1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package ipv4 contains the implementation of the ipv4 network protocol. To use
// it in the networking stack, this package must be added to the project, and
// activated on the stack by passing ipv4.ProtocolName (or "ipv4") as one of the
// network protocols when calling stack.New(). Then endpoints can be created
// by passing ipv4.ProtocolNumber as the network protocol number when calling
// Stack.NewEndpoint().
package ipv4
import (
"sync/atomic"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/tcpip/buffer"
"gvisor.dev/gvisor/pkg/tcpip/header"
"gvisor.dev/gvisor/pkg/tcpip/network/fragmentation"
"gvisor.dev/gvisor/pkg/tcpip/network/hash"
"gvisor.dev/gvisor/pkg/tcpip/stack"
)
const (
// ProtocolName is the string representation of the ipv4 protocol name.
ProtocolName = "ipv4"
// ProtocolNumber is the ipv4 protocol number.
ProtocolNumber = header.IPv4ProtocolNumber
// MaxTotalSize is maximum size that can be encoded in the 16-bit
// TotalLength field of the ipv4 header.
MaxTotalSize = 0xffff
// buckets is the number of identifier buckets.
buckets = 2048
)
type endpoint struct {
nicid tcpip.NICID
id stack.NetworkEndpointID
linkEP stack.LinkEndpoint
dispatcher stack.TransportDispatcher
fragmentation *fragmentation.Fragmentation
}
// NewEndpoint creates a new ipv4 endpoint.
func (p *protocol) NewEndpoint(nicid tcpip.NICID, addr tcpip.Address, linkAddrCache stack.LinkAddressCache, dispatcher stack.TransportDispatcher, linkEP stack.LinkEndpoint) (stack.NetworkEndpoint, *tcpip.Error) {
e := &endpoint{
nicid: nicid,
id: stack.NetworkEndpointID{LocalAddress: addr},
linkEP: linkEP,
dispatcher: dispatcher,
fragmentation: fragmentation.NewFragmentation(fragmentation.HighFragThreshold, fragmentation.LowFragThreshold, fragmentation.DefaultReassembleTimeout),
}
return e, nil
}
// DefaultTTL is the default time-to-live value for this endpoint.
func (e *endpoint) DefaultTTL() uint8 {
return 255
}
// MTU implements stack.NetworkEndpoint.MTU. It returns the link-layer MTU minus
// the network layer max header length.
func (e *endpoint) MTU() uint32 {
return calculateMTU(e.linkEP.MTU())
}
// Capabilities implements stack.NetworkEndpoint.Capabilities.
func (e *endpoint) Capabilities() stack.LinkEndpointCapabilities {
return e.linkEP.Capabilities()
}
// NICID returns the ID of the NIC this endpoint belongs to.
func (e *endpoint) NICID() tcpip.NICID {
return e.nicid
}
// ID returns the ipv4 endpoint ID.
func (e *endpoint) ID() *stack.NetworkEndpointID {
return &e.id
}
// MaxHeaderLength returns the maximum length needed by ipv4 headers (and
// underlying protocols).
func (e *endpoint) MaxHeaderLength() uint16 {
return e.linkEP.MaxHeaderLength() + header.IPv4MinimumSize
}
// GSOMaxSize returns the maximum GSO packet size.
func (e *endpoint) GSOMaxSize() uint32 {
if gso, ok := e.linkEP.(stack.GSOEndpoint); ok {
return gso.GSOMaxSize()
}
return 0
}
// writePacketFragments calls e.linkEP.WritePacket with each packet fragment to
// write. It assumes that the IP header is entirely in hdr but does not assume
// that only the IP header is in hdr. It assumes that the input packet's stated
// length matches the length of the hdr+payload. mtu includes the IP header and
// options. This does not support the DontFragment IP flag.
func (e *endpoint) writePacketFragments(r *stack.Route, gso *stack.GSO, hdr buffer.Prependable, payload buffer.VectorisedView, mtu int) *tcpip.Error {
// This packet is too big, it needs to be fragmented.
ip := header.IPv4(hdr.View())
flags := ip.Flags()
// Update mtu to take into account the header, which will exist in all
// fragments anyway.
innerMTU := mtu - int(ip.HeaderLength())
// Round the MTU down to align to 8 bytes. Then calculate the number of
// fragments. Calculate fragment sizes as in RFC791.
innerMTU &^= 7
n := (int(ip.PayloadLength()) + innerMTU - 1) / innerMTU
outerMTU := innerMTU + int(ip.HeaderLength())
offset := ip.FragmentOffset()
originalAvailableLength := hdr.AvailableLength()
for i := 0; i < n; i++ {
// Where possible, the first fragment that is sent has the same
// hdr.UsedLength() as the input packet. The link-layer endpoint may depends
// on this for looking at, eg, L4 headers.
h := ip
if i > 0 {
hdr = buffer.NewPrependable(int(ip.HeaderLength()) + originalAvailableLength)
h = header.IPv4(hdr.Prepend(int(ip.HeaderLength())))
copy(h, ip[:ip.HeaderLength()])
}
if i != n-1 {
h.SetTotalLength(uint16(outerMTU))
h.SetFlagsFragmentOffset(flags|header.IPv4FlagMoreFragments, offset)
} else {
h.SetTotalLength(uint16(h.HeaderLength()) + uint16(payload.Size()))
h.SetFlagsFragmentOffset(flags, offset)
}
h.SetChecksum(0)
h.SetChecksum(^h.CalculateChecksum())
offset += uint16(innerMTU)
if i > 0 {
newPayload := payload.Clone([]buffer.View{})
newPayload.CapLength(innerMTU)
if err := e.linkEP.WritePacket(r, gso, hdr, newPayload, ProtocolNumber); err != nil {
return err
}
r.Stats().IP.PacketsSent.Increment()
payload.TrimFront(newPayload.Size())
continue
}
// Special handling for the first fragment because it comes from the hdr.
if outerMTU >= hdr.UsedLength() {
// This fragment can fit all of hdr and possibly some of payload, too.
newPayload := payload.Clone([]buffer.View{})
newPayloadLength := outerMTU - hdr.UsedLength()
newPayload.CapLength(newPayloadLength)
if err := e.linkEP.WritePacket(r, gso, hdr, newPayload, ProtocolNumber); err != nil {
return err
}
r.Stats().IP.PacketsSent.Increment()
payload.TrimFront(newPayloadLength)
} else {
// The fragment is too small to fit all of hdr.
startOfHdr := hdr
startOfHdr.TrimBack(hdr.UsedLength() - outerMTU)
emptyVV := buffer.NewVectorisedView(0, []buffer.View{})
if err := e.linkEP.WritePacket(r, gso, startOfHdr, emptyVV, ProtocolNumber); err != nil {
return err
}
r.Stats().IP.PacketsSent.Increment()
// Add the unused bytes of hdr into the payload that remains to be sent.
restOfHdr := hdr.View()[outerMTU:]
tmp := buffer.NewVectorisedView(len(restOfHdr), []buffer.View{buffer.NewViewFromBytes(restOfHdr)})
tmp.Append(payload)
payload = tmp
}
}
return nil
}
// WritePacket writes a packet to the given destination address and protocol.
func (e *endpoint) WritePacket(r *stack.Route, gso *stack.GSO, hdr buffer.Prependable, payload buffer.VectorisedView, protocol tcpip.TransportProtocolNumber, ttl uint8, loop stack.PacketLooping) *tcpip.Error {
ip := header.IPv4(hdr.Prepend(header.IPv4MinimumSize))
length := uint16(hdr.UsedLength() + payload.Size())
id := uint32(0)
if length > header.IPv4MaximumHeaderSize+8 {
// Packets of 68 bytes or less are required by RFC 791 to not be
// fragmented, so we only assign ids to larger packets.
id = atomic.AddUint32(&ids[hashRoute(r, protocol)%buckets], 1)
}
ip.Encode(&header.IPv4Fields{
IHL: header.IPv4MinimumSize,
TotalLength: length,
ID: uint16(id),
TTL: ttl,
Protocol: uint8(protocol),
SrcAddr: r.LocalAddress,
DstAddr: r.RemoteAddress,
})
ip.SetChecksum(^ip.CalculateChecksum())
if loop&stack.PacketLoop != 0 {
views := make([]buffer.View, 1, 1+len(payload.Views()))
views[0] = hdr.View()
views = append(views, payload.Views()...)
vv := buffer.NewVectorisedView(len(views[0])+payload.Size(), views)
loopedR := r.MakeLoopedRoute()
e.HandlePacket(&loopedR, vv)
loopedR.Release()
}
if loop&stack.PacketOut == 0 {
return nil
}
if hdr.UsedLength()+payload.Size() > int(e.linkEP.MTU()) && (gso == nil || gso.Type == stack.GSONone) {
return e.writePacketFragments(r, gso, hdr, payload, int(e.linkEP.MTU()))
}
if err := e.linkEP.WritePacket(r, gso, hdr, payload, ProtocolNumber); err != nil {
return err
}
r.Stats().IP.PacketsSent.Increment()
return nil
}
// HandlePacket is called by the link layer when new ipv4 packets arrive for
// this endpoint.
func (e *endpoint) HandlePacket(r *stack.Route, vv buffer.VectorisedView) {
headerView := vv.First()
h := header.IPv4(headerView)
if !h.IsValid(vv.Size()) {
return
}
hlen := int(h.HeaderLength())
tlen := int(h.TotalLength())
vv.TrimFront(hlen)
vv.CapLength(tlen - hlen)
more := (h.Flags() & header.IPv4FlagMoreFragments) != 0
if more || h.FragmentOffset() != 0 {
// The packet is a fragment, let's try to reassemble it.
last := h.FragmentOffset() + uint16(vv.Size()) - 1
var ready bool
vv, ready = e.fragmentation.Process(hash.IPv4FragmentHash(h), h.FragmentOffset(), last, more, vv)
if !ready {
return
}
}
p := h.TransportProtocol()
if p == header.ICMPv4ProtocolNumber {
headerView.CapLength(hlen)
e.handleICMP(r, headerView, vv)
return
}
r.Stats().IP.PacketsDelivered.Increment()
e.dispatcher.DeliverTransportPacket(r, p, headerView, vv)
}
// Close cleans up resources associated with the endpoint.
func (e *endpoint) Close() {}
type protocol struct{}
// NewProtocol creates a new protocol ipv4 protocol descriptor. This is exported
// only for tests that short-circuit the stack. Regular use of the protocol is
// done via the stack, which gets a protocol descriptor from the init() function
// below.
func NewProtocol() stack.NetworkProtocol {
return &protocol{}
}
// Number returns the ipv4 protocol number.
func (p *protocol) Number() tcpip.NetworkProtocolNumber {
return ProtocolNumber
}
// MinimumPacketSize returns the minimum valid ipv4 packet size.
func (p *protocol) MinimumPacketSize() int {
return header.IPv4MinimumSize
}
// ParseAddresses implements NetworkProtocol.ParseAddresses.
func (*protocol) ParseAddresses(v buffer.View) (src, dst tcpip.Address) {
h := header.IPv4(v)
return h.SourceAddress(), h.DestinationAddress()
}
// SetOption implements NetworkProtocol.SetOption.
func (p *protocol) SetOption(option interface{}) *tcpip.Error {
return tcpip.ErrUnknownProtocolOption
}
// Option implements NetworkProtocol.Option.
func (p *protocol) Option(option interface{}) *tcpip.Error {
return tcpip.ErrUnknownProtocolOption
}
// calculateMTU calculates the network-layer payload MTU based on the link-layer
// payload mtu.
func calculateMTU(mtu uint32) uint32 {
if mtu > MaxTotalSize {
mtu = MaxTotalSize
}
return mtu - header.IPv4MinimumSize
}
// hashRoute calculates a hash value for the given route. It uses the source &
// destination address, the transport protocol number, and a random initial
// value (generated once on initialization) to generate the hash.
func hashRoute(r *stack.Route, protocol tcpip.TransportProtocolNumber) uint32 {
t := r.LocalAddress
a := uint32(t[0]) | uint32(t[1])<<8 | uint32(t[2])<<16 | uint32(t[3])<<24
t = r.RemoteAddress
b := uint32(t[0]) | uint32(t[1])<<8 | uint32(t[2])<<16 | uint32(t[3])<<24
return hash.Hash3Words(a, b, uint32(protocol), hashIV)
}
var (
ids []uint32
hashIV uint32
)
func init() {
ids = make([]uint32, buckets)
// Randomly initialize hashIV and the ids.
r := hash.RandN32(1 + buckets)
for i := range ids {
ids[i] = r[i]
}
hashIV = r[buckets]
stack.RegisterNetworkProtocolFactory(ProtocolName, func() stack.NetworkProtocol {
return &protocol{}
})
}
|