summaryrefslogtreecommitdiffhomepage
path: root/pkg/tcpip/network/ipv6/icmp.go
blob: ff23d48e730bbb73e76bc62a6438040ccf880187 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
// Copyright 2021 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package ipv6

import (
	"fmt"

	"gvisor.dev/gvisor/pkg/tcpip"
	"gvisor.dev/gvisor/pkg/tcpip/header"
	"gvisor.dev/gvisor/pkg/tcpip/stack"
)

// icmpv6DestinationUnreachableSockError is a general ICMPv6 Destination
// Unreachable error.
//
// +stateify savable
type icmpv6DestinationUnreachableSockError struct{}

// Origin implements tcpip.SockErrorCause.
func (*icmpv6DestinationUnreachableSockError) Origin() tcpip.SockErrOrigin {
	return tcpip.SockExtErrorOriginICMP6
}

// Type implements tcpip.SockErrorCause.
func (*icmpv6DestinationUnreachableSockError) Type() uint8 {
	return uint8(header.ICMPv6DstUnreachable)
}

// Info implements tcpip.SockErrorCause.
func (*icmpv6DestinationUnreachableSockError) Info() uint32 {
	return 0
}

var _ stack.TransportError = (*icmpv6DestinationNetworkUnreachableSockError)(nil)

// icmpv6DestinationNetworkUnreachableSockError is an ICMPv6 Destination Network
// Unreachable error.
//
// It indicates that the destination network is unreachable.
//
// +stateify savable
type icmpv6DestinationNetworkUnreachableSockError struct {
	icmpv6DestinationUnreachableSockError
}

// Code implements tcpip.SockErrorCause.
func (*icmpv6DestinationNetworkUnreachableSockError) Code() uint8 {
	return uint8(header.ICMPv6NetworkUnreachable)
}

// Kind implements stack.TransportError.
func (*icmpv6DestinationNetworkUnreachableSockError) Kind() stack.TransportErrorKind {
	return stack.DestinationNetworkUnreachableTransportError
}

var _ stack.TransportError = (*icmpv6DestinationPortUnreachableSockError)(nil)

// icmpv6DestinationPortUnreachableSockError is an ICMPv6 Destination Port
// Unreachable error.
//
// It indicates that a packet reached the destination host, but the transport
// protocol was not active on the destination port.
//
// +stateify savable
type icmpv6DestinationPortUnreachableSockError struct {
	icmpv6DestinationUnreachableSockError
}

// Code implements tcpip.SockErrorCause.
func (*icmpv6DestinationPortUnreachableSockError) Code() uint8 {
	return uint8(header.ICMPv6PortUnreachable)
}

// Kind implements stack.TransportError.
func (*icmpv6DestinationPortUnreachableSockError) Kind() stack.TransportErrorKind {
	return stack.DestinationPortUnreachableTransportError
}

var _ stack.TransportError = (*icmpv6DestinationAddressUnreachableSockError)(nil)

// icmpv6DestinationAddressUnreachableSockError is an ICMPv6 Destination Address
// Unreachable error.
//
// It indicates that a packet was not able to reach the destination.
//
// +stateify savable
type icmpv6DestinationAddressUnreachableSockError struct {
	icmpv6DestinationUnreachableSockError
}

// Code implements tcpip.SockErrorCause.
func (*icmpv6DestinationAddressUnreachableSockError) Code() uint8 {
	return uint8(header.ICMPv6AddressUnreachable)
}

// Kind implements stack.TransportError.
func (*icmpv6DestinationAddressUnreachableSockError) Kind() stack.TransportErrorKind {
	return stack.DestinationHostUnreachableTransportError
}

var _ stack.TransportError = (*icmpv6PacketTooBigSockError)(nil)

// icmpv6PacketTooBigSockError is an ICMPv6 Packet Too Big error.
//
// It indicates that a link exists on the path to the destination with an MTU
// that is too small to carry the packet.
//
// +stateify savable
type icmpv6PacketTooBigSockError struct {
	mtu uint32
}

// Origin implements tcpip.SockErrorCause.
func (*icmpv6PacketTooBigSockError) Origin() tcpip.SockErrOrigin {
	return tcpip.SockExtErrorOriginICMP6
}

// Type implements tcpip.SockErrorCause.
func (*icmpv6PacketTooBigSockError) Type() uint8 {
	return uint8(header.ICMPv6PacketTooBig)
}

// Code implements tcpip.SockErrorCause.
func (*icmpv6PacketTooBigSockError) Code() uint8 {
	return uint8(header.ICMPv6UnusedCode)
}

// Info implements tcpip.SockErrorCause.
func (e *icmpv6PacketTooBigSockError) Info() uint32 {
	return e.mtu
}

// Kind implements stack.TransportError.
func (*icmpv6PacketTooBigSockError) Kind() stack.TransportErrorKind {
	return stack.PacketTooBigTransportError
}

func (e *endpoint) checkLocalAddress(addr tcpip.Address) bool {
	if e.nic.Spoofing() {
		return true
	}

	if addressEndpoint := e.AcquireAssignedAddress(addr, false, stack.NeverPrimaryEndpoint); addressEndpoint != nil {
		addressEndpoint.DecRef()
		return true
	}
	return false
}

// handleControl handles the case when an ICMP packet contains the headers of
// the original packet that caused the ICMP one to be sent. This information is
// used to find out which transport endpoint must be notified about the ICMP
// packet.
func (e *endpoint) handleControl(transErr stack.TransportError, pkt *stack.PacketBuffer) {
	h, ok := pkt.Data().PullUp(header.IPv6MinimumSize)
	if !ok {
		return
	}
	hdr := header.IPv6(h)

	// We don't use IsValid() here because ICMP only requires that up to
	// 1280 bytes of the original packet be included. So it's likely that it
	// is truncated, which would cause IsValid to return false.
	//
	// Drop packet if it doesn't have the basic IPv6 header or if the
	// original source address doesn't match an address we own.
	srcAddr := hdr.SourceAddress()
	if !e.checkLocalAddress(srcAddr) {
		return
	}

	// Keep needed information before trimming header.
	p := hdr.TransportProtocol()
	dstAddr := hdr.DestinationAddress()

	// Skip the IP header, then handle the fragmentation header if there
	// is one.
	if _, ok := pkt.Data().Consume(header.IPv6MinimumSize); !ok {
		panic("could not consume IPv6MinimumSize bytes")
	}
	if p == header.IPv6FragmentHeader {
		f, ok := pkt.Data().PullUp(header.IPv6FragmentHeaderSize)
		if !ok {
			return
		}
		fragHdr := header.IPv6Fragment(f)
		if !fragHdr.IsValid() || fragHdr.FragmentOffset() != 0 {
			// We can't handle fragments that aren't at offset 0
			// because they don't have the transport headers.
			return
		}
		p = fragHdr.TransportProtocol()

		// Skip fragmentation header and find out the actual protocol
		// number.
		if _, ok := pkt.Data().Consume(header.IPv6FragmentHeaderSize); !ok {
			panic("could not consume IPv6FragmentHeaderSize bytes")
		}
	}

	e.dispatcher.DeliverTransportError(srcAddr, dstAddr, ProtocolNumber, p, transErr, pkt)
}

// getLinkAddrOption searches NDP options for a given link address option using
// the provided getAddr function as a filter. Returns the link address if
// found; otherwise, returns the zero link address value. Also returns true if
// the options are valid as per the wire format, false otherwise.
func getLinkAddrOption(it header.NDPOptionIterator, getAddr func(header.NDPOption) tcpip.LinkAddress) (tcpip.LinkAddress, bool) {
	var linkAddr tcpip.LinkAddress
	for {
		opt, done, err := it.Next()
		if err != nil {
			return "", false
		}
		if done {
			break
		}
		if addr := getAddr(opt); len(addr) != 0 {
			// No RFCs define what to do when an NDP message has multiple Link-Layer
			// Address options. Since no interface can have multiple link-layer
			// addresses, we consider such messages invalid.
			if len(linkAddr) != 0 {
				return "", false
			}
			linkAddr = addr
		}
	}
	return linkAddr, true
}

// getSourceLinkAddr searches NDP options for the source link address option.
// Returns the link address if found; otherwise, returns the zero link address
// value. Also returns true if the options are valid as per the wire format,
// false otherwise.
func getSourceLinkAddr(it header.NDPOptionIterator) (tcpip.LinkAddress, bool) {
	return getLinkAddrOption(it, func(opt header.NDPOption) tcpip.LinkAddress {
		if src, ok := opt.(header.NDPSourceLinkLayerAddressOption); ok {
			return src.EthernetAddress()
		}
		return ""
	})
}

// getTargetLinkAddr searches NDP options for the target link address option.
// Returns the link address if found; otherwise, returns the zero link address
// value. Also returns true if the options are valid as per the wire format,
// false otherwise.
func getTargetLinkAddr(it header.NDPOptionIterator) (tcpip.LinkAddress, bool) {
	return getLinkAddrOption(it, func(opt header.NDPOption) tcpip.LinkAddress {
		if dst, ok := opt.(header.NDPTargetLinkLayerAddressOption); ok {
			return dst.EthernetAddress()
		}
		return ""
	})
}

func isMLDValid(pkt *stack.PacketBuffer, iph header.IPv6, routerAlert *header.IPv6RouterAlertOption) bool {
	// As per RFC 2710 section 3:
	//   All MLD messages described in this document are sent with a link-local
	//   IPv6 Source Address, an IPv6 Hop Limit of 1, and an IPv6 Router Alert
	//   option in a Hop-by-Hop Options header.
	if routerAlert == nil || routerAlert.Value != header.IPv6RouterAlertMLD {
		return false
	}
	if pkt.Data().Size() < header.ICMPv6HeaderSize+header.MLDMinimumSize {
		return false
	}
	if iph.HopLimit() != header.MLDHopLimit {
		return false
	}
	if !header.IsV6LinkLocalUnicastAddress(iph.SourceAddress()) {
		return false
	}
	return true
}

func (e *endpoint) handleICMP(pkt *stack.PacketBuffer, hasFragmentHeader bool, routerAlert *header.IPv6RouterAlertOption) {
	sent := e.stats.icmp.packetsSent
	received := e.stats.icmp.packetsReceived
	// ICMP packets don't have their TransportHeader fields set. See
	// icmp/protocol.go:protocol.Parse for a full explanation.
	v, ok := pkt.Data().PullUp(header.ICMPv6HeaderSize)
	if !ok {
		received.invalid.Increment()
		return
	}
	h := header.ICMPv6(v)
	iph := header.IPv6(pkt.NetworkHeader().View())
	srcAddr := iph.SourceAddress()
	dstAddr := iph.DestinationAddress()

	// Validate ICMPv6 checksum before processing the packet.
	payload := pkt.Data().AsRange().SubRange(len(h))
	if got, want := h.Checksum(), header.ICMPv6Checksum(header.ICMPv6ChecksumParams{
		Header:      h,
		Src:         srcAddr,
		Dst:         dstAddr,
		PayloadCsum: payload.Checksum(),
		PayloadLen:  payload.Size(),
	}); got != want {
		received.invalid.Increment()
		return
	}

	isNDPValid := func() bool {
		// As per RFC 4861 sections 4.1 - 4.5, 6.1.1, 6.1.2, 7.1.1, 7.1.2 and
		// 8.1, nodes MUST silently drop NDP packets where the Hop Limit field
		// in the IPv6 header is not set to 255, or the ICMPv6 Code field is not
		// set to 0.
		//
		// As per RFC 6980 section 5, nodes MUST silently drop NDP messages if the
		// packet includes a fragmentation header.
		return !hasFragmentHeader && iph.HopLimit() == header.NDPHopLimit && h.Code() == 0
	}

	// TODO(b/112892170): Meaningfully handle all ICMP types.
	switch icmpType := h.Type(); icmpType {
	case header.ICMPv6PacketTooBig:
		received.packetTooBig.Increment()
		hdr, ok := pkt.Data().Consume(header.ICMPv6PacketTooBigMinimumSize)
		if !ok {
			received.invalid.Increment()
			return
		}
		networkMTU, err := calculateNetworkMTU(header.ICMPv6(hdr).MTU(), header.IPv6MinimumSize)
		if err != nil {
			networkMTU = 0
		}
		e.handleControl(&icmpv6PacketTooBigSockError{mtu: networkMTU}, pkt)

	case header.ICMPv6DstUnreachable:
		received.dstUnreachable.Increment()
		hdr, ok := pkt.Data().Consume(header.ICMPv6DstUnreachableMinimumSize)
		if !ok {
			received.invalid.Increment()
			return
		}
		code := header.ICMPv6(hdr).Code()
		switch code {
		case header.ICMPv6NetworkUnreachable:
			e.handleControl(&icmpv6DestinationNetworkUnreachableSockError{}, pkt)
		case header.ICMPv6PortUnreachable:
			e.handleControl(&icmpv6DestinationPortUnreachableSockError{}, pkt)
		}
	case header.ICMPv6NeighborSolicit:
		received.neighborSolicit.Increment()
		if !isNDPValid() || pkt.Data().Size() < header.ICMPv6NeighborSolicitMinimumSize {
			received.invalid.Increment()
			return
		}

		// The remainder of payload must be only the neighbor solicitation, so
		// payload.AsView() always returns the solicitation. Per RFC 6980 section 5,
		// NDP messages cannot be fragmented. Also note that in the common case NDP
		// datagrams are very small and AsView() will not incur allocations.
		ns := header.NDPNeighborSolicit(payload.AsView())
		targetAddr := ns.TargetAddress()

		// As per RFC 4861 section 4.3, the Target Address MUST NOT be a multicast
		// address.
		if header.IsV6MulticastAddress(targetAddr) {
			received.invalid.Increment()
			return
		}

		var it header.NDPOptionIterator
		{
			var err error
			it, err = ns.Options().Iter(false /* check */)
			if err != nil {
				// Options are not valid as per the wire format, silently drop the
				// packet.
				received.invalid.Increment()
				return
			}
		}

		if e.hasTentativeAddr(targetAddr) {
			// If the target address is tentative and the source of the packet is a
			// unicast (specified) address, then the source of the packet is
			// attempting to perform address resolution on the target. In this case,
			// the solicitation is silently ignored, as per RFC 4862 section 5.4.3.
			//
			// If the target address is tentative and the source of the packet is the
			// unspecified address (::), then we know another node is also performing
			// DAD for the same address (since the target address is tentative for us,
			// we know we are also performing DAD on it). In this case we let the
			// stack know so it can handle such a scenario and do nothing further with
			// the NS.
			if srcAddr == header.IPv6Any {
				var nonce []byte
				for {
					opt, done, err := it.Next()
					if err != nil {
						received.invalid.Increment()
						return
					}
					if done {
						break
					}
					if n, ok := opt.(header.NDPNonceOption); ok {
						nonce = n.Nonce()
						break
					}
				}

				// Since this is a DAD message we know the sender does not actually hold
				// the target address so there is no "holder".
				var holderLinkAddress tcpip.LinkAddress

				// We would get an error if the address no longer exists or the address
				// is no longer tentative (DAD resolved between the call to
				// hasTentativeAddr and this point). Both of these are valid scenarios:
				//   1) An address may be removed at any time.
				//   2) As per RFC 4862 section 5.4, DAD is not a perfect:
				//       "Note that the method for detecting duplicates
				//        is not completely reliable, and it is possible that duplicate
				//        addresses will still exist"
				//
				// TODO(gvisor.dev/issue/4046): Handle the scenario when a duplicate
				// address is detected for an assigned address.
				switch err := e.dupTentativeAddrDetected(targetAddr, holderLinkAddress, nonce); err.(type) {
				case nil, *tcpip.ErrBadAddress, *tcpip.ErrInvalidEndpointState:
				default:
					panic(fmt.Sprintf("unexpected error handling duplicate tentative address: %s", err))
				}
			}

			// Do not handle neighbor solicitations targeted to an address that is
			// tentative on the NIC any further.
			return
		}

		// At this point we know that the target address is not tentative on the NIC
		// so the packet is processed as defined in RFC 4861, as per RFC 4862
		// section 5.4.3.

		// Is the NS targeting us?
		if !e.checkLocalAddress(targetAddr) {
			return
		}

		sourceLinkAddr, ok := getSourceLinkAddr(it)
		if !ok {
			received.invalid.Increment()
			return
		}

		// As per RFC 4861 section 4.3, the Source Link-Layer Address Option MUST
		// NOT be included when the source IP address is the unspecified address.
		// Otherwise, on link layers that have addresses this option MUST be
		// included in multicast solicitations and SHOULD be included in unicast
		// solicitations.
		unspecifiedSource := srcAddr == header.IPv6Any
		if len(sourceLinkAddr) == 0 {
			if header.IsV6MulticastAddress(dstAddr) && !unspecifiedSource {
				received.invalid.Increment()
				return
			}
		} else if unspecifiedSource {
			received.invalid.Increment()
			return
		} else {
			switch err := e.nic.HandleNeighborProbe(ProtocolNumber, srcAddr, sourceLinkAddr); err.(type) {
			case nil:
			case *tcpip.ErrNotSupported:
			// The stack may support ICMPv6 but the NIC may not need link resolution.
			default:
				panic(fmt.Sprintf("unexpected error when informing NIC of neighbor probe message: %s", err))
			}
		}

		// As per RFC 4861 section 7.1.1:
		//   A node MUST silently discard any received Neighbor Solicitation
		//   messages that do not satisfy all of the following validity checks:
		//    ...
		//    - If the IP source address is the unspecified address, the IP
		//      destination address is a solicited-node multicast address.
		if unspecifiedSource && !header.IsSolicitedNodeAddr(dstAddr) {
			received.invalid.Increment()
			return
		}

		// As per RFC 4861 section 7.2.4:
		//
		//   If the source of the solicitation is the unspecified address, the node
		//   MUST [...] and multicast the advertisement to the all-nodes address.
		//
		remoteAddr := srcAddr
		if unspecifiedSource {
			remoteAddr = header.IPv6AllNodesMulticastAddress
		}

		// Even if we were able to receive a packet from some remote, we may not
		// have a route to it - the remote may be blocked via routing rules. We must
		// always consult our routing table and find a route to the remote before
		// sending any packet.
		r, err := e.protocol.stack.FindRoute(e.nic.ID(), targetAddr, remoteAddr, ProtocolNumber, false /* multicastLoop */)
		if err != nil {
			// If we cannot find a route to the destination, silently drop the packet.
			return
		}
		defer r.Release()

		// If the NS has a source link-layer option, resolve the route immediately
		// to avoid querying the neighbor table when the neighbor entry was updated
		// as probing the neighbor table for a link address will transition the
		// entry's state from stale to delay.
		//
		// Note, if the source link address is unspecified and this is a unicast
		// solicitation, we may need to perform neighbor discovery to send the
		// neighbor advertisement response. This is expected as per RFC 4861 section
		// 7.2.4:
		//
		//   Because unicast Neighbor Solicitations are not required to include a
		//   Source Link-Layer Address, it is possible that a node sending a
		//   solicited Neighbor Advertisement does not have a corresponding link-
		//   layer address for its neighbor in its Neighbor Cache. In such
		//   situations, a node will first have to use Neighbor Discovery to
		//   determine the link-layer address of its neighbor (i.e., send out a
		//   multicast Neighbor Solicitation).
		//
		if len(sourceLinkAddr) != 0 {
			r.ResolveWith(sourceLinkAddr)
		}

		optsSerializer := header.NDPOptionsSerializer{
			header.NDPTargetLinkLayerAddressOption(e.nic.LinkAddress()),
		}
		neighborAdvertSize := header.ICMPv6NeighborAdvertMinimumSize + optsSerializer.Length()
		pkt := stack.NewPacketBuffer(stack.PacketBufferOptions{
			ReserveHeaderBytes: int(r.MaxHeaderLength()) + neighborAdvertSize,
		})
		pkt.TransportProtocolNumber = header.ICMPv6ProtocolNumber
		packet := header.ICMPv6(pkt.TransportHeader().Push(neighborAdvertSize))
		packet.SetType(header.ICMPv6NeighborAdvert)
		na := header.NDPNeighborAdvert(packet.MessageBody())

		// As per RFC 4861 section 7.2.4:
		//
		//   If the source of the solicitation is the unspecified address, the node
		//   MUST set the Solicited flag to zero and [..]. Otherwise, the node MUST
		//   set the Solicited flag to one and [..].
		//
		na.SetSolicitedFlag(!unspecifiedSource)
		na.SetOverrideFlag(true)
		na.SetTargetAddress(targetAddr)
		na.Options().Serialize(optsSerializer)
		packet.SetChecksum(header.ICMPv6Checksum(header.ICMPv6ChecksumParams{
			Header: packet,
			Src:    r.LocalAddress(),
			Dst:    r.RemoteAddress(),
		}))

		// RFC 4861 Neighbor Discovery for IP version 6 (IPv6)
		//
		// 7.1.2. Validation of Neighbor Advertisements
		//
		// The IP Hop Limit field has a value of 255, i.e., the packet
		// could not possibly have been forwarded by a router.
		if err := r.WritePacket(stack.NetworkHeaderParams{Protocol: header.ICMPv6ProtocolNumber, TTL: header.NDPHopLimit, TOS: stack.DefaultTOS}, pkt); err != nil {
			sent.dropped.Increment()
			return
		}
		sent.neighborAdvert.Increment()

	case header.ICMPv6NeighborAdvert:
		received.neighborAdvert.Increment()
		if !isNDPValid() || pkt.Data().Size() < header.ICMPv6NeighborAdvertMinimumSize {
			received.invalid.Increment()
			return
		}

		// The remainder of payload must be only the neighbor advertisement, so
		// payload.AsView() always returns the advertisement. Per RFC 6980 section
		// 5, NDP messages cannot be fragmented. Also note that in the common case
		// NDP datagrams are very small and AsView() will not incur allocations.
		na := header.NDPNeighborAdvert(payload.AsView())

		it, err := na.Options().Iter(false /* check */)
		if err != nil {
			// If we have a malformed NDP NA option, drop the packet.
			received.invalid.Increment()
			return
		}

		targetLinkAddr, ok := getTargetLinkAddr(it)
		if !ok {
			received.invalid.Increment()
			return
		}

		targetAddr := na.TargetAddress()

		e.dad.mu.Lock()
		e.dad.mu.dad.StopLocked(targetAddr, &stack.DADDupAddrDetected{HolderLinkAddress: targetLinkAddr})
		e.dad.mu.Unlock()

		if e.hasTentativeAddr(targetAddr) {
			// We only send a nonce value in DAD messages to check for loopedback
			// messages so we use the empty nonce value here.
			var nonce []byte

			// We just got an NA from a node that owns an address we are performing
			// DAD on, implying the address is not unique. In this case we let the
			// stack know so it can handle such a scenario and do nothing furthur with
			// the NDP NA.
			//
			// We would get an error if the address no longer exists or the address
			// is no longer tentative (DAD resolved between the call to
			// hasTentativeAddr and this point). Both of these are valid scenarios:
			//   1) An address may be removed at any time.
			//   2) As per RFC 4862 section 5.4, DAD is not a perfect:
			//       "Note that the method for detecting duplicates
			//        is not completely reliable, and it is possible that duplicate
			//        addresses will still exist"
			//
			// TODO(gvisor.dev/issue/4046): Handle the scenario when a duplicate
			// address is detected for an assigned address.
			switch err := e.dupTentativeAddrDetected(targetAddr, targetLinkAddr, nonce); err.(type) {
			case nil, *tcpip.ErrBadAddress, *tcpip.ErrInvalidEndpointState:
				return
			default:
				panic(fmt.Sprintf("unexpected error handling duplicate tentative address: %s", err))
			}
		}

		// At this point we know that the target address is not tentative on the
		// NIC. However, the target address may still be assigned to the NIC but not
		// tentative (it could be permanent). Such a scenario is beyond the scope of
		// RFC 4862. As such, we simply ignore such a scenario for now and proceed
		// as normal.
		//
		// TODO(b/143147598): Handle the scenario described above. Also inform the
		// netstack integration that a duplicate address was detected outside of
		// DAD.

		// As per RFC 4861 section 7.1.2:
		//   A node MUST silently discard any received Neighbor Advertisement
		//   messages that do not satisfy all of the following validity checks:
		//    ...
		//    - If the IP Destination Address is a multicast address the
		// 	    Solicited flag is zero.
		if header.IsV6MulticastAddress(dstAddr) && na.SolicitedFlag() {
			received.invalid.Increment()
			return
		}

		// If the NA message has the target link layer option, update the link
		// address cache with the link address for the target of the message.
		switch err := e.nic.HandleNeighborConfirmation(ProtocolNumber, targetAddr, targetLinkAddr, stack.ReachabilityConfirmationFlags{
			Solicited: na.SolicitedFlag(),
			Override:  na.OverrideFlag(),
			IsRouter:  na.RouterFlag(),
		}); err.(type) {
		case nil:
		case *tcpip.ErrNotSupported:
		// The stack may support ICMPv6 but the NIC may not need link resolution.
		default:
			panic(fmt.Sprintf("unexpected error when informing NIC of neighbor confirmation message: %s", err))
		}

	case header.ICMPv6EchoRequest:
		received.echoRequest.Increment()
		icmpHdr, ok := pkt.TransportHeader().Consume(header.ICMPv6EchoMinimumSize)
		if !ok {
			received.invalid.Increment()
			return
		}

		// As per RFC 4291 section 2.7, multicast addresses must not be used as
		// source addresses in IPv6 packets.
		localAddr := dstAddr
		if header.IsV6MulticastAddress(dstAddr) {
			localAddr = ""
		}

		r, err := e.protocol.stack.FindRoute(e.nic.ID(), localAddr, srcAddr, ProtocolNumber, false /* multicastLoop */)
		if err != nil {
			// If we cannot find a route to the destination, silently drop the packet.
			return
		}
		defer r.Release()

		if !e.protocol.allowICMPReply(header.ICMPv6EchoReply) {
			sent.rateLimited.Increment()
			return
		}

		replyPkt := stack.NewPacketBuffer(stack.PacketBufferOptions{
			ReserveHeaderBytes: int(r.MaxHeaderLength()) + header.ICMPv6EchoMinimumSize,
			Data:               pkt.Data().ExtractVV(),
		})
		icmp := header.ICMPv6(replyPkt.TransportHeader().Push(header.ICMPv6EchoMinimumSize))
		pkt.TransportProtocolNumber = header.ICMPv6ProtocolNumber
		copy(icmp, icmpHdr)
		icmp.SetType(header.ICMPv6EchoReply)
		dataRange := replyPkt.Data().AsRange()
		icmp.SetChecksum(header.ICMPv6Checksum(header.ICMPv6ChecksumParams{
			Header:      icmp,
			Src:         r.LocalAddress(),
			Dst:         r.RemoteAddress(),
			PayloadCsum: dataRange.Checksum(),
			PayloadLen:  dataRange.Size(),
		}))
		if err := r.WritePacket(stack.NetworkHeaderParams{
			Protocol: header.ICMPv6ProtocolNumber,
			TTL:      r.DefaultTTL(),
			TOS:      stack.DefaultTOS,
		}, replyPkt); err != nil {
			sent.dropped.Increment()
			return
		}
		sent.echoReply.Increment()

	case header.ICMPv6EchoReply:
		received.echoReply.Increment()
		if pkt.Data().Size() < header.ICMPv6EchoMinimumSize {
			received.invalid.Increment()
			return
		}
		e.dispatcher.DeliverTransportPacket(header.ICMPv6ProtocolNumber, pkt)

	case header.ICMPv6TimeExceeded:
		received.timeExceeded.Increment()

	case header.ICMPv6ParamProblem:
		received.paramProblem.Increment()

	case header.ICMPv6RouterSolicit:
		received.routerSolicit.Increment()

		//
		// Validate the RS as per RFC 4861 section 6.1.1.
		//

		// Is the NDP payload of sufficient size to hold a Router Solictation?
		if !isNDPValid() || pkt.Data().Size()-header.ICMPv6HeaderSize < header.NDPRSMinimumSize {
			received.invalid.Increment()
			return
		}

		if !e.Forwarding() {
			received.routerOnlyPacketsDroppedByHost.Increment()
			return
		}

		// Note that in the common case NDP datagrams are very small and AsView()
		// will not incur allocations.
		rs := header.NDPRouterSolicit(payload.AsView())
		it, err := rs.Options().Iter(false /* check */)
		if err != nil {
			// Options are not valid as per the wire format, silently drop the packet.
			received.invalid.Increment()
			return
		}

		sourceLinkAddr, ok := getSourceLinkAddr(it)
		if !ok {
			received.invalid.Increment()
			return
		}

		// If the RS message has the source link layer option, update the link
		// address cache with the link address for the source of the message.
		if len(sourceLinkAddr) != 0 {
			// As per RFC 4861 section 4.1, the Source Link-Layer Address Option MUST
			// NOT be included when the source IP address is the unspecified address.
			// Otherwise, it SHOULD be included on link layers that have addresses.
			if srcAddr == header.IPv6Any {
				received.invalid.Increment()
				return
			}

			// A RS with a specified source IP address modifies the neighbor table
			// in the same way a regular probe would.
			switch err := e.nic.HandleNeighborProbe(ProtocolNumber, srcAddr, sourceLinkAddr); err.(type) {
			case nil:
			case *tcpip.ErrNotSupported:
			// The stack may support ICMPv6 but the NIC may not need link resolution.
			default:
				panic(fmt.Sprintf("unexpected error when informing NIC of neighbor probe message: %s", err))
			}
		}

	case header.ICMPv6RouterAdvert:
		received.routerAdvert.Increment()

		//
		// Validate the RA as per RFC 4861 section 6.1.2.
		//

		// Is the NDP payload of sufficient size to hold a Router Advertisement?
		if !isNDPValid() || pkt.Data().Size()-header.ICMPv6HeaderSize < header.NDPRAMinimumSize {
			received.invalid.Increment()
			return
		}

		routerAddr := srcAddr

		// Is the IP Source Address a link-local address?
		if !header.IsV6LinkLocalUnicastAddress(routerAddr) {
			// ...No, silently drop the packet.
			received.invalid.Increment()
			return
		}

		// Note that in the common case NDP datagrams are very small and AsView()
		// will not incur allocations.
		ra := header.NDPRouterAdvert(payload.AsView())
		it, err := ra.Options().Iter(false /* check */)
		if err != nil {
			// Options are not valid as per the wire format, silently drop the packet.
			received.invalid.Increment()
			return
		}

		sourceLinkAddr, ok := getSourceLinkAddr(it)
		if !ok {
			received.invalid.Increment()
			return
		}

		//
		// At this point, we have a valid Router Advertisement, as far
		// as RFC 4861 section 6.1.2 is concerned.
		//

		// If the RA has the source link layer option, update the link address
		// cache with the link address for the advertised router.
		if len(sourceLinkAddr) != 0 {
			switch err := e.nic.HandleNeighborProbe(ProtocolNumber, routerAddr, sourceLinkAddr); err.(type) {
			case nil:
			case *tcpip.ErrNotSupported:
			// The stack may support ICMPv6 but the NIC may not need link resolution.
			default:
				panic(fmt.Sprintf("unexpected error when informing NIC of neighbor probe message: %s", err))
			}
		}

		e.mu.Lock()
		e.mu.ndp.handleRA(routerAddr, ra)
		e.mu.Unlock()

	case header.ICMPv6RedirectMsg:
		// TODO(gvisor.dev/issue/2285): Call `e.nud.HandleProbe` after validating
		// this redirect message, as per RFC 4871 section 7.3.3:
		//
		//    "A Neighbor Cache entry enters the STALE state when created as a
		//    result of receiving packets other than solicited Neighbor
		//    Advertisements (i.e., Router Solicitations, Router Advertisements,
		//    Redirects, and Neighbor Solicitations).  These packets contain the
		//    link-layer address of either the sender or, in the case of Redirect,
		//    the redirection target.  However, receipt of these link-layer
		//    addresses does not confirm reachability of the forward-direction path
		//    to that node.  Placing a newly created Neighbor Cache entry for which
		//    the link-layer address is known in the STALE state provides assurance
		//    that path failures are detected quickly. In addition, should a cached
		//    link-layer address be modified due to receiving one of the above
		//    messages, the state SHOULD also be set to STALE to provide prompt
		//    verification that the path to the new link-layer address is working."
		received.redirectMsg.Increment()
		if !isNDPValid() {
			received.invalid.Increment()
			return
		}

	case header.ICMPv6MulticastListenerQuery, header.ICMPv6MulticastListenerReport, header.ICMPv6MulticastListenerDone:
		switch icmpType {
		case header.ICMPv6MulticastListenerQuery:
			received.multicastListenerQuery.Increment()
		case header.ICMPv6MulticastListenerReport:
			received.multicastListenerReport.Increment()
		case header.ICMPv6MulticastListenerDone:
			received.multicastListenerDone.Increment()
		default:
			panic(fmt.Sprintf("unrecognized MLD message = %d", icmpType))
		}

		if !isMLDValid(pkt, iph, routerAlert) {
			received.invalid.Increment()
			return
		}

		switch icmpType {
		case header.ICMPv6MulticastListenerQuery:
			e.mu.Lock()
			e.mu.mld.handleMulticastListenerQuery(header.MLD(payload.AsView()))
			e.mu.Unlock()
		case header.ICMPv6MulticastListenerReport:
			e.mu.Lock()
			e.mu.mld.handleMulticastListenerReport(header.MLD(payload.AsView()))
			e.mu.Unlock()
		case header.ICMPv6MulticastListenerDone:
		default:
			panic(fmt.Sprintf("unrecognized MLD message = %d", icmpType))
		}

	default:
		received.unrecognized.Increment()
	}
}

// LinkAddressProtocol implements stack.LinkAddressResolver.
func (*endpoint) LinkAddressProtocol() tcpip.NetworkProtocolNumber {
	return header.IPv6ProtocolNumber
}

// LinkAddressRequest implements stack.LinkAddressResolver.
func (e *endpoint) LinkAddressRequest(targetAddr, localAddr tcpip.Address, remoteLinkAddr tcpip.LinkAddress) tcpip.Error {
	remoteAddr := targetAddr
	if len(remoteLinkAddr) == 0 {
		remoteAddr = header.SolicitedNodeAddr(targetAddr)
		remoteLinkAddr = header.EthernetAddressFromMulticastIPv6Address(remoteAddr)
	}

	if len(localAddr) == 0 {
		// Find an address that we can use as our source address.
		addressEndpoint := e.AcquireOutgoingPrimaryAddress(remoteAddr, false /* allowExpired */)
		if addressEndpoint == nil {
			return &tcpip.ErrNetworkUnreachable{}
		}

		localAddr = addressEndpoint.AddressWithPrefix().Address
		addressEndpoint.DecRef()
	} else if !e.checkLocalAddress(localAddr) {
		// The provided local address is not assigned to us.
		return &tcpip.ErrBadLocalAddress{}
	}

	return e.sendNDPNS(localAddr, remoteAddr, targetAddr, remoteLinkAddr, header.NDPOptionsSerializer{
		header.NDPSourceLinkLayerAddressOption(e.nic.LinkAddress()),
	})
}

// ResolveStaticAddress implements stack.LinkAddressResolver.
func (*endpoint) ResolveStaticAddress(addr tcpip.Address) (tcpip.LinkAddress, bool) {
	if header.IsV6MulticastAddress(addr) {
		return header.EthernetAddressFromMulticastIPv6Address(addr), true
	}
	return tcpip.LinkAddress([]byte(nil)), false
}

// ======= ICMP Error packet generation =========

// icmpReason is a marker interface for IPv6 specific ICMP errors.
type icmpReason interface {
	isICMPReason()
	// isForwarding indicates whether or not the error arose while attempting to
	// forward a packet.
	isForwarding() bool
	// respondToMulticast indicates whether this error falls under the exception
	// outlined by RFC 4443 section 2.4 point e.3 exception 2:
	//
	//   (e.3) A packet destined to an IPv6 multicast address. (There are two
	//   exceptions to this rule: (1) the Packet Too Big Message (Section 3.2) to
	//   allow Path MTU discovery to work for IPv6 multicast, and (2) the Parameter
	//   Problem Message, Code 2 (Section 3.4) reporting an unrecognized IPv6
	//   option (see Section 4.2 of [IPv6]) that has the Option Type highest-
	//   order two bits set to 10).
	respondsToMulticast() bool
}

// icmpReasonParameterProblem is an error during processing of extension headers
// or the fixed header defined in RFC 4443 section 3.4.
type icmpReasonParameterProblem struct {
	code header.ICMPv6Code

	// pointer is defined in the RFC 4443 setion 3.4 which reads:
	//
	//  Pointer         Identifies the octet offset within the invoking packet
	//                  where the error was detected.
	//
	//                  The pointer will point beyond the end of the ICMPv6
	//                  packet if the field in error is beyond what can fit
	//                  in the maximum size of an ICMPv6 error message.
	pointer uint32

	forwarding bool

	respondToMulticast bool
}

func (*icmpReasonParameterProblem) isICMPReason() {}
func (p *icmpReasonParameterProblem) isForwarding() bool {
	return p.forwarding
}

func (p *icmpReasonParameterProblem) respondsToMulticast() bool {
	return p.respondToMulticast
}

// icmpReasonPortUnreachable is an error where the transport protocol has no
// listener and no alternative means to inform the sender.
type icmpReasonPortUnreachable struct{}

func (*icmpReasonPortUnreachable) isICMPReason() {}

func (*icmpReasonPortUnreachable) isForwarding() bool {
	return false
}

func (*icmpReasonPortUnreachable) respondsToMulticast() bool {
	return false
}

// icmpReasonNetUnreachable is an error where no route can be found to the
// network of the final destination.
type icmpReasonNetUnreachable struct{}

func (*icmpReasonNetUnreachable) isICMPReason() {}

func (*icmpReasonNetUnreachable) isForwarding() bool {
	// If we hit a Network Unreachable error, then we also know we are
	// operating as a router. As per RFC 4443 section 3.1:
	//
	//   If the reason for the failure to deliver is lack of a matching
	//   entry in the forwarding node's routing table, the Code field is
	//   set to 0 (Network Unreachable).
	return true
}

func (*icmpReasonNetUnreachable) respondsToMulticast() bool {
	return false
}

// icmpReasonHostUnreachable is an error in which the host specified in the
// internet destination field of the datagram is unreachable.
type icmpReasonHostUnreachable struct{}

func (*icmpReasonHostUnreachable) isICMPReason() {}
func (*icmpReasonHostUnreachable) isForwarding() bool {
	// If we hit a Host Unreachable error, then we know we are operating as a
	// router. As per RFC 4443 page 8, Destination Unreachable Message,
	//
	//   If the reason for the failure to deliver cannot be mapped to any of
	//   other codes, the Code field is set to 3.  Example of such cases are
	//   an inability to resolve the IPv6 destination address into a
	//   corresponding link address, or a link-specific problem of some sort.
	return true
}

func (*icmpReasonHostUnreachable) respondsToMulticast() bool {
	return false
}

// icmpReasonFragmentationNeeded is an error where a packet is to big to be sent
// out through the outgoing MTU, as per RFC 4443 page 9, Packet Too Big Message.
type icmpReasonPacketTooBig struct{}

func (*icmpReasonPacketTooBig) isICMPReason() {}

func (*icmpReasonPacketTooBig) isForwarding() bool {
	// If we hit a Packet Too Big error, then we know we are operating as a router.
	// As per RFC 4443 section 3.2:
	//
	//   A Packet Too Big MUST be sent by a router in response to a packet that it
	//   cannot forward because the packet is larger than the MTU of the outgoing
	//   link.
	return true
}

func (*icmpReasonPacketTooBig) respondsToMulticast() bool {
	return true
}

// icmpReasonHopLimitExceeded is an error where a packet's hop limit exceeded in
// transit to its final destination, as per RFC 4443 section 3.3.
type icmpReasonHopLimitExceeded struct{}

func (*icmpReasonHopLimitExceeded) isICMPReason() {}

func (*icmpReasonHopLimitExceeded) isForwarding() bool {
	// If we hit a Hop Limit Exceeded error, then we know we are operating
	// as a router. As per RFC 4443 section 3.3:
	//
	//   If a router receives a packet with a Hop Limit of zero, or if a
	//   router decrements a packet's Hop Limit to zero, it MUST discard
	//   the packet and originate an ICMPv6 Time Exceeded message with Code
	//   0 to the source of the packet.  This indicates either a routing
	//   loop or too small an initial Hop Limit value.
	return true
}

func (*icmpReasonHopLimitExceeded) respondsToMulticast() bool {
	return false
}

// icmpReasonReassemblyTimeout is an error where insufficient fragments are
// received to complete reassembly of a packet within a configured time after
// the reception of the first-arriving fragment of that packet.
type icmpReasonReassemblyTimeout struct{}

func (*icmpReasonReassemblyTimeout) isICMPReason() {}

func (*icmpReasonReassemblyTimeout) isForwarding() bool {
	return false
}

func (*icmpReasonReassemblyTimeout) respondsToMulticast() bool {
	return false
}

// returnError takes an error descriptor and generates the appropriate ICMP
// error packet for IPv6 and sends it.
func (p *protocol) returnError(reason icmpReason, pkt *stack.PacketBuffer) tcpip.Error {
	origIPHdr := header.IPv6(pkt.NetworkHeader().View())
	origIPHdrSrc := origIPHdr.SourceAddress()
	origIPHdrDst := origIPHdr.DestinationAddress()

	// Only send ICMP error if the address is not a multicast v6
	// address and the source is not the unspecified address.
	//
	// There are exceptions to this rule.
	// See: point e.3) RFC 4443 section-2.4
	//
	//	 (e) An ICMPv6 error message MUST NOT be originated as a result of
	//       receiving the following:
	//
	//       (e.1) An ICMPv6 error message.
	//
	//       (e.2) An ICMPv6 redirect message [IPv6-DISC].
	//
	//       (e.3) A packet destined to an IPv6 multicast address.  (There are
	//             two exceptions to this rule: (1) the Packet Too Big Message
	//             (Section 3.2) to allow Path MTU discovery to work for IPv6
	//             multicast, and (2) the Parameter Problem Message, Code 2
	//             (Section 3.4) reporting an unrecognized IPv6 option (see
	//             Section 4.2 of [IPv6]) that has the Option Type highest-
	//             order two bits set to 10).
	//
	allowResponseToMulticast := reason.respondsToMulticast()
	isOrigDstMulticast := header.IsV6MulticastAddress(origIPHdrDst)
	if (!allowResponseToMulticast && isOrigDstMulticast) || origIPHdrSrc == header.IPv6Any {
		return nil
	}

	// If we are operating as a router, do not use the packet's destination
	// address as the response's source address as we should not own the
	// destination address of a packet we are forwarding.
	//
	// If the packet was originally destined to a multicast address, then do not
	// use the packet's destination address as the source for the response ICMP
	// packet as "multicast addresses must not be used as source addresses in IPv6
	// packets", as per RFC 4291 section 2.7.
	localAddr := origIPHdrDst
	if reason.isForwarding() || isOrigDstMulticast {
		localAddr = ""
	}
	// Even if we were able to receive a packet from some remote, we may not have
	// a route to it - the remote may be blocked via routing rules. We must always
	// consult our routing table and find a route to the remote before sending any
	// packet.
	route, err := p.stack.FindRoute(pkt.NICID, localAddr, origIPHdrSrc, ProtocolNumber, false /* multicastLoop */)
	if err != nil {
		return err
	}
	defer route.Release()

	p.mu.Lock()
	// We retrieve an endpoint using the newly constructed route's NICID rather
	// than the packet's NICID. The packet's NICID corresponds to the NIC on
	// which it arrived, which isn't necessarily the same as the NIC on which it
	// will be transmitted. On the other hand, the route's NIC *is* guaranteed
	// to be the NIC on which the packet will be transmitted.
	netEP, ok := p.mu.eps[route.NICID()]
	p.mu.Unlock()
	if !ok {
		return &tcpip.ErrNotConnected{}
	}

	if pkt.TransportProtocolNumber == header.ICMPv6ProtocolNumber {
		// TODO(gvisor.dev/issues/3810): Sort this out when ICMP headers are stored.
		// Unfortunately at this time ICMP Packets do not have a transport
		// header separated out. It is in the Data part so we need to
		// separate it out now. We will just pretend it is a minimal length
		// ICMP packet as we don't really care if any later bits of a
		// larger ICMP packet are in the header view or in the Data view.
		transport, ok := pkt.TransportHeader().Consume(header.ICMPv6MinimumSize)
		if !ok {
			return nil
		}
		typ := header.ICMPv6(transport).Type()
		if typ.IsErrorType() || typ == header.ICMPv6RedirectMsg {
			return nil
		}
	}

	sent := netEP.stats.icmp.packetsSent
	icmpType, icmpCode, counter, typeSpecific := func() (header.ICMPv6Type, header.ICMPv6Code, tcpip.MultiCounterStat, uint32) {
		switch reason := reason.(type) {
		case *icmpReasonParameterProblem:
			return header.ICMPv6ParamProblem, reason.code, sent.paramProblem, reason.pointer
		case *icmpReasonPortUnreachable:
			return header.ICMPv6DstUnreachable, header.ICMPv6PortUnreachable, sent.dstUnreachable, 0
		case *icmpReasonNetUnreachable:
			return header.ICMPv6DstUnreachable, header.ICMPv6NetworkUnreachable, sent.dstUnreachable, 0
		case *icmpReasonHostUnreachable:
			return header.ICMPv6DstUnreachable, header.ICMPv6AddressUnreachable, sent.dstUnreachable, 0
		case *icmpReasonPacketTooBig:
			return header.ICMPv6PacketTooBig, header.ICMPv6UnusedCode, sent.packetTooBig, 0
		case *icmpReasonHopLimitExceeded:
			return header.ICMPv6TimeExceeded, header.ICMPv6HopLimitExceeded, sent.timeExceeded, 0
		case *icmpReasonReassemblyTimeout:
			return header.ICMPv6TimeExceeded, header.ICMPv6ReassemblyTimeout, sent.timeExceeded, 0
		default:
			panic(fmt.Sprintf("unsupported ICMP type %T", reason))
		}
	}()

	if !p.allowICMPReply(icmpType) {
		sent.rateLimited.Increment()
		return nil
	}

	network, transport := pkt.NetworkHeader().View(), pkt.TransportHeader().View()

	// As per RFC 4443 section 2.4
	//
	//    (c) Every ICMPv6 error message (type < 128) MUST include
	//    as much of the IPv6 offending (invoking) packet (the
	//    packet that caused the error) as possible without making
	//    the error message packet exceed the minimum IPv6 MTU
	//    [IPv6].
	mtu := int(route.MTU())
	const maxIPv6Data = header.IPv6MinimumMTU - header.IPv6FixedHeaderSize
	if mtu > maxIPv6Data {
		mtu = maxIPv6Data
	}
	available := mtu - header.ICMPv6ErrorHeaderSize
	if available < header.IPv6MinimumSize {
		return nil
	}
	payloadLen := network.Size() + transport.Size() + pkt.Data().Size()
	if payloadLen > available {
		payloadLen = available
	}
	payload := network.ToVectorisedView()
	payload.AppendView(transport)
	payload.Append(pkt.Data().ExtractVV())
	payload.CapLength(payloadLen)

	newPkt := stack.NewPacketBuffer(stack.PacketBufferOptions{
		ReserveHeaderBytes: int(route.MaxHeaderLength()) + header.ICMPv6ErrorHeaderSize,
		Data:               payload,
	})
	newPkt.TransportProtocolNumber = header.ICMPv6ProtocolNumber

	icmpHdr := header.ICMPv6(newPkt.TransportHeader().Push(header.ICMPv6DstUnreachableMinimumSize))
	icmpHdr.SetType(icmpType)
	icmpHdr.SetCode(icmpCode)
	icmpHdr.SetTypeSpecific(typeSpecific)

	dataRange := newPkt.Data().AsRange()
	icmpHdr.SetChecksum(header.ICMPv6Checksum(header.ICMPv6ChecksumParams{
		Header:      icmpHdr,
		Src:         route.LocalAddress(),
		Dst:         route.RemoteAddress(),
		PayloadCsum: dataRange.Checksum(),
		PayloadLen:  dataRange.Size(),
	}))
	if err := route.WritePacket(
		stack.NetworkHeaderParams{
			Protocol: header.ICMPv6ProtocolNumber,
			TTL:      route.DefaultTTL(),
			TOS:      stack.DefaultTOS,
		},
		newPkt,
	); err != nil {
		sent.dropped.Increment()
		return err
	}
	counter.Increment()
	return nil
}

// OnReassemblyTimeout implements fragmentation.TimeoutHandler.
func (p *protocol) OnReassemblyTimeout(pkt *stack.PacketBuffer) {
	// OnReassemblyTimeout sends a Time Exceeded Message as per RFC 2460 Section
	// 4.5:
	//
	//   If the first fragment (i.e., the one with a Fragment Offset of zero) has
	//   been received, an ICMP Time Exceeded -- Fragment Reassembly Time Exceeded
	//   message should be sent to the source of that fragment.
	if pkt != nil {
		p.returnError(&icmpReasonReassemblyTimeout{}, pkt)
	}
}