1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
|
// Copyright 2018 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package ipv6
import (
"encoding/binary"
"gvisor.googlesource.com/gvisor/pkg/tcpip"
"gvisor.googlesource.com/gvisor/pkg/tcpip/buffer"
"gvisor.googlesource.com/gvisor/pkg/tcpip/header"
"gvisor.googlesource.com/gvisor/pkg/tcpip/stack"
)
// handleControl handles the case when an ICMP packet contains the headers of
// the original packet that caused the ICMP one to be sent. This information is
// used to find out which transport endpoint must be notified about the ICMP
// packet.
func (e *endpoint) handleControl(typ stack.ControlType, extra uint32, vv buffer.VectorisedView) {
h := header.IPv6(vv.First())
// We don't use IsValid() here because ICMP only requires that up to
// 1280 bytes of the original packet be included. So it's likely that it
// is truncated, which would cause IsValid to return false.
//
// Drop packet if it doesn't have the basic IPv6 header or if the
// original source address doesn't match the endpoint's address.
if len(h) < header.IPv6MinimumSize || h.SourceAddress() != e.id.LocalAddress {
return
}
// Skip the IP header, then handle the fragmentation header if there
// is one.
vv.TrimFront(header.IPv6MinimumSize)
p := h.TransportProtocol()
if p == header.IPv6FragmentHeader {
f := header.IPv6Fragment(vv.First())
if !f.IsValid() || f.FragmentOffset() != 0 {
// We can't handle fragments that aren't at offset 0
// because they don't have the transport headers.
return
}
// Skip fragmentation header and find out the actual protocol
// number.
vv.TrimFront(header.IPv6FragmentHeaderSize)
p = f.TransportProtocol()
}
// Deliver the control packet to the transport endpoint.
e.dispatcher.DeliverTransportControlPacket(e.id.LocalAddress, h.DestinationAddress(), ProtocolNumber, p, typ, extra, vv)
}
func (e *endpoint) handleICMP(r *stack.Route, vv buffer.VectorisedView) {
v := vv.First()
if len(v) < header.ICMPv6MinimumSize {
return
}
h := header.ICMPv6(v)
switch h.Type() {
case header.ICMPv6PacketTooBig:
if len(v) < header.ICMPv6PacketTooBigMinimumSize {
return
}
vv.TrimFront(header.ICMPv6PacketTooBigMinimumSize)
mtu := binary.BigEndian.Uint32(v[header.ICMPv6MinimumSize:])
e.handleControl(stack.ControlPacketTooBig, calculateMTU(mtu), vv)
case header.ICMPv6DstUnreachable:
if len(v) < header.ICMPv6DstUnreachableMinimumSize {
return
}
vv.TrimFront(header.ICMPv6DstUnreachableMinimumSize)
switch h.Code() {
case header.ICMPv6PortUnreachable:
e.handleControl(stack.ControlPortUnreachable, 0, vv)
}
case header.ICMPv6NeighborSolicit:
if len(v) < header.ICMPv6NeighborSolicitMinimumSize {
return
}
targetAddr := tcpip.Address(v[8 : 8+16])
if e.linkAddrCache.CheckLocalAddress(e.nicid, ProtocolNumber, targetAddr) == 0 {
// We don't have a useful answer; the best we can do is ignore the request.
return
}
hdr := buffer.NewPrependable(int(r.MaxHeaderLength()) + header.IPv6MinimumSize + header.ICMPv6NeighborAdvertSize)
pkt := header.ICMPv6(hdr.Prepend(header.ICMPv6NeighborAdvertSize))
pkt.SetType(header.ICMPv6NeighborAdvert)
pkt[icmpV6FlagOffset] = ndpSolicitedFlag | ndpOverrideFlag
copy(pkt[icmpV6OptOffset-len(targetAddr):], targetAddr)
pkt[icmpV6OptOffset] = ndpOptDstLinkAddr
pkt[icmpV6LengthOffset] = 1
copy(pkt[icmpV6LengthOffset+1:], r.LocalLinkAddress[:])
// ICMPv6 Neighbor Solicit messages are always sent to
// specially crafted IPv6 multicast addresses. As a result, the
// route we end up with here has as its LocalAddress such a
// multicast address. It would be nonsense to claim that our
// source address is a multicast address, so we manually set
// the source address to the target address requested in the
// solicit message. Since that requires mutating the route, we
// must first clone it.
r := r.Clone()
defer r.Release()
r.LocalAddress = targetAddr
pkt.SetChecksum(icmpChecksum(pkt, r.LocalAddress, r.RemoteAddress, buffer.VectorisedView{}))
r.WritePacket(hdr, buffer.VectorisedView{}, header.ICMPv6ProtocolNumber, r.DefaultTTL())
e.linkAddrCache.AddLinkAddress(e.nicid, r.RemoteAddress, r.RemoteLinkAddress)
case header.ICMPv6NeighborAdvert:
if len(v) < header.ICMPv6NeighborAdvertSize {
return
}
targetAddr := tcpip.Address(v[8 : 8+16])
e.linkAddrCache.AddLinkAddress(e.nicid, targetAddr, r.RemoteLinkAddress)
if targetAddr != r.RemoteAddress {
e.linkAddrCache.AddLinkAddress(e.nicid, r.RemoteAddress, r.RemoteLinkAddress)
}
case header.ICMPv6EchoRequest:
if len(v) < header.ICMPv6EchoMinimumSize {
return
}
vv.TrimFront(header.ICMPv6EchoMinimumSize)
hdr := buffer.NewPrependable(int(r.MaxHeaderLength()) + header.IPv6MinimumSize + header.ICMPv6EchoMinimumSize)
pkt := header.ICMPv6(hdr.Prepend(header.ICMPv6EchoMinimumSize))
copy(pkt, h)
pkt.SetType(header.ICMPv6EchoReply)
pkt.SetChecksum(icmpChecksum(pkt, r.LocalAddress, r.RemoteAddress, vv))
r.WritePacket(hdr, vv, header.ICMPv6ProtocolNumber, r.DefaultTTL())
case header.ICMPv6EchoReply:
if len(v) < header.ICMPv6EchoMinimumSize {
return
}
e.dispatcher.DeliverTransportPacket(r, header.ICMPv6ProtocolNumber, vv)
}
}
const (
ndpSolicitedFlag = 1 << 6
ndpOverrideFlag = 1 << 5
ndpOptSrcLinkAddr = 1
ndpOptDstLinkAddr = 2
icmpV6FlagOffset = 4
icmpV6OptOffset = 24
icmpV6LengthOffset = 25
)
var broadcastMAC = tcpip.LinkAddress([]byte{0xff, 0xff, 0xff, 0xff, 0xff, 0xff})
var _ stack.LinkAddressResolver = (*protocol)(nil)
// LinkAddressProtocol implements stack.LinkAddressResolver.
func (*protocol) LinkAddressProtocol() tcpip.NetworkProtocolNumber {
return header.IPv6ProtocolNumber
}
// LinkAddressRequest implements stack.LinkAddressResolver.
func (*protocol) LinkAddressRequest(addr, localAddr tcpip.Address, linkEP stack.LinkEndpoint) *tcpip.Error {
snaddr := header.SolicitedNodeAddr(addr)
r := &stack.Route{
LocalAddress: localAddr,
RemoteAddress: snaddr,
RemoteLinkAddress: broadcastMAC,
}
hdr := buffer.NewPrependable(int(linkEP.MaxHeaderLength()) + header.IPv6MinimumSize + header.ICMPv6NeighborAdvertSize)
pkt := header.ICMPv6(hdr.Prepend(header.ICMPv6NeighborAdvertSize))
pkt.SetType(header.ICMPv6NeighborSolicit)
copy(pkt[icmpV6OptOffset-len(addr):], addr)
pkt[icmpV6OptOffset] = ndpOptSrcLinkAddr
pkt[icmpV6LengthOffset] = 1
copy(pkt[icmpV6LengthOffset+1:], linkEP.LinkAddress())
pkt.SetChecksum(icmpChecksum(pkt, r.LocalAddress, r.RemoteAddress, buffer.VectorisedView{}))
length := uint16(hdr.UsedLength())
ip := header.IPv6(hdr.Prepend(header.IPv6MinimumSize))
ip.Encode(&header.IPv6Fields{
PayloadLength: length,
NextHeader: uint8(header.ICMPv6ProtocolNumber),
HopLimit: defaultIPv6HopLimit,
SrcAddr: r.LocalAddress,
DstAddr: r.RemoteAddress,
})
return linkEP.WritePacket(r, hdr, buffer.VectorisedView{}, ProtocolNumber)
}
// ResolveStaticAddress implements stack.LinkAddressResolver.
func (*protocol) ResolveStaticAddress(addr tcpip.Address) (tcpip.LinkAddress, bool) {
return "", false
}
func icmpChecksum(h header.ICMPv6, src, dst tcpip.Address, vv buffer.VectorisedView) uint16 {
// Calculate the IPv6 pseudo-header upper-layer checksum.
xsum := header.Checksum([]byte(src), 0)
xsum = header.Checksum([]byte(dst), xsum)
var upperLayerLength [4]byte
binary.BigEndian.PutUint32(upperLayerLength[:], uint32(len(h)+vv.Size()))
xsum = header.Checksum(upperLayerLength[:], xsum)
xsum = header.Checksum([]byte{0, 0, 0, uint8(header.ICMPv6ProtocolNumber)}, xsum)
for _, v := range vv.Views() {
xsum = header.Checksum(v, xsum)
}
// h[2:4] is the checksum itself, set it aside to avoid checksumming the checksum.
h2, h3 := h[2], h[3]
h[2], h[3] = 0, 0
xsum = ^header.Checksum(h, xsum)
h[2], h[3] = h2, h3
return xsum
}
|