summaryrefslogtreecommitdiffhomepage
path: root/pkg/tcpip/network/ipv6/icmp.go
blob: bdf3a0d2578bee1f3b3ea76f8bffd949f5207590 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package ipv6

import (
	"fmt"

	"gvisor.dev/gvisor/pkg/tcpip"
	"gvisor.dev/gvisor/pkg/tcpip/buffer"
	"gvisor.dev/gvisor/pkg/tcpip/header"
	"gvisor.dev/gvisor/pkg/tcpip/stack"
)

// handleControl handles the case when an ICMP packet contains the headers of
// the original packet that caused the ICMP one to be sent. This information is
// used to find out which transport endpoint must be notified about the ICMP
// packet.
func (e *endpoint) handleControl(typ stack.ControlType, extra uint32, pkt stack.PacketBuffer) {
	h, ok := pkt.Data.PullUp(header.IPv6MinimumSize)
	if !ok {
		return
	}
	hdr := header.IPv6(h)

	// We don't use IsValid() here because ICMP only requires that up to
	// 1280 bytes of the original packet be included. So it's likely that it
	// is truncated, which would cause IsValid to return false.
	//
	// Drop packet if it doesn't have the basic IPv6 header or if the
	// original source address doesn't match the endpoint's address.
	if hdr.SourceAddress() != e.id.LocalAddress {
		return
	}

	// Skip the IP header, then handle the fragmentation header if there
	// is one.
	pkt.Data.TrimFront(header.IPv6MinimumSize)
	p := hdr.TransportProtocol()
	if p == header.IPv6FragmentHeader {
		f, ok := pkt.Data.PullUp(header.IPv6FragmentHeaderSize)
		if !ok {
			return
		}
		fragHdr := header.IPv6Fragment(f)
		if !fragHdr.IsValid() || fragHdr.FragmentOffset() != 0 {
			// We can't handle fragments that aren't at offset 0
			// because they don't have the transport headers.
			return
		}

		// Skip fragmentation header and find out the actual protocol
		// number.
		pkt.Data.TrimFront(header.IPv6FragmentHeaderSize)
		p = fragHdr.TransportProtocol()
	}

	// Deliver the control packet to the transport endpoint.
	e.dispatcher.DeliverTransportControlPacket(e.id.LocalAddress, hdr.DestinationAddress(), ProtocolNumber, p, typ, extra, pkt)
}

func (e *endpoint) handleICMP(r *stack.Route, netHeader buffer.View, pkt stack.PacketBuffer, hasFragmentHeader bool) {
	stats := r.Stats().ICMP
	sent := stats.V6PacketsSent
	received := stats.V6PacketsReceived
	v, ok := pkt.Data.PullUp(header.ICMPv6HeaderSize)
	if !ok {
		received.Invalid.Increment()
		return
	}
	h := header.ICMPv6(v)
	iph := header.IPv6(netHeader)

	// Validate ICMPv6 checksum before processing the packet.
	//
	// This copy is used as extra payload during the checksum calculation.
	payload := pkt.Data.Clone(nil)
	payload.TrimFront(len(h))
	if got, want := h.Checksum(), header.ICMPv6Checksum(h, iph.SourceAddress(), iph.DestinationAddress(), payload); got != want {
		received.Invalid.Increment()
		return
	}

	isNDPValid := func() bool {
		// As per RFC 4861 sections 4.1 - 4.5, 6.1.1, 6.1.2, 7.1.1, 7.1.2 and
		// 8.1, nodes MUST silently drop NDP packets where the Hop Limit field
		// in the IPv6 header is not set to 255, or the ICMPv6 Code field is not
		// set to 0.
		//
		// As per RFC 6980 section 5, nodes MUST silently drop NDP messages if the
		// packet includes a fragmentation header.
		return !hasFragmentHeader && iph.HopLimit() == header.NDPHopLimit && h.Code() == 0
	}

	// TODO(b/112892170): Meaningfully handle all ICMP types.
	switch h.Type() {
	case header.ICMPv6PacketTooBig:
		received.PacketTooBig.Increment()
		hdr, ok := pkt.Data.PullUp(header.ICMPv6PacketTooBigMinimumSize)
		if !ok {
			received.Invalid.Increment()
			return
		}
		pkt.Data.TrimFront(header.ICMPv6PacketTooBigMinimumSize)
		mtu := header.ICMPv6(hdr).MTU()
		e.handleControl(stack.ControlPacketTooBig, calculateMTU(mtu), pkt)

	case header.ICMPv6DstUnreachable:
		received.DstUnreachable.Increment()
		hdr, ok := pkt.Data.PullUp(header.ICMPv6DstUnreachableMinimumSize)
		if !ok {
			received.Invalid.Increment()
			return
		}
		pkt.Data.TrimFront(header.ICMPv6DstUnreachableMinimumSize)
		switch header.ICMPv6(hdr).Code() {
		case header.ICMPv6PortUnreachable:
			e.handleControl(stack.ControlPortUnreachable, 0, pkt)
		}

	case header.ICMPv6NeighborSolicit:
		received.NeighborSolicit.Increment()
		if pkt.Data.Size() < header.ICMPv6NeighborSolicitMinimumSize || !isNDPValid() {
			received.Invalid.Increment()
			return
		}

		// The remainder of payload must be only the neighbor solicitation, so
		// payload.ToView() always returns the solicitation. Per RFC 6980 section 5,
		// NDP messages cannot be fragmented. Also note that in the common case NDP
		// datagrams are very small and ToView() will not incur allocations.
		ns := header.NDPNeighborSolicit(payload.ToView())
		it, err := ns.Options().Iter(true)
		if err != nil {
			// If we have a malformed NDP NS option, drop the packet.
			received.Invalid.Increment()
			return
		}

		targetAddr := ns.TargetAddress()
		s := r.Stack()
		if isTentative, err := s.IsAddrTentative(e.nicID, targetAddr); err != nil {
			// We will only get an error if the NIC is unrecognized, which should not
			// happen. For now, drop this packet.
			//
			// TODO(b/141002840): Handle this better?
			return
		} else if isTentative {
			// If the target address is tentative and the source of the packet is a
			// unicast (specified) address, then the source of the packet is
			// attempting to perform address resolution on the target. In this case,
			// the solicitation is silently ignored, as per RFC 4862 section 5.4.3.
			//
			// If the target address is tentative and the source of the packet is the
			// unspecified address (::), then we know another node is also performing
			// DAD for the same address (since the target address is tentative for us,
			// we know we are also performing DAD on it). In this case we let the
			// stack know so it can handle such a scenario and do nothing further with
			// the NS.
			if r.RemoteAddress == header.IPv6Any {
				s.DupTentativeAddrDetected(e.nicID, targetAddr)
			}

			// Do not handle neighbor solicitations targeted to an address that is
			// tentative on the NIC any further.
			return
		}

		// At this point we know that the target address is not tentative on the NIC
		// so the packet is processed as defined in RFC 4861, as per RFC 4862
		// section 5.4.3.

		// Is the NS targetting us?
		if e.linkAddrCache.CheckLocalAddress(e.nicID, ProtocolNumber, targetAddr) == 0 {
			return
		}

		// If the NS message contains the Source Link-Layer Address option, update
		// the link address cache with the value of the option.
		//
		// TODO(b/148429853): Properly process the NS message and do Neighbor
		// Unreachability Detection.
		var sourceLinkAddr tcpip.LinkAddress
		for {
			opt, done, err := it.Next()
			if err != nil {
				// This should never happen as Iter(true) above did not return an error.
				panic(fmt.Sprintf("unexpected error when iterating over NDP options: %s", err))
			}
			if done {
				break
			}

			switch opt := opt.(type) {
			case header.NDPSourceLinkLayerAddressOption:
				// No RFCs define what to do when an NS message has multiple Source
				// Link-Layer Address options. Since no interface can have multiple
				// link-layer addresses, we consider such messages invalid.
				if len(sourceLinkAddr) != 0 {
					received.Invalid.Increment()
					return
				}

				sourceLinkAddr = opt.EthernetAddress()
			}
		}

		unspecifiedSource := r.RemoteAddress == header.IPv6Any

		// As per RFC 4861 section 4.3, the Source Link-Layer Address Option MUST
		// NOT be included when the source IP address is the unspecified address.
		// Otherwise, on link layers that have addresses this option MUST be
		// included in multicast solicitations and SHOULD be included in unicast
		// solicitations.
		if len(sourceLinkAddr) == 0 {
			if header.IsV6MulticastAddress(r.LocalAddress) && !unspecifiedSource {
				received.Invalid.Increment()
				return
			}
		} else if unspecifiedSource {
			received.Invalid.Increment()
			return
		} else {
			e.linkAddrCache.AddLinkAddress(e.nicID, r.RemoteAddress, sourceLinkAddr)
		}

		// ICMPv6 Neighbor Solicit messages are always sent to
		// specially crafted IPv6 multicast addresses. As a result, the
		// route we end up with here has as its LocalAddress such a
		// multicast address. It would be nonsense to claim that our
		// source address is a multicast address, so we manually set
		// the source address to the target address requested in the
		// solicit message. Since that requires mutating the route, we
		// must first clone it.
		r := r.Clone()
		defer r.Release()
		r.LocalAddress = targetAddr

		// As per RFC 4861 section 7.2.4, if the the source of the solicitation is
		// the unspecified address, the node MUST set the Solicited flag to zero and
		// multicast the advertisement to the all-nodes address.
		solicited := true
		if unspecifiedSource {
			solicited = false
			r.RemoteAddress = header.IPv6AllNodesMulticastAddress
		}

		// If the NS has a source link-layer option, use the link address it
		// specifies as the remote link address for the response instead of the
		// source link address of the packet.
		//
		// TODO(#2401): As per RFC 4861 section 7.2.4 we should consult our link
		// address cache for the right destination link address instead of manually
		// patching the route with the remote link address if one is specified in a
		// Source Link-Layer Address option.
		if len(sourceLinkAddr) != 0 {
			r.RemoteLinkAddress = sourceLinkAddr
		}

		optsSerializer := header.NDPOptionsSerializer{
			header.NDPTargetLinkLayerAddressOption(r.LocalLinkAddress),
		}
		hdr := buffer.NewPrependable(int(r.MaxHeaderLength()) + header.ICMPv6NeighborAdvertMinimumSize + int(optsSerializer.Length()))
		packet := header.ICMPv6(hdr.Prepend(header.ICMPv6NeighborAdvertSize))
		packet.SetType(header.ICMPv6NeighborAdvert)
		na := header.NDPNeighborAdvert(packet.NDPPayload())
		na.SetSolicitedFlag(solicited)
		na.SetOverrideFlag(true)
		na.SetTargetAddress(targetAddr)
		opts := na.Options()
		opts.Serialize(optsSerializer)
		packet.SetChecksum(header.ICMPv6Checksum(packet, r.LocalAddress, r.RemoteAddress, buffer.VectorisedView{}))

		// RFC 4861 Neighbor Discovery for IP version 6 (IPv6)
		//
		// 7.1.2. Validation of Neighbor Advertisements
		//
		// The IP Hop Limit field has a value of 255, i.e., the packet
		// could not possibly have been forwarded by a router.
		if err := r.WritePacket(nil /* gso */, stack.NetworkHeaderParams{Protocol: header.ICMPv6ProtocolNumber, TTL: header.NDPHopLimit, TOS: stack.DefaultTOS}, stack.PacketBuffer{
			Header: hdr,
		}); err != nil {
			sent.Dropped.Increment()
			return
		}
		sent.NeighborAdvert.Increment()

	case header.ICMPv6NeighborAdvert:
		received.NeighborAdvert.Increment()
		if pkt.Data.Size() < header.ICMPv6NeighborAdvertSize || !isNDPValid() {
			received.Invalid.Increment()
			return
		}

		// The remainder of payload must be only the neighbor advertisement, so
		// payload.ToView() always returns the advertisement. Per RFC 6980 section
		// 5, NDP messages cannot be fragmented. Also note that in the common case
		// NDP datagrams are very small and ToView() will not incur allocations.
		na := header.NDPNeighborAdvert(payload.ToView())
		it, err := na.Options().Iter(true)
		if err != nil {
			// If we have a malformed NDP NA option, drop the packet.
			received.Invalid.Increment()
			return
		}

		targetAddr := na.TargetAddress()
		stack := r.Stack()

		if isTentative, err := stack.IsAddrTentative(e.nicID, targetAddr); err != nil {
			// We will only get an error if the NIC is unrecognized, which should not
			// happen. For now short-circuit this packet.
			//
			// TODO(b/141002840): Handle this better?
			return
		} else if isTentative {
			// We just got an NA from a node that owns an address we are performing
			// DAD on, implying the address is not unique. In this case we let the
			// stack know so it can handle such a scenario and do nothing furthur with
			// the NDP NA.
			stack.DupTentativeAddrDetected(e.nicID, targetAddr)
			return
		}

		// At this point we know that the target address is not tentative on the
		// NIC. However, the target address may still be assigned to the NIC but not
		// tentative (it could be permanent). Such a scenario is beyond the scope of
		// RFC 4862. As such, we simply ignore such a scenario for now and proceed
		// as normal.
		//
		// TODO(b/143147598): Handle the scenario described above. Also inform the
		// netstack integration that a duplicate address was detected outside of
		// DAD.

		// If the NA message has the target link layer option, update the link
		// address cache with the link address for the target of the message.
		//
		// TODO(b/148429853): Properly process the NA message and do Neighbor
		// Unreachability Detection.
		var targetLinkAddr tcpip.LinkAddress
		for {
			opt, done, err := it.Next()
			if err != nil {
				// This should never happen as Iter(true) above did not return an error.
				panic(fmt.Sprintf("unexpected error when iterating over NDP options: %s", err))
			}
			if done {
				break
			}

			switch opt := opt.(type) {
			case header.NDPTargetLinkLayerAddressOption:
				// No RFCs define what to do when an NA message has multiple Target
				// Link-Layer Address options. Since no interface can have multiple
				// link-layer addresses, we consider such messages invalid.
				if len(targetLinkAddr) != 0 {
					received.Invalid.Increment()
					return
				}

				targetLinkAddr = opt.EthernetAddress()
			}
		}

		if len(targetLinkAddr) != 0 {
			e.linkAddrCache.AddLinkAddress(e.nicID, targetAddr, targetLinkAddr)
		}

	case header.ICMPv6EchoRequest:
		received.EchoRequest.Increment()
		icmpHdr, ok := pkt.Data.PullUp(header.ICMPv6EchoMinimumSize)
		if !ok {
			received.Invalid.Increment()
			return
		}
		pkt.Data.TrimFront(header.ICMPv6EchoMinimumSize)
		hdr := buffer.NewPrependable(int(r.MaxHeaderLength()) + header.ICMPv6EchoMinimumSize)
		packet := header.ICMPv6(hdr.Prepend(header.ICMPv6EchoMinimumSize))
		copy(packet, icmpHdr)
		packet.SetType(header.ICMPv6EchoReply)
		packet.SetChecksum(header.ICMPv6Checksum(packet, r.LocalAddress, r.RemoteAddress, pkt.Data))
		if err := r.WritePacket(nil /* gso */, stack.NetworkHeaderParams{Protocol: header.ICMPv6ProtocolNumber, TTL: r.DefaultTTL(), TOS: stack.DefaultTOS}, stack.PacketBuffer{
			Header: hdr,
			Data:   pkt.Data,
		}); err != nil {
			sent.Dropped.Increment()
			return
		}
		sent.EchoReply.Increment()

	case header.ICMPv6EchoReply:
		received.EchoReply.Increment()
		if pkt.Data.Size() < header.ICMPv6EchoMinimumSize {
			received.Invalid.Increment()
			return
		}
		e.dispatcher.DeliverTransportPacket(r, header.ICMPv6ProtocolNumber, pkt)

	case header.ICMPv6TimeExceeded:
		received.TimeExceeded.Increment()

	case header.ICMPv6ParamProblem:
		received.ParamProblem.Increment()

	case header.ICMPv6RouterSolicit:
		received.RouterSolicit.Increment()
		if !isNDPValid() {
			received.Invalid.Increment()
			return
		}

	case header.ICMPv6RouterAdvert:
		received.RouterAdvert.Increment()

		// Is the NDP payload of sufficient size to hold a Router
		// Advertisement?
		if pkt.Data.Size()-header.ICMPv6HeaderSize < header.NDPRAMinimumSize || !isNDPValid() {
			received.Invalid.Increment()
			return
		}

		routerAddr := iph.SourceAddress()

		//
		// Validate the RA as per RFC 4861 section 6.1.2.
		//

		// Is the IP Source Address a link-local address?
		if !header.IsV6LinkLocalAddress(routerAddr) {
			// ...No, silently drop the packet.
			received.Invalid.Increment()
			return
		}

		// The remainder of payload must be only the router advertisement, so
		// payload.ToView() always returns the advertisement. Per RFC 6980 section
		// 5, NDP messages cannot be fragmented. Also note that in the common case
		// NDP datagrams are very small and ToView() will not incur allocations.
		ra := header.NDPRouterAdvert(payload.ToView())
		opts := ra.Options()

		// Are options valid as per the wire format?
		if _, err := opts.Iter(true); err != nil {
			// ...No, silently drop the packet.
			received.Invalid.Increment()
			return
		}

		//
		// At this point, we have a valid Router Advertisement, as far
		// as RFC 4861 section 6.1.2 is concerned.
		//

		// Tell the NIC to handle the RA.
		stack := r.Stack()
		rxNICID := r.NICID()
		stack.HandleNDPRA(rxNICID, routerAddr, ra)

	case header.ICMPv6RedirectMsg:
		received.RedirectMsg.Increment()
		if !isNDPValid() {
			received.Invalid.Increment()
			return
		}

	default:
		received.Invalid.Increment()
	}
}

const (
	ndpSolicitedFlag = 1 << 6
	ndpOverrideFlag  = 1 << 5

	ndpOptSrcLinkAddr = 1
	ndpOptDstLinkAddr = 2

	icmpV6FlagOffset   = 4
	icmpV6OptOffset    = 24
	icmpV6LengthOffset = 25
)

var broadcastMAC = tcpip.LinkAddress([]byte{0xff, 0xff, 0xff, 0xff, 0xff, 0xff})

var _ stack.LinkAddressResolver = (*protocol)(nil)

// LinkAddressProtocol implements stack.LinkAddressResolver.
func (*protocol) LinkAddressProtocol() tcpip.NetworkProtocolNumber {
	return header.IPv6ProtocolNumber
}

// LinkAddressRequest implements stack.LinkAddressResolver.
func (*protocol) LinkAddressRequest(addr, localAddr tcpip.Address, linkEP stack.LinkEndpoint) *tcpip.Error {
	snaddr := header.SolicitedNodeAddr(addr)

	// TODO(b/148672031): Use stack.FindRoute instead of manually creating the
	// route here. Note, we would need the nicID to do this properly so the right
	// NIC (associated to linkEP) is used to send the NDP NS message.
	r := &stack.Route{
		LocalAddress:      localAddr,
		RemoteAddress:     snaddr,
		RemoteLinkAddress: header.EthernetAddressFromMulticastIPv6Address(snaddr),
	}
	hdr := buffer.NewPrependable(int(linkEP.MaxHeaderLength()) + header.IPv6MinimumSize + header.ICMPv6NeighborAdvertSize)
	pkt := header.ICMPv6(hdr.Prepend(header.ICMPv6NeighborAdvertSize))
	pkt.SetType(header.ICMPv6NeighborSolicit)
	copy(pkt[icmpV6OptOffset-len(addr):], addr)
	pkt[icmpV6OptOffset] = ndpOptSrcLinkAddr
	pkt[icmpV6LengthOffset] = 1
	copy(pkt[icmpV6LengthOffset+1:], linkEP.LinkAddress())
	pkt.SetChecksum(header.ICMPv6Checksum(pkt, r.LocalAddress, r.RemoteAddress, buffer.VectorisedView{}))

	length := uint16(hdr.UsedLength())
	ip := header.IPv6(hdr.Prepend(header.IPv6MinimumSize))
	ip.Encode(&header.IPv6Fields{
		PayloadLength: length,
		NextHeader:    uint8(header.ICMPv6ProtocolNumber),
		HopLimit:      header.NDPHopLimit,
		SrcAddr:       r.LocalAddress,
		DstAddr:       r.RemoteAddress,
	})

	// TODO(stijlist): count this in ICMP stats.
	return linkEP.WritePacket(r, nil /* gso */, ProtocolNumber, stack.PacketBuffer{
		Header: hdr,
	})
}

// ResolveStaticAddress implements stack.LinkAddressResolver.
func (*protocol) ResolveStaticAddress(addr tcpip.Address) (tcpip.LinkAddress, bool) {
	if header.IsV6MulticastAddress(addr) {
		return header.EthernetAddressFromMulticastIPv6Address(addr), true
	}
	return tcpip.LinkAddress([]byte(nil)), false
}