.
// - maxFullTraversal caps the time it takes to traverse the entire table.
//
// reapUnused returns the next bucket that should be checked and the time after
// which it should be called again.
func (ct *ConnTrack) reapUnused(start int, prevInterval time.Duration) (int, time.Duration) {
	const fractionPerReaping = 128
	const maxExpiredPct = 50
	const maxFullTraversal = 60 * time.Second
	const minInterval = 10 * time.Millisecond
	const maxInterval = maxFullTraversal / fractionPerReaping

	now := ct.clock.NowMonotonic()
	checked := 0
	expired := 0
	var idx int
	ct.mu.RLock()
	defer ct.mu.RUnlock()
	for i := 0; i < len(ct.buckets)/fractionPerReaping; i++ {
		idx = (i + start) % len(ct.buckets)
		bkt := &ct.buckets[idx]
		bkt.mu.Lock()
		for tuple := bkt.tuples.Front(); tuple != nil; tuple = tuple.Next() {
			checked++
			if ct.reapTupleLocked(tuple, idx, bkt, now) {
				expired++
			}
		}
		bkt.mu.Unlock()
	}
	// We already checked buckets[idx].
	idx++

	// If half or more of the connections are expired, the table has gotten
	// stale. Reschedule quickly.
	expiredPct := 0
	if checked != 0 {
		expiredPct = expired * 100 / checked
	}
	if expiredPct > maxExpiredPct {
		return idx, minInterval
	}
	if interval := prevInterval + minInterval; interval <= maxInterval {
		// Increment the interval between runs.
		return idx, interval
	}
	// We've hit the maximum interval.
	return idx, maxInterval
}

// reapTupleLocked tries to remove tuple and its reply from the table. It
// returns whether the tuple's connection has timed out.
//
// Precondition: ct.mu is read locked and bkt.mu is write locked.
// +checklocksread:ct.mu
// +checklocks:bkt.mu
func (ct *ConnTrack) reapTupleLocked(tuple *tuple, bktID int, bkt *bucket, now tcpip.MonotonicTime) bool {
	if !tuple.conn.timedOut(now) {
		return false
	}

	// To maintain lock order, we can only reap these tuples if the reply
	// appears later in the table.
	replyBktID := ct.bucket(tuple.id().reply())
	if bktID > replyBktID {
		return true
	}

	// Don't re-lock if both tuples are in the same bucket.
	if bktID != replyBktID {
		replyBkt := &ct.buckets[replyBktID]
		replyBkt.mu.Lock()
		removeConnFromBucket(replyBkt, tuple)
		replyBkt.mu.Unlock()
	} else {
		removeConnFromBucket(bkt, tuple)
	}

	// We have the buckets locked and can remove both tuples.
	bkt.tuples.Remove(tuple)
	return true
}

// +checklocks:b.mu
func removeConnFromBucket(b *bucket, tuple *tuple) {
	if tuple.reply {
		b.tuples.Remove(&tuple.conn.original)
	} else {
		b.tuples.Remove(&tuple.conn.reply)
	}
}

func (ct *ConnTrack) originalDst(epID TransportEndpointID, netProto tcpip.NetworkProtocolNumber, transProto tcpip.TransportProtocolNumber) (tcpip.Address, uint16, tcpip.Error) {
	// Lookup the connection. The reply's original destination
	// describes the original address.
	tid := tupleID{
		srcAddr:    epID.LocalAddress,
		srcPort:    epID.LocalPort,
		dstAddr:    epID.RemoteAddress,
		dstPort:    epID.RemotePort,
		transProto: transProto,
		netProto:   netProto,
	}
	t := ct.connForTID(tid)
	if t == nil {
		// Not a tracked connection.
		return "", 0, &tcpip.ErrNotConnected{}
	}

	t.conn.mu.RLock()
	defer t.conn.mu.RUnlock()
	if !t.conn.destinationManip {
		// Unmanipulated destination.
		return "", 0, &tcpip.ErrInvalidOptionValue{}
	}

	id := t.conn.original.id()
	return id.dstAddr, id.dstPort, nil
}