summaryrefslogtreecommitdiffhomepage
path: root/pkg/tcpip/network/ipv4/ipv4.go
blob: 9db42b2a4c812fc14e5c3df285342323b727c97c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Package ipv4 contains the implementation of the ipv4 network protocol. To use
// it in the networking stack, this package must be added to the project, and
// activated on the stack by passing ipv4.NewProtocol() as one of the network
// protocols when calling stack.New(). Then endpoints can be created by passing
// ipv4.ProtocolNumber as the network protocol number when calling
// Stack.NewEndpoint().
package ipv4

import (
	"sync/atomic"

	"gvisor.dev/gvisor/pkg/tcpip"
	"gvisor.dev/gvisor/pkg/tcpip/buffer"
	"gvisor.dev/gvisor/pkg/tcpip/header"
	"gvisor.dev/gvisor/pkg/tcpip/network/fragmentation"
	"gvisor.dev/gvisor/pkg/tcpip/network/hash"
	"gvisor.dev/gvisor/pkg/tcpip/stack"
)

const (
	// ProtocolNumber is the ipv4 protocol number.
	ProtocolNumber = header.IPv4ProtocolNumber

	// MaxTotalSize is maximum size that can be encoded in the 16-bit
	// TotalLength field of the ipv4 header.
	MaxTotalSize = 0xffff

	// DefaultTTL is the default time-to-live value for this endpoint.
	DefaultTTL = 64

	// buckets is the number of identifier buckets.
	buckets = 2048
)

type endpoint struct {
	nicID         tcpip.NICID
	id            stack.NetworkEndpointID
	prefixLen     int
	linkEP        stack.LinkEndpoint
	dispatcher    stack.TransportDispatcher
	fragmentation *fragmentation.Fragmentation
	protocol      *protocol
	stack         *stack.Stack
}

// NewEndpoint creates a new ipv4 endpoint.
func (p *protocol) NewEndpoint(nicID tcpip.NICID, addrWithPrefix tcpip.AddressWithPrefix, linkAddrCache stack.LinkAddressCache, dispatcher stack.TransportDispatcher, linkEP stack.LinkEndpoint, st *stack.Stack) (stack.NetworkEndpoint, *tcpip.Error) {
	e := &endpoint{
		nicID:         nicID,
		id:            stack.NetworkEndpointID{LocalAddress: addrWithPrefix.Address},
		prefixLen:     addrWithPrefix.PrefixLen,
		linkEP:        linkEP,
		dispatcher:    dispatcher,
		fragmentation: fragmentation.NewFragmentation(fragmentation.HighFragThreshold, fragmentation.LowFragThreshold, fragmentation.DefaultReassembleTimeout),
		protocol:      p,
		stack:         st,
	}

	return e, nil
}

// DefaultTTL is the default time-to-live value for this endpoint.
func (e *endpoint) DefaultTTL() uint8 {
	return e.protocol.DefaultTTL()
}

// MTU implements stack.NetworkEndpoint.MTU. It returns the link-layer MTU minus
// the network layer max header length.
func (e *endpoint) MTU() uint32 {
	return calculateMTU(e.linkEP.MTU())
}

// Capabilities implements stack.NetworkEndpoint.Capabilities.
func (e *endpoint) Capabilities() stack.LinkEndpointCapabilities {
	return e.linkEP.Capabilities()
}

// NICID returns the ID of the NIC this endpoint belongs to.
func (e *endpoint) NICID() tcpip.NICID {
	return e.nicID
}

// ID returns the ipv4 endpoint ID.
func (e *endpoint) ID() *stack.NetworkEndpointID {
	return &e.id
}

// PrefixLen returns the ipv4 endpoint subnet prefix length in bits.
func (e *endpoint) PrefixLen() int {
	return e.prefixLen
}

// MaxHeaderLength returns the maximum length needed by ipv4 headers (and
// underlying protocols).
func (e *endpoint) MaxHeaderLength() uint16 {
	return e.linkEP.MaxHeaderLength() + header.IPv4MinimumSize
}

// GSOMaxSize returns the maximum GSO packet size.
func (e *endpoint) GSOMaxSize() uint32 {
	if gso, ok := e.linkEP.(stack.GSOEndpoint); ok {
		return gso.GSOMaxSize()
	}
	return 0
}

// NetworkProtocolNumber implements stack.NetworkEndpoint.NetworkProtocolNumber.
func (e *endpoint) NetworkProtocolNumber() tcpip.NetworkProtocolNumber {
	return e.protocol.Number()
}

// writePacketFragments calls e.linkEP.WritePacket with each packet fragment to
// write. It assumes that the IP header is entirely in pkt.Header but does not
// assume that only the IP header is in pkt.Header. It assumes that the input
// packet's stated length matches the length of the header+payload. mtu
// includes the IP header and options. This does not support the DontFragment
// IP flag.
func (e *endpoint) writePacketFragments(r *stack.Route, gso *stack.GSO, mtu int, pkt stack.PacketBuffer) *tcpip.Error {
	// This packet is too big, it needs to be fragmented.
	ip := header.IPv4(pkt.Header.View())
	flags := ip.Flags()

	// Update mtu to take into account the header, which will exist in all
	// fragments anyway.
	innerMTU := mtu - int(ip.HeaderLength())

	// Round the MTU down to align to 8 bytes. Then calculate the number of
	// fragments. Calculate fragment sizes as in RFC791.
	innerMTU &^= 7
	n := (int(ip.PayloadLength()) + innerMTU - 1) / innerMTU

	outerMTU := innerMTU + int(ip.HeaderLength())
	offset := ip.FragmentOffset()
	originalAvailableLength := pkt.Header.AvailableLength()
	for i := 0; i < n; i++ {
		// Where possible, the first fragment that is sent has the same
		// pkt.Header.UsedLength() as the input packet. The link-layer
		// endpoint may depend on this for looking at, eg, L4 headers.
		h := ip
		if i > 0 {
			pkt.Header = buffer.NewPrependable(int(ip.HeaderLength()) + originalAvailableLength)
			h = header.IPv4(pkt.Header.Prepend(int(ip.HeaderLength())))
			copy(h, ip[:ip.HeaderLength()])
		}
		if i != n-1 {
			h.SetTotalLength(uint16(outerMTU))
			h.SetFlagsFragmentOffset(flags|header.IPv4FlagMoreFragments, offset)
		} else {
			h.SetTotalLength(uint16(h.HeaderLength()) + uint16(pkt.Data.Size()))
			h.SetFlagsFragmentOffset(flags, offset)
		}
		h.SetChecksum(0)
		h.SetChecksum(^h.CalculateChecksum())
		offset += uint16(innerMTU)
		if i > 0 {
			newPayload := pkt.Data.Clone(nil)
			newPayload.CapLength(innerMTU)
			if err := e.linkEP.WritePacket(r, gso, ProtocolNumber, stack.PacketBuffer{
				Header:        pkt.Header,
				Data:          newPayload,
				NetworkHeader: buffer.View(h),
			}); err != nil {
				return err
			}
			r.Stats().IP.PacketsSent.Increment()
			pkt.Data.TrimFront(newPayload.Size())
			continue
		}
		// Special handling for the first fragment because it comes
		// from the header.
		if outerMTU >= pkt.Header.UsedLength() {
			// This fragment can fit all of pkt.Header and possibly
			// some of pkt.Data, too.
			newPayload := pkt.Data.Clone(nil)
			newPayloadLength := outerMTU - pkt.Header.UsedLength()
			newPayload.CapLength(newPayloadLength)
			if err := e.linkEP.WritePacket(r, gso, ProtocolNumber, stack.PacketBuffer{
				Header:        pkt.Header,
				Data:          newPayload,
				NetworkHeader: buffer.View(h),
			}); err != nil {
				return err
			}
			r.Stats().IP.PacketsSent.Increment()
			pkt.Data.TrimFront(newPayloadLength)
		} else {
			// The fragment is too small to fit all of pkt.Header.
			startOfHdr := pkt.Header
			startOfHdr.TrimBack(pkt.Header.UsedLength() - outerMTU)
			emptyVV := buffer.NewVectorisedView(0, []buffer.View{})
			if err := e.linkEP.WritePacket(r, gso, ProtocolNumber, stack.PacketBuffer{
				Header:        startOfHdr,
				Data:          emptyVV,
				NetworkHeader: buffer.View(h),
			}); err != nil {
				return err
			}
			r.Stats().IP.PacketsSent.Increment()
			// Add the unused bytes of pkt.Header into the pkt.Data
			// that remains to be sent.
			restOfHdr := pkt.Header.View()[outerMTU:]
			tmp := buffer.NewVectorisedView(len(restOfHdr), []buffer.View{buffer.NewViewFromBytes(restOfHdr)})
			tmp.Append(pkt.Data)
			pkt.Data = tmp
		}
	}
	return nil
}

func (e *endpoint) addIPHeader(r *stack.Route, hdr *buffer.Prependable, payloadSize int, params stack.NetworkHeaderParams) header.IPv4 {
	ip := header.IPv4(hdr.Prepend(header.IPv4MinimumSize))
	length := uint16(hdr.UsedLength() + payloadSize)
	id := uint32(0)
	if length > header.IPv4MaximumHeaderSize+8 {
		// Packets of 68 bytes or less are required by RFC 791 to not be
		// fragmented, so we only assign ids to larger packets.
		id = atomic.AddUint32(&e.protocol.ids[hashRoute(r, params.Protocol, e.protocol.hashIV)%buckets], 1)
	}
	ip.Encode(&header.IPv4Fields{
		IHL:         header.IPv4MinimumSize,
		TotalLength: length,
		ID:          uint16(id),
		TTL:         params.TTL,
		TOS:         params.TOS,
		Protocol:    uint8(params.Protocol),
		SrcAddr:     r.LocalAddress,
		DstAddr:     r.RemoteAddress,
	})
	ip.SetChecksum(^ip.CalculateChecksum())
	return ip
}

// WritePacket writes a packet to the given destination address and protocol.
func (e *endpoint) WritePacket(r *stack.Route, gso *stack.GSO, params stack.NetworkHeaderParams, pkt stack.PacketBuffer) *tcpip.Error {
	ip := e.addIPHeader(r, &pkt.Header, pkt.Data.Size(), params)
	pkt.NetworkHeader = buffer.View(ip)

	// iptables filtering. All packets that reach here are locally
	// generated.
	ipt := e.stack.IPTables()
	if ok := ipt.Check(stack.Output, &pkt, gso, r, ""); !ok {
		// iptables is telling us to drop the packet.
		return nil
	}

	if pkt.NatDone {
		// If the packet is manipulated as per NAT Ouput rules, handle packet
		// based on destination address and do not send the packet to link layer.
		netHeader := header.IPv4(pkt.NetworkHeader)
		ep, err := e.stack.FindNetworkEndpoint(header.IPv4ProtocolNumber, netHeader.DestinationAddress())
		if err == nil {
			src := netHeader.SourceAddress()
			dst := netHeader.DestinationAddress()
			route := r.ReverseRoute(src, dst)

			views := make([]buffer.View, 1, 1+len(pkt.Data.Views()))
			views[0] = pkt.Header.View()
			views = append(views, pkt.Data.Views()...)
			packet := stack.PacketBuffer{
				Data: buffer.NewVectorisedView(len(views[0])+pkt.Data.Size(), views)}
			ep.HandlePacket(&route, packet)
			return nil
		}
	}

	if r.Loop&stack.PacketLoop != 0 {
		// The inbound path expects the network header to still be in
		// the PacketBuffer's Data field.
		views := make([]buffer.View, 1, 1+len(pkt.Data.Views()))
		views[0] = pkt.Header.View()
		views = append(views, pkt.Data.Views()...)
		loopedR := r.MakeLoopedRoute()

		e.HandlePacket(&loopedR, stack.PacketBuffer{
			Data: buffer.NewVectorisedView(len(views[0])+pkt.Data.Size(), views),
		})

		loopedR.Release()
	}
	if r.Loop&stack.PacketOut == 0 {
		return nil
	}
	if pkt.Header.UsedLength()+pkt.Data.Size() > int(e.linkEP.MTU()) && (gso == nil || gso.Type == stack.GSONone) {
		return e.writePacketFragments(r, gso, int(e.linkEP.MTU()), pkt)
	}
	if err := e.linkEP.WritePacket(r, gso, ProtocolNumber, pkt); err != nil {
		return err
	}
	r.Stats().IP.PacketsSent.Increment()
	return nil
}

// WritePackets implements stack.NetworkEndpoint.WritePackets.
func (e *endpoint) WritePackets(r *stack.Route, gso *stack.GSO, pkts stack.PacketBufferList, params stack.NetworkHeaderParams) (int, *tcpip.Error) {
	if r.Loop&stack.PacketLoop != 0 {
		panic("multiple packets in local loop")
	}
	if r.Loop&stack.PacketOut == 0 {
		return pkts.Len(), nil
	}

	for pkt := pkts.Front(); pkt != nil; {
		ip := e.addIPHeader(r, &pkt.Header, pkt.Data.Size(), params)
		pkt.NetworkHeader = buffer.View(ip)
		pkt = pkt.Next()
	}

	// iptables filtering. All packets that reach here are locally
	// generated.
	ipt := e.stack.IPTables()
	dropped, natPkts := ipt.CheckPackets(stack.Output, pkts, gso, r)
	if len(dropped) == 0 && len(natPkts) == 0 {
		// Fast path: If no packets are to be dropped then we can just invoke the
		// faster WritePackets API directly.
		n, err := e.linkEP.WritePackets(r, gso, pkts, ProtocolNumber)
		r.Stats().IP.PacketsSent.IncrementBy(uint64(n))
		return n, err
	}

	// Slow Path as we are dropping some packets in the batch degrade to
	// emitting one packet at a time.
	n := 0
	for pkt := pkts.Front(); pkt != nil; pkt = pkt.Next() {
		if _, ok := dropped[pkt]; ok {
			continue
		}
		if _, ok := natPkts[pkt]; ok {
			netHeader := header.IPv4(pkt.NetworkHeader)
			ep, err := e.stack.FindNetworkEndpoint(header.IPv4ProtocolNumber, netHeader.DestinationAddress())
			if err == nil {
				src := netHeader.SourceAddress()
				dst := netHeader.DestinationAddress()
				route := r.ReverseRoute(src, dst)

				views := make([]buffer.View, 1, 1+len(pkt.Data.Views()))
				views[0] = pkt.Header.View()
				views = append(views, pkt.Data.Views()...)
				packet := stack.PacketBuffer{
					Data: buffer.NewVectorisedView(len(views[0])+pkt.Data.Size(), views)}
				ep.HandlePacket(&route, packet)
				n++
				continue
			}
		}
		if err := e.linkEP.WritePacket(r, gso, ProtocolNumber, *pkt); err != nil {
			r.Stats().IP.PacketsSent.IncrementBy(uint64(n))
			return n, err
		}
		n++
	}
	r.Stats().IP.PacketsSent.IncrementBy(uint64(n))
	return n, nil
}

// WriteHeaderIncludedPacket writes a packet already containing a network
// header through the given route.
func (e *endpoint) WriteHeaderIncludedPacket(r *stack.Route, pkt stack.PacketBuffer) *tcpip.Error {
	// The packet already has an IP header, but there are a few required
	// checks.
	h, ok := pkt.Data.PullUp(header.IPv4MinimumSize)
	if !ok {
		return tcpip.ErrInvalidOptionValue
	}
	ip := header.IPv4(h)
	if !ip.IsValid(pkt.Data.Size()) {
		return tcpip.ErrInvalidOptionValue
	}

	// Always set the total length.
	ip.SetTotalLength(uint16(pkt.Data.Size()))

	// Set the source address when zero.
	if ip.SourceAddress() == tcpip.Address(([]byte{0, 0, 0, 0})) {
		ip.SetSourceAddress(r.LocalAddress)
	}

	// Set the destination. If the packet already included a destination,
	// it will be part of the route.
	ip.SetDestinationAddress(r.RemoteAddress)

	// Set the packet ID when zero.
	if ip.ID() == 0 {
		id := uint32(0)
		if pkt.Data.Size() > header.IPv4MaximumHeaderSize+8 {
			// Packets of 68 bytes or less are required by RFC 791 to not be
			// fragmented, so we only assign ids to larger packets.
			id = atomic.AddUint32(&e.protocol.ids[hashRoute(r, 0 /* protocol */, e.protocol.hashIV)%buckets], 1)
		}
		ip.SetID(uint16(id))
	}

	// Always set the checksum.
	ip.SetChecksum(0)
	ip.SetChecksum(^ip.CalculateChecksum())

	if r.Loop&stack.PacketLoop != 0 {
		e.HandlePacket(r, pkt.Clone())
	}
	if r.Loop&stack.PacketOut == 0 {
		return nil
	}

	r.Stats().IP.PacketsSent.Increment()

	ip = ip[:ip.HeaderLength()]
	pkt.Header = buffer.NewPrependableFromView(buffer.View(ip))
	pkt.Data.TrimFront(int(ip.HeaderLength()))
	return e.linkEP.WritePacket(r, nil /* gso */, ProtocolNumber, pkt)
}

// HandlePacket is called by the link layer when new ipv4 packets arrive for
// this endpoint.
func (e *endpoint) HandlePacket(r *stack.Route, pkt stack.PacketBuffer) {
	headerView, ok := pkt.Data.PullUp(header.IPv4MinimumSize)
	if !ok {
		r.Stats().IP.MalformedPacketsReceived.Increment()
		return
	}
	h := header.IPv4(headerView)
	if !h.IsValid(pkt.Data.Size()) {
		r.Stats().IP.MalformedPacketsReceived.Increment()
		return
	}
	pkt.NetworkHeader = headerView[:h.HeaderLength()]

	hlen := int(h.HeaderLength())
	tlen := int(h.TotalLength())
	pkt.Data.TrimFront(hlen)
	pkt.Data.CapLength(tlen - hlen)

	// iptables filtering. All packets that reach here are intended for
	// this machine and will not be forwarded.
	ipt := e.stack.IPTables()
	if ok := ipt.Check(stack.Input, &pkt, nil, nil, ""); !ok {
		// iptables is telling us to drop the packet.
		return
	}

	more := (h.Flags() & header.IPv4FlagMoreFragments) != 0
	if more || h.FragmentOffset() != 0 {
		if pkt.Data.Size() == 0 {
			// Drop the packet as it's marked as a fragment but has
			// no payload.
			r.Stats().IP.MalformedPacketsReceived.Increment()
			r.Stats().IP.MalformedFragmentsReceived.Increment()
			return
		}
		// The packet is a fragment, let's try to reassemble it.
		last := h.FragmentOffset() + uint16(pkt.Data.Size()) - 1
		// Drop the packet if the fragmentOffset is incorrect. i.e the
		// combination of fragmentOffset and pkt.Data.size() causes a
		// wrap around resulting in last being less than the offset.
		if last < h.FragmentOffset() {
			r.Stats().IP.MalformedPacketsReceived.Increment()
			r.Stats().IP.MalformedFragmentsReceived.Increment()
			return
		}
		var ready bool
		var err error
		pkt.Data, ready, err = e.fragmentation.Process(hash.IPv4FragmentHash(h), h.FragmentOffset(), last, more, pkt.Data)
		if err != nil {
			r.Stats().IP.MalformedPacketsReceived.Increment()
			r.Stats().IP.MalformedFragmentsReceived.Increment()
			return
		}
		if !ready {
			return
		}
	}
	p := h.TransportProtocol()
	if p == header.ICMPv4ProtocolNumber {
		headerView.CapLength(hlen)
		e.handleICMP(r, pkt)
		return
	}
	r.Stats().IP.PacketsDelivered.Increment()
	e.dispatcher.DeliverTransportPacket(r, p, pkt)
}

// Close cleans up resources associated with the endpoint.
func (e *endpoint) Close() {}

type protocol struct {
	ids    []uint32
	hashIV uint32

	// defaultTTL is the current default TTL for the protocol. Only the
	// uint8 portion of it is meaningful and it must be accessed
	// atomically.
	defaultTTL uint32
}

// Number returns the ipv4 protocol number.
func (p *protocol) Number() tcpip.NetworkProtocolNumber {
	return ProtocolNumber
}

// MinimumPacketSize returns the minimum valid ipv4 packet size.
func (p *protocol) MinimumPacketSize() int {
	return header.IPv4MinimumSize
}

// DefaultPrefixLen returns the IPv4 default prefix length.
func (p *protocol) DefaultPrefixLen() int {
	return header.IPv4AddressSize * 8
}

// ParseAddresses implements NetworkProtocol.ParseAddresses.
func (*protocol) ParseAddresses(v buffer.View) (src, dst tcpip.Address) {
	h := header.IPv4(v)
	return h.SourceAddress(), h.DestinationAddress()
}

// SetOption implements NetworkProtocol.SetOption.
func (p *protocol) SetOption(option interface{}) *tcpip.Error {
	switch v := option.(type) {
	case tcpip.DefaultTTLOption:
		p.SetDefaultTTL(uint8(v))
		return nil
	default:
		return tcpip.ErrUnknownProtocolOption
	}
}

// Option implements NetworkProtocol.Option.
func (p *protocol) Option(option interface{}) *tcpip.Error {
	switch v := option.(type) {
	case *tcpip.DefaultTTLOption:
		*v = tcpip.DefaultTTLOption(p.DefaultTTL())
		return nil
	default:
		return tcpip.ErrUnknownProtocolOption
	}
}

// SetDefaultTTL sets the default TTL for endpoints created with this protocol.
func (p *protocol) SetDefaultTTL(ttl uint8) {
	atomic.StoreUint32(&p.defaultTTL, uint32(ttl))
}

// DefaultTTL returns the default TTL for endpoints created with this protocol.
func (p *protocol) DefaultTTL() uint8 {
	return uint8(atomic.LoadUint32(&p.defaultTTL))
}

// Close implements stack.TransportProtocol.Close.
func (*protocol) Close() {}

// Wait implements stack.TransportProtocol.Wait.
func (*protocol) Wait() {}

// calculateMTU calculates the network-layer payload MTU based on the link-layer
// payload mtu.
func calculateMTU(mtu uint32) uint32 {
	if mtu > MaxTotalSize {
		mtu = MaxTotalSize
	}
	return mtu - header.IPv4MinimumSize
}

// hashRoute calculates a hash value for the given route. It uses the source &
// destination address, the transport protocol number, and a random initial
// value (generated once on initialization) to generate the hash.
func hashRoute(r *stack.Route, protocol tcpip.TransportProtocolNumber, hashIV uint32) uint32 {
	t := r.LocalAddress
	a := uint32(t[0]) | uint32(t[1])<<8 | uint32(t[2])<<16 | uint32(t[3])<<24
	t = r.RemoteAddress
	b := uint32(t[0]) | uint32(t[1])<<8 | uint32(t[2])<<16 | uint32(t[3])<<24
	return hash.Hash3Words(a, b, uint32(protocol), hashIV)
}

// NewProtocol returns an IPv4 network protocol.
func NewProtocol() stack.NetworkProtocol {
	ids := make([]uint32, buckets)

	// Randomly initialize hashIV and the ids.
	r := hash.RandN32(1 + buckets)
	for i := range ids {
		ids[i] = r[i]
	}
	hashIV := r[buckets]

	return &protocol{ids: ids, hashIV: hashIV, defaultTTL: DefaultTTL}
}