summaryrefslogtreecommitdiffhomepage
path: root/pkg/tcpip/network/ipv6/ipv6.go
blob: fc8dfea425fdbf939e5a08361de5597393b4261e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Package ipv6 contains the implementation of the ipv6 network protocol. To use
// it in the networking stack, this package must be added to the project, and
// activated on the stack by passing ipv6.NewProtocol() as one of the network
// protocols when calling stack.New(). Then endpoints can be created by passing
// ipv6.ProtocolNumber as the network protocol number when calling
// Stack.NewEndpoint().
package ipv6

import (
	"fmt"
	"sync/atomic"

	"gvisor.dev/gvisor/pkg/tcpip"
	"gvisor.dev/gvisor/pkg/tcpip/buffer"
	"gvisor.dev/gvisor/pkg/tcpip/header"
	"gvisor.dev/gvisor/pkg/tcpip/network/fragmentation"
	"gvisor.dev/gvisor/pkg/tcpip/stack"
)

const (
	// ProtocolNumber is the ipv6 protocol number.
	ProtocolNumber = header.IPv6ProtocolNumber

	// maxTotalSize is maximum size that can be encoded in the 16-bit
	// PayloadLength field of the ipv6 header.
	maxPayloadSize = 0xffff

	// DefaultTTL is the default hop limit for IPv6 Packets egressed by
	// Netstack.
	DefaultTTL = 64
)

type endpoint struct {
	nicID         tcpip.NICID
	linkEP        stack.LinkEndpoint
	linkAddrCache stack.LinkAddressCache
	nud           stack.NUDHandler
	dispatcher    stack.TransportDispatcher
	protocol      *protocol
	stack         *stack.Stack
}

// DefaultTTL is the default hop limit for this endpoint.
func (e *endpoint) DefaultTTL() uint8 {
	return e.protocol.DefaultTTL()
}

// MTU implements stack.NetworkEndpoint.MTU. It returns the link-layer MTU minus
// the network layer max header length.
func (e *endpoint) MTU() uint32 {
	return calculateMTU(e.linkEP.MTU())
}

// NICID returns the ID of the NIC this endpoint belongs to.
func (e *endpoint) NICID() tcpip.NICID {
	return e.nicID
}

// Capabilities implements stack.NetworkEndpoint.Capabilities.
func (e *endpoint) Capabilities() stack.LinkEndpointCapabilities {
	return e.linkEP.Capabilities()
}

// MaxHeaderLength returns the maximum length needed by ipv6 headers (and
// underlying protocols).
func (e *endpoint) MaxHeaderLength() uint16 {
	return e.linkEP.MaxHeaderLength() + header.IPv6MinimumSize
}

// GSOMaxSize returns the maximum GSO packet size.
func (e *endpoint) GSOMaxSize() uint32 {
	if gso, ok := e.linkEP.(stack.GSOEndpoint); ok {
		return gso.GSOMaxSize()
	}
	return 0
}

func (e *endpoint) addIPHeader(r *stack.Route, pkt *stack.PacketBuffer, params stack.NetworkHeaderParams) {
	length := uint16(pkt.Size())
	ip := header.IPv6(pkt.NetworkHeader().Push(header.IPv6MinimumSize))
	ip.Encode(&header.IPv6Fields{
		PayloadLength: length,
		NextHeader:    uint8(params.Protocol),
		HopLimit:      params.TTL,
		TrafficClass:  params.TOS,
		SrcAddr:       r.LocalAddress,
		DstAddr:       r.RemoteAddress,
	})
	pkt.NetworkProtocolNumber = header.IPv6ProtocolNumber
}

// WritePacket writes a packet to the given destination address and protocol.
func (e *endpoint) WritePacket(r *stack.Route, gso *stack.GSO, params stack.NetworkHeaderParams, pkt *stack.PacketBuffer) *tcpip.Error {
	e.addIPHeader(r, pkt, params)

	// iptables filtering. All packets that reach here are locally
	// generated.
	nicName := e.stack.FindNICNameFromID(e.NICID())
	ipt := e.stack.IPTables()
	if ok := ipt.Check(stack.Output, pkt, gso, r, "", nicName); !ok {
		// iptables is telling us to drop the packet.
		return nil
	}

	// If the packet is manipulated as per NAT Output rules, handle packet
	// based on destination address and do not send the packet to link
	// layer.
	//
	// TODO(gvisor.dev/issue/170): We should do this for every
	// packet, rather than only NATted packets, but removing this check
	// short circuits broadcasts before they are sent out to other hosts.
	if pkt.NatDone {
		netHeader := header.IPv6(pkt.NetworkHeader().View())
		if ep, err := e.stack.FindNetworkEndpoint(header.IPv6ProtocolNumber, netHeader.DestinationAddress()); err == nil {
			route := r.ReverseRoute(netHeader.SourceAddress(), netHeader.DestinationAddress())
			ep.HandlePacket(&route, pkt)
			return nil
		}
	}

	if r.Loop&stack.PacketLoop != 0 {
		loopedR := r.MakeLoopedRoute()

		e.HandlePacket(&loopedR, stack.NewPacketBuffer(stack.PacketBufferOptions{
			// The inbound path expects an unparsed packet.
			Data: buffer.NewVectorisedView(pkt.Size(), pkt.Views()),
		}))

		loopedR.Release()
	}
	if r.Loop&stack.PacketOut == 0 {
		return nil
	}

	r.Stats().IP.PacketsSent.Increment()
	return e.linkEP.WritePacket(r, gso, ProtocolNumber, pkt)
}

// WritePackets implements stack.LinkEndpoint.WritePackets.
func (e *endpoint) WritePackets(r *stack.Route, gso *stack.GSO, pkts stack.PacketBufferList, params stack.NetworkHeaderParams) (int, *tcpip.Error) {
	if r.Loop&stack.PacketLoop != 0 {
		panic("not implemented")
	}
	if r.Loop&stack.PacketOut == 0 {
		return pkts.Len(), nil
	}

	for pb := pkts.Front(); pb != nil; pb = pb.Next() {
		e.addIPHeader(r, pb, params)
	}

	// iptables filtering. All packets that reach here are locally
	// generated.
	nicName := e.stack.FindNICNameFromID(e.NICID())
	ipt := e.stack.IPTables()
	dropped, natPkts := ipt.CheckPackets(stack.Output, pkts, gso, r, nicName)
	if len(dropped) == 0 && len(natPkts) == 0 {
		// Fast path: If no packets are to be dropped then we can just invoke the
		// faster WritePackets API directly.
		n, err := e.linkEP.WritePackets(r, gso, pkts, ProtocolNumber)
		r.Stats().IP.PacketsSent.IncrementBy(uint64(n))
		return n, err
	}

	// Slow path as we are dropping some packets in the batch degrade to
	// emitting one packet at a time.
	n := 0
	for pkt := pkts.Front(); pkt != nil; pkt = pkt.Next() {
		if _, ok := dropped[pkt]; ok {
			continue
		}
		if _, ok := natPkts[pkt]; ok {
			netHeader := header.IPv6(pkt.NetworkHeader().View())
			if ep, err := e.stack.FindNetworkEndpoint(header.IPv6ProtocolNumber, netHeader.DestinationAddress()); err == nil {
				src := netHeader.SourceAddress()
				dst := netHeader.DestinationAddress()
				route := r.ReverseRoute(src, dst)
				ep.HandlePacket(&route, pkt)
				n++
				continue
			}
		}
		if err := e.linkEP.WritePacket(r, gso, ProtocolNumber, pkt); err != nil {
			r.Stats().IP.PacketsSent.IncrementBy(uint64(n))
			return n, err
		}
		n++
	}

	r.Stats().IP.PacketsSent.IncrementBy(uint64(n))
	return n, nil
}

// WriteHeaderIncludedPacker implements stack.NetworkEndpoint. It is not yet
// supported by IPv6.
func (*endpoint) WriteHeaderIncludedPacket(r *stack.Route, pkt *stack.PacketBuffer) *tcpip.Error {
	// TODO(b/146666412): Support IPv6 header-included packets.
	return tcpip.ErrNotSupported
}

// HandlePacket is called by the link layer when new ipv6 packets arrive for
// this endpoint.
func (e *endpoint) HandlePacket(r *stack.Route, pkt *stack.PacketBuffer) {
	h := header.IPv6(pkt.NetworkHeader().View())
	if !h.IsValid(pkt.Data.Size() + pkt.NetworkHeader().View().Size() + pkt.TransportHeader().View().Size()) {
		r.Stats().IP.MalformedPacketsReceived.Increment()
		return
	}

	// vv consists of:
	// - Any IPv6 header bytes after the first 40 (i.e. extensions).
	// - The transport header, if present.
	// - Any other payload data.
	vv := pkt.NetworkHeader().View()[header.IPv6MinimumSize:].ToVectorisedView()
	vv.AppendView(pkt.TransportHeader().View())
	vv.Append(pkt.Data)
	it := header.MakeIPv6PayloadIterator(header.IPv6ExtensionHeaderIdentifier(h.NextHeader()), vv)
	hasFragmentHeader := false

	// iptables filtering. All packets that reach here are intended for
	// this machine and will not be forwarded.
	ipt := e.stack.IPTables()
	if ok := ipt.Check(stack.Input, pkt, nil, nil, "", ""); !ok {
		// iptables is telling us to drop the packet.
		return
	}

	for firstHeader := true; ; firstHeader = false {
		extHdr, done, err := it.Next()
		if err != nil {
			r.Stats().IP.MalformedPacketsReceived.Increment()
			return
		}
		if done {
			break
		}

		switch extHdr := extHdr.(type) {
		case header.IPv6HopByHopOptionsExtHdr:
			// As per RFC 8200 section 4.1, the Hop By Hop extension header is
			// restricted to appear immediately after an IPv6 fixed header.
			//
			// TODO(b/152019344): Send an ICMPv6 Parameter Problem, Code 1
			// (unrecognized next header) error in response to an extension header's
			// Next Header field with the Hop By Hop extension header identifier.
			if !firstHeader {
				return
			}

			optsIt := extHdr.Iter()

			for {
				opt, done, err := optsIt.Next()
				if err != nil {
					r.Stats().IP.MalformedPacketsReceived.Increment()
					return
				}
				if done {
					break
				}

				// We currently do not support any IPv6 Hop By Hop extension header
				// options.
				switch opt.UnknownAction() {
				case header.IPv6OptionUnknownActionSkip:
				case header.IPv6OptionUnknownActionDiscard:
					return
				case header.IPv6OptionUnknownActionDiscardSendICMP:
					// TODO(b/152019344): Send an ICMPv6 Parameter Problem Code 2 for
					// unrecognized IPv6 extension header options.
					return
				case header.IPv6OptionUnknownActionDiscardSendICMPNoMulticastDest:
					// TODO(b/152019344): Send an ICMPv6 Parameter Problem Code 2 for
					// unrecognized IPv6 extension header options.
					return
				default:
					panic(fmt.Sprintf("unrecognized action for an unrecognized Hop By Hop extension header option = %d", opt))
				}
			}

		case header.IPv6RoutingExtHdr:
			// As per RFC 8200 section 4.4, if a node encounters a routing header with
			// an unrecognized routing type value, with a non-zero Segments Left
			// value, the node must discard the packet and send an ICMP Parameter
			// Problem, Code 0. If the Segments Left is 0, the node must ignore the
			// Routing extension header and process the next header in the packet.
			//
			// Note, the stack does not yet handle any type of routing extension
			// header, so we just make sure Segments Left is zero before processing
			// the next extension header.
			//
			// TODO(b/152019344): Send an ICMPv6 Parameter Problem Code 0 for
			// unrecognized routing types with a non-zero Segments Left value.
			if extHdr.SegmentsLeft() != 0 {
				return
			}

		case header.IPv6FragmentExtHdr:
			hasFragmentHeader = true

			if extHdr.IsAtomic() {
				// This fragment extension header indicates that this packet is an
				// atomic fragment. An atomic fragment is a fragment that contains
				// all the data required to reassemble a full packet. As per RFC 6946,
				// atomic fragments must not interfere with "normal" fragmented traffic
				// so we skip processing the fragment instead of feeding it through the
				// reassembly process below.
				continue
			}

			// Don't consume the iterator if we have the first fragment because we
			// will use it to validate that the first fragment holds the upper layer
			// header.
			rawPayload := it.AsRawHeader(extHdr.FragmentOffset() != 0 /* consume */)

			if extHdr.FragmentOffset() == 0 {
				// Check that the iterator ends with a raw payload as the first fragment
				// should include all headers up to and including any upper layer
				// headers, as per RFC 8200 section 4.5; only upper layer data
				// (non-headers) should follow the fragment extension header.
				var lastHdr header.IPv6PayloadHeader

				for {
					it, done, err := it.Next()
					if err != nil {
						r.Stats().IP.MalformedPacketsReceived.Increment()
						r.Stats().IP.MalformedPacketsReceived.Increment()
						return
					}
					if done {
						break
					}

					lastHdr = it
				}

				// If the last header is a raw header, then the last portion of the IPv6
				// payload is not a known IPv6 extension header. Note, this does not
				// mean that the last portion is an upper layer header or not an
				// extension header because:
				//  1) we do not yet support all extension headers
				//  2) we do not validate the upper layer header before reassembling.
				//
				// This check makes sure that a known IPv6 extension header is not
				// present after the Fragment extension header in a non-initial
				// fragment.
				//
				// TODO(#2196): Support IPv6 Authentication and Encapsulated
				// Security Payload extension headers.
				// TODO(#2333): Validate that the upper layer header is valid.
				switch lastHdr.(type) {
				case header.IPv6RawPayloadHeader:
				default:
					r.Stats().IP.MalformedPacketsReceived.Increment()
					r.Stats().IP.MalformedFragmentsReceived.Increment()
					return
				}
			}

			fragmentPayloadLen := rawPayload.Buf.Size()
			if fragmentPayloadLen == 0 {
				// Drop the packet as it's marked as a fragment but has no payload.
				r.Stats().IP.MalformedPacketsReceived.Increment()
				r.Stats().IP.MalformedFragmentsReceived.Increment()
				return
			}

			// The packet is a fragment, let's try to reassemble it.
			start := extHdr.FragmentOffset() * header.IPv6FragmentExtHdrFragmentOffsetBytesPerUnit

			// Drop the fragment if the size of the reassembled payload would exceed
			// the maximum payload size.
			if int(start)+fragmentPayloadLen > header.IPv6MaximumPayloadSize {
				r.Stats().IP.MalformedPacketsReceived.Increment()
				r.Stats().IP.MalformedFragmentsReceived.Increment()
				return
			}

			// Note that pkt doesn't have its transport header set after reassembly,
			// and won't until DeliverNetworkPacket sets it.
			data, proto, ready, err := e.protocol.fragmentation.Process(
				// IPv6 ignores the Protocol field since the ID only needs to be unique
				// across source-destination pairs, as per RFC 8200 section 4.5.
				fragmentation.FragmentID{
					Source:      h.SourceAddress(),
					Destination: h.DestinationAddress(),
					ID:          extHdr.ID(),
				},
				start,
				start+uint16(fragmentPayloadLen)-1,
				extHdr.More(),
				uint8(rawPayload.Identifier),
				rawPayload.Buf,
			)
			if err != nil {
				r.Stats().IP.MalformedPacketsReceived.Increment()
				r.Stats().IP.MalformedFragmentsReceived.Increment()
				return
			}
			pkt.Data = data

			if ready {
				// We create a new iterator with the reassembled packet because we could
				// have more extension headers in the reassembled payload, as per RFC
				// 8200 section 4.5. We also use the NextHeader value from the first
				// fragment.
				it = header.MakeIPv6PayloadIterator(header.IPv6ExtensionHeaderIdentifier(proto), pkt.Data)
			}

		case header.IPv6DestinationOptionsExtHdr:
			optsIt := extHdr.Iter()

			for {
				opt, done, err := optsIt.Next()
				if err != nil {
					r.Stats().IP.MalformedPacketsReceived.Increment()
					return
				}
				if done {
					break
				}

				// We currently do not support any IPv6 Destination extension header
				// options.
				switch opt.UnknownAction() {
				case header.IPv6OptionUnknownActionSkip:
				case header.IPv6OptionUnknownActionDiscard:
					return
				case header.IPv6OptionUnknownActionDiscardSendICMP:
					// TODO(b/152019344): Send an ICMPv6 Parameter Problem Code 2 for
					// unrecognized IPv6 extension header options.
					return
				case header.IPv6OptionUnknownActionDiscardSendICMPNoMulticastDest:
					// TODO(b/152019344): Send an ICMPv6 Parameter Problem Code 2 for
					// unrecognized IPv6 extension header options.
					return
				default:
					panic(fmt.Sprintf("unrecognized action for an unrecognized Destination extension header option = %d", opt))
				}
			}

		case header.IPv6RawPayloadHeader:
			// If the last header in the payload isn't a known IPv6 extension header,
			// handle it as if it is transport layer data.

			// For unfragmented packets, extHdr still contains the transport header.
			// Get rid of it.
			//
			// For reassembled fragments, pkt.TransportHeader is unset, so this is a
			// no-op and pkt.Data begins with the transport header.
			extHdr.Buf.TrimFront(pkt.TransportHeader().View().Size())
			pkt.Data = extHdr.Buf

			if p := tcpip.TransportProtocolNumber(extHdr.Identifier); p == header.ICMPv6ProtocolNumber {
				e.handleICMP(r, pkt, hasFragmentHeader)
			} else {
				r.Stats().IP.PacketsDelivered.Increment()
				// TODO(b/152019344): Send an ICMPv6 Parameter Problem, Code 1 error
				// in response to unrecognized next header values.
				e.dispatcher.DeliverTransportPacket(r, p, pkt)
			}

		default:
			// If we receive a packet for an extension header we do not yet handle,
			// drop the packet for now.
			//
			// TODO(b/152019344): Send an ICMPv6 Parameter Problem, Code 1 error
			// in response to unrecognized next header values.
			r.Stats().UnknownProtocolRcvdPackets.Increment()
			return
		}
	}
}

// Close cleans up resources associated with the endpoint.
func (*endpoint) Close() {}

// NetworkProtocolNumber implements stack.NetworkEndpoint.NetworkProtocolNumber.
func (e *endpoint) NetworkProtocolNumber() tcpip.NetworkProtocolNumber {
	return e.protocol.Number()
}

type protocol struct {
	// defaultTTL is the current default TTL for the protocol. Only the
	// uint8 portion of it is meaningful and it must be accessed
	// atomically.
	defaultTTL    uint32
	fragmentation *fragmentation.Fragmentation
}

// Number returns the ipv6 protocol number.
func (p *protocol) Number() tcpip.NetworkProtocolNumber {
	return ProtocolNumber
}

// MinimumPacketSize returns the minimum valid ipv6 packet size.
func (p *protocol) MinimumPacketSize() int {
	return header.IPv6MinimumSize
}

// DefaultPrefixLen returns the IPv6 default prefix length.
func (p *protocol) DefaultPrefixLen() int {
	return header.IPv6AddressSize * 8
}

// ParseAddresses implements NetworkProtocol.ParseAddresses.
func (*protocol) ParseAddresses(v buffer.View) (src, dst tcpip.Address) {
	h := header.IPv6(v)
	return h.SourceAddress(), h.DestinationAddress()
}

// NewEndpoint creates a new ipv6 endpoint.
func (p *protocol) NewEndpoint(nicID tcpip.NICID, linkAddrCache stack.LinkAddressCache, nud stack.NUDHandler, dispatcher stack.TransportDispatcher, linkEP stack.LinkEndpoint, st *stack.Stack) stack.NetworkEndpoint {
	return &endpoint{
		nicID:         nicID,
		linkEP:        linkEP,
		linkAddrCache: linkAddrCache,
		nud:           nud,
		dispatcher:    dispatcher,
		protocol:      p,
		stack:         st,
	}
}

// SetOption implements NetworkProtocol.SetOption.
func (p *protocol) SetOption(option tcpip.SettableNetworkProtocolOption) *tcpip.Error {
	switch v := option.(type) {
	case *tcpip.DefaultTTLOption:
		p.SetDefaultTTL(uint8(*v))
		return nil
	default:
		return tcpip.ErrUnknownProtocolOption
	}
}

// Option implements NetworkProtocol.Option.
func (p *protocol) Option(option tcpip.GettableNetworkProtocolOption) *tcpip.Error {
	switch v := option.(type) {
	case *tcpip.DefaultTTLOption:
		*v = tcpip.DefaultTTLOption(p.DefaultTTL())
		return nil
	default:
		return tcpip.ErrUnknownProtocolOption
	}
}

// SetDefaultTTL sets the default TTL for endpoints created with this protocol.
func (p *protocol) SetDefaultTTL(ttl uint8) {
	atomic.StoreUint32(&p.defaultTTL, uint32(ttl))
}

// DefaultTTL returns the default TTL for endpoints created with this protocol.
func (p *protocol) DefaultTTL() uint8 {
	return uint8(atomic.LoadUint32(&p.defaultTTL))
}

// Close implements stack.TransportProtocol.Close.
func (*protocol) Close() {}

// Wait implements stack.TransportProtocol.Wait.
func (*protocol) Wait() {}

// Parse implements stack.TransportProtocol.Parse.
func (*protocol) Parse(pkt *stack.PacketBuffer) (proto tcpip.TransportProtocolNumber, hasTransportHdr bool, ok bool) {
	hdr, ok := pkt.Data.PullUp(header.IPv6MinimumSize)
	if !ok {
		return 0, false, false
	}
	ipHdr := header.IPv6(hdr)

	// dataClone consists of:
	// - Any IPv6 header bytes after the first 40 (i.e. extensions).
	// - The transport header, if present.
	// - Any other payload data.
	views := [8]buffer.View{}
	dataClone := pkt.Data.Clone(views[:])
	dataClone.TrimFront(header.IPv6MinimumSize)
	it := header.MakeIPv6PayloadIterator(header.IPv6ExtensionHeaderIdentifier(ipHdr.NextHeader()), dataClone)

	// Iterate over the IPv6 extensions to find their length.
	//
	// Parsing occurs again in HandlePacket because we don't track the
	// extensions in PacketBuffer. Unfortunately, that means HandlePacket
	// has to do the parsing work again.
	var nextHdr tcpip.TransportProtocolNumber
	foundNext := true
	extensionsSize := 0
traverseExtensions:
	for extHdr, done, err := it.Next(); ; extHdr, done, err = it.Next() {
		if err != nil {
			break
		}
		// If we exhaust the extension list, the entire packet is the IPv6 header
		// and (possibly) extensions.
		if done {
			extensionsSize = dataClone.Size()
			foundNext = false
			break
		}

		switch extHdr := extHdr.(type) {
		case header.IPv6FragmentExtHdr:
			// If this is an atomic fragment, we don't have to treat it specially.
			if !extHdr.More() && extHdr.FragmentOffset() == 0 {
				continue
			}
			// This is a non-atomic fragment and has to be re-assembled before we can
			// examine the payload for a transport header.
			foundNext = false

		case header.IPv6RawPayloadHeader:
			// We've found the payload after any extensions.
			extensionsSize = dataClone.Size() - extHdr.Buf.Size()
			nextHdr = tcpip.TransportProtocolNumber(extHdr.Identifier)
			break traverseExtensions

		default:
			// Any other extension is a no-op, keep looping until we find the payload.
		}
	}

	// Put the IPv6 header with extensions in pkt.NetworkHeader().
	hdr, ok = pkt.NetworkHeader().Consume(header.IPv6MinimumSize + extensionsSize)
	if !ok {
		panic(fmt.Sprintf("pkt.Data should have at least %d bytes, but only has %d.", header.IPv6MinimumSize+extensionsSize, pkt.Data.Size()))
	}
	ipHdr = header.IPv6(hdr)
	pkt.Data.CapLength(int(ipHdr.PayloadLength()))
	pkt.NetworkProtocolNumber = header.IPv6ProtocolNumber

	return nextHdr, foundNext, true
}

// calculateMTU calculates the network-layer payload MTU based on the link-layer
// payload mtu.
func calculateMTU(mtu uint32) uint32 {
	mtu -= header.IPv6MinimumSize
	if mtu <= maxPayloadSize {
		return mtu
	}
	return maxPayloadSize
}

// NewProtocol returns an IPv6 network protocol.
func NewProtocol() stack.NetworkProtocol {
	return &protocol{
		defaultTTL:    DefaultTTL,
		fragmentation: fragmentation.NewFragmentation(header.IPv6FragmentExtHdrFragmentOffsetBytesPerUnit, fragmentation.HighFragThreshold, fragmentation.LowFragThreshold, fragmentation.DefaultReassembleTimeout),
	}
}