summaryrefslogtreecommitdiffhomepage
path: root/pkg/tcpip/network/ipv4/ipv4.go
blob: cc045c7a9f7dec44da7a461883eadd90abeb27c6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Package ipv4 contains the implementation of the ipv4 network protocol.
package ipv4

import (
	"errors"
	"fmt"
	"math"
	"sync/atomic"
	"time"

	"gvisor.dev/gvisor/pkg/sync"
	"gvisor.dev/gvisor/pkg/tcpip"
	"gvisor.dev/gvisor/pkg/tcpip/buffer"
	"gvisor.dev/gvisor/pkg/tcpip/header"
	"gvisor.dev/gvisor/pkg/tcpip/header/parse"
	"gvisor.dev/gvisor/pkg/tcpip/network/fragmentation"
	"gvisor.dev/gvisor/pkg/tcpip/network/hash"
	"gvisor.dev/gvisor/pkg/tcpip/stack"
)

const (
	// ReassembleTimeout is the time a packet stays in the reassembly
	// system before being evicted.
	// As per RFC 791 section 3.2:
	//   The current recommendation for the initial timer setting is 15 seconds.
	//   This may be changed as experience with this protocol accumulates.
	//
	// Considering that it is an old recommendation, we use the same reassembly
	// timeout that linux defines, which is 30 seconds:
	// https://github.com/torvalds/linux/blob/47ec5303d73ea344e84f46660fff693c57641386/include/net/ip.h#L138
	ReassembleTimeout = 30 * time.Second

	// ProtocolNumber is the ipv4 protocol number.
	ProtocolNumber = header.IPv4ProtocolNumber

	// MaxTotalSize is maximum size that can be encoded in the 16-bit
	// TotalLength field of the ipv4 header.
	MaxTotalSize = 0xffff

	// DefaultTTL is the default time-to-live value for this endpoint.
	DefaultTTL = 64

	// buckets is the number of identifier buckets.
	buckets = 2048

	// The size of a fragment block, in bytes, as per RFC 791 section 3.1,
	// page 14.
	fragmentblockSize = 8
)

var ipv4BroadcastAddr = header.IPv4Broadcast.WithPrefix()

var _ stack.LinkResolvableNetworkEndpoint = (*endpoint)(nil)
var _ stack.GroupAddressableEndpoint = (*endpoint)(nil)
var _ stack.AddressableEndpoint = (*endpoint)(nil)
var _ stack.NetworkEndpoint = (*endpoint)(nil)

type endpoint struct {
	nic        stack.NetworkInterface
	dispatcher stack.TransportDispatcher
	protocol   *protocol

	// enabled is set to 1 when the enpoint is enabled and 0 when it is
	// disabled.
	//
	// Must be accessed using atomic operations.
	enabled uint32

	mu struct {
		sync.RWMutex

		addressableEndpointState stack.AddressableEndpointState
		igmp                     igmpState
	}
}

// HandleLinkResolutionFailure implements stack.LinkResolvableNetworkEndpoint.
func (e *endpoint) HandleLinkResolutionFailure(pkt *stack.PacketBuffer) {
	// handleControl expects the entire offending packet to be in the packet
	// buffer's data field.
	pkt = stack.NewPacketBuffer(stack.PacketBufferOptions{
		Data: buffer.NewVectorisedView(pkt.Size(), pkt.Views()),
	})
	pkt.NICID = e.nic.ID()
	pkt.NetworkProtocolNumber = ProtocolNumber
	// Use the same control type as an ICMPv4 destination host unreachable error
	// since the host is considered unreachable if we cannot resolve the link
	// address to the next hop.
	e.handleControl(stack.ControlNoRoute, 0, pkt)
}

// NewEndpoint creates a new ipv4 endpoint.
func (p *protocol) NewEndpoint(nic stack.NetworkInterface, _ stack.LinkAddressCache, _ stack.NUDHandler, dispatcher stack.TransportDispatcher) stack.NetworkEndpoint {
	e := &endpoint{
		nic:        nic,
		dispatcher: dispatcher,
		protocol:   p,
	}
	e.mu.Lock()
	e.mu.addressableEndpointState.Init(e)
	e.mu.igmp.init(e)
	e.mu.Unlock()
	return e
}

// Enable implements stack.NetworkEndpoint.
func (e *endpoint) Enable() *tcpip.Error {
	e.mu.Lock()
	defer e.mu.Unlock()

	// If the NIC is not enabled, the endpoint can't do anything meaningful so
	// don't enable the endpoint.
	if !e.nic.Enabled() {
		return tcpip.ErrNotPermitted
	}

	// If the endpoint is already enabled, there is nothing for it to do.
	if !e.setEnabled(true) {
		return nil
	}

	// Create an endpoint to receive broadcast packets on this interface.
	ep, err := e.mu.addressableEndpointState.AddAndAcquirePermanentAddress(ipv4BroadcastAddr, stack.NeverPrimaryEndpoint, stack.AddressConfigStatic, false /* deprecated */)
	if err != nil {
		return err
	}
	// We have no need for the address endpoint.
	ep.DecRef()

	// Groups may have been joined while the endpoint was disabled, or the
	// endpoint may have left groups from the perspective of IGMP when the
	// endpoint was disabled. Either way, we need to let routers know to
	// send us multicast traffic.
	e.mu.igmp.initializeAll()

	// As per RFC 1122 section 3.3.7, all hosts should join the all-hosts
	// multicast group. Note, the IANA calls the all-hosts multicast group the
	// all-systems multicast group.
	if err := e.joinGroupLocked(header.IPv4AllSystems); err != nil {
		// joinGroupLocked only returns an error if the group address is not a valid
		// IPv4 multicast address.
		panic(fmt.Sprintf("e.joinGroupLocked(%s): %s", header.IPv4AllSystems, err))
	}

	return nil
}

// Enabled implements stack.NetworkEndpoint.
func (e *endpoint) Enabled() bool {
	return e.nic.Enabled() && e.isEnabled()
}

// isEnabled returns true if the endpoint is enabled, regardless of the
// enabled status of the NIC.
func (e *endpoint) isEnabled() bool {
	return atomic.LoadUint32(&e.enabled) == 1
}

// setEnabled sets the enabled status for the endpoint.
//
// Returns true if the enabled status was updated.
func (e *endpoint) setEnabled(v bool) bool {
	if v {
		return atomic.SwapUint32(&e.enabled, 1) == 0
	}
	return atomic.SwapUint32(&e.enabled, 0) == 1
}

// Disable implements stack.NetworkEndpoint.
func (e *endpoint) Disable() {
	e.mu.Lock()
	defer e.mu.Unlock()
	e.disableLocked()
}

func (e *endpoint) disableLocked() {
	if !e.isEnabled() {
		return
	}

	// The endpoint may have already left the multicast group.
	if err := e.leaveGroupLocked(header.IPv4AllSystems); err != nil && err != tcpip.ErrBadLocalAddress {
		panic(fmt.Sprintf("unexpected error when leaving group = %s: %s", header.IPv4AllSystems, err))
	}

	// Leave groups from the perspective of IGMP so that routers know that
	// we are no longer interested in the group.
	e.mu.igmp.softLeaveAll()

	// The address may have already been removed.
	if err := e.mu.addressableEndpointState.RemovePermanentAddress(ipv4BroadcastAddr.Address); err != nil && err != tcpip.ErrBadLocalAddress {
		panic(fmt.Sprintf("unexpected error when removing address = %s: %s", ipv4BroadcastAddr.Address, err))
	}

	if !e.setEnabled(false) {
		panic("should have only done work to disable the endpoint if it was enabled")
	}
}

// DefaultTTL is the default time-to-live value for this endpoint.
func (e *endpoint) DefaultTTL() uint8 {
	return e.protocol.DefaultTTL()
}

// MTU implements stack.NetworkEndpoint.MTU. It returns the link-layer MTU minus
// the network layer max header length.
func (e *endpoint) MTU() uint32 {
	networkMTU, err := calculateNetworkMTU(e.nic.MTU(), header.IPv4MinimumSize)
	if err != nil {
		return 0
	}
	return networkMTU
}

// MaxHeaderLength returns the maximum length needed by ipv4 headers (and
// underlying protocols).
func (e *endpoint) MaxHeaderLength() uint16 {
	return e.nic.MaxHeaderLength() + header.IPv4MaximumHeaderSize
}

// NetworkProtocolNumber implements stack.NetworkEndpoint.NetworkProtocolNumber.
func (e *endpoint) NetworkProtocolNumber() tcpip.NetworkProtocolNumber {
	return e.protocol.Number()
}

func (e *endpoint) addIPHeader(srcAddr, dstAddr tcpip.Address, pkt *stack.PacketBuffer, params stack.NetworkHeaderParams, options header.IPv4OptionsSerializer) {
	hdrLen := header.IPv4MinimumSize
	var optLen int
	if options != nil {
		optLen = int(options.Length())
	}
	hdrLen += optLen
	if hdrLen > header.IPv4MaximumHeaderSize {
		// Since we have no way to report an error we must either panic or create
		// a packet which is different to what was requested. Choose panic as this
		// would be a programming error that should be caught in testing.
		panic(fmt.Sprintf("IPv4 Options %d bytes, Max %d", optLen, header.IPv4MaximumOptionsSize))
	}
	ip := header.IPv4(pkt.NetworkHeader().Push(hdrLen))
	length := uint16(pkt.Size())
	// RFC 6864 section 4.3 mandates uniqueness of ID values for non-atomic
	// datagrams. Since the DF bit is never being set here, all datagrams
	// are non-atomic and need an ID.
	id := atomic.AddUint32(&e.protocol.ids[hashRoute(srcAddr, dstAddr, params.Protocol, e.protocol.hashIV)%buckets], 1)
	ip.Encode(&header.IPv4Fields{
		TotalLength: length,
		ID:          uint16(id),
		TTL:         params.TTL,
		TOS:         params.TOS,
		Protocol:    uint8(params.Protocol),
		SrcAddr:     srcAddr,
		DstAddr:     dstAddr,
		Options:     options,
	})
	ip.SetChecksum(^ip.CalculateChecksum())
	pkt.NetworkProtocolNumber = ProtocolNumber
}

// handleFragments fragments pkt and calls the handler function on each
// fragment. It returns the number of fragments handled and the number of
// fragments left to be processed. The IP header must already be present in the
// original packet.
func (e *endpoint) handleFragments(r *stack.Route, gso *stack.GSO, networkMTU uint32, pkt *stack.PacketBuffer, handler func(*stack.PacketBuffer) *tcpip.Error) (int, int, *tcpip.Error) {
	// Round the MTU down to align to 8 bytes.
	fragmentPayloadSize := networkMTU &^ 7
	networkHeader := header.IPv4(pkt.NetworkHeader().View())
	pf := fragmentation.MakePacketFragmenter(pkt, fragmentPayloadSize, pkt.AvailableHeaderBytes()+len(networkHeader))

	var n int
	for {
		fragPkt, more := buildNextFragment(&pf, networkHeader)
		if err := handler(fragPkt); err != nil {
			return n, pf.RemainingFragmentCount() + 1, err
		}
		n++
		if !more {
			return n, pf.RemainingFragmentCount(), nil
		}
	}
}

// WritePacket writes a packet to the given destination address and protocol.
func (e *endpoint) WritePacket(r *stack.Route, gso *stack.GSO, params stack.NetworkHeaderParams, pkt *stack.PacketBuffer) *tcpip.Error {
	e.addIPHeader(r.LocalAddress, r.RemoteAddress, pkt, params, nil /* options */)

	// iptables filtering. All packets that reach here are locally
	// generated.
	nicName := e.protocol.stack.FindNICNameFromID(e.nic.ID())
	if ok := e.protocol.stack.IPTables().Check(stack.Output, pkt, gso, r, "", nicName); !ok {
		// iptables is telling us to drop the packet.
		e.protocol.stack.Stats().IP.IPTablesOutputDropped.Increment()
		return nil
	}

	// If the packet is manipulated as per NAT Output rules, handle packet
	// based on destination address and do not send the packet to link
	// layer.
	//
	// TODO(gvisor.dev/issue/170): We should do this for every
	// packet, rather than only NATted packets, but removing this check
	// short circuits broadcasts before they are sent out to other hosts.
	if pkt.NatDone {
		netHeader := header.IPv4(pkt.NetworkHeader().View())
		ep, err := e.protocol.stack.FindNetworkEndpoint(ProtocolNumber, netHeader.DestinationAddress())
		if err == nil {
			pkt := pkt.CloneToInbound()
			if e.protocol.stack.ParsePacketBuffer(ProtocolNumber, pkt) == stack.ParsedOK {
				// Since we rewrote the packet but it is being routed back to us, we can
				// safely assume the checksum is valid.
				pkt.RXTransportChecksumValidated = true
				ep.(*endpoint).handlePacket(pkt)
			}
			return nil
		}
	}

	return e.writePacket(r, gso, pkt, false /* headerIncluded */)
}

func (e *endpoint) writePacket(r *stack.Route, gso *stack.GSO, pkt *stack.PacketBuffer, headerIncluded bool) *tcpip.Error {
	if r.Loop&stack.PacketLoop != 0 {
		pkt := pkt.CloneToInbound()
		if e.protocol.stack.ParsePacketBuffer(ProtocolNumber, pkt) == stack.ParsedOK {
			// If the packet was generated by the stack (not a raw/packet endpoint
			// where a packet may be written with the header included), then we can
			// safely assume the checksum is valid.
			pkt.RXTransportChecksumValidated = !headerIncluded
			e.handlePacket(pkt)
		}
	}
	if r.Loop&stack.PacketOut == 0 {
		return nil
	}

	networkMTU, err := calculateNetworkMTU(e.nic.MTU(), uint32(pkt.NetworkHeader().View().Size()))
	if err != nil {
		r.Stats().IP.OutgoingPacketErrors.Increment()
		return err
	}

	if packetMustBeFragmented(pkt, networkMTU, gso) {
		sent, remain, err := e.handleFragments(r, gso, networkMTU, pkt, func(fragPkt *stack.PacketBuffer) *tcpip.Error {
			// TODO(gvisor.dev/issue/3884): Evaluate whether we want to send each
			// fragment one by one using WritePacket() (current strategy) or if we
			// want to create a PacketBufferList from the fragments and feed it to
			// WritePackets(). It'll be faster but cost more memory.
			return e.nic.WritePacket(r, gso, ProtocolNumber, fragPkt)
		})
		r.Stats().IP.PacketsSent.IncrementBy(uint64(sent))
		r.Stats().IP.OutgoingPacketErrors.IncrementBy(uint64(remain))
		return err
	}

	if err := e.nic.WritePacket(r, gso, ProtocolNumber, pkt); err != nil {
		r.Stats().IP.OutgoingPacketErrors.Increment()
		return err
	}
	r.Stats().IP.PacketsSent.Increment()
	return nil
}

// WritePackets implements stack.NetworkEndpoint.WritePackets.
func (e *endpoint) WritePackets(r *stack.Route, gso *stack.GSO, pkts stack.PacketBufferList, params stack.NetworkHeaderParams) (int, *tcpip.Error) {
	if r.Loop&stack.PacketLoop != 0 {
		panic("multiple packets in local loop")
	}
	if r.Loop&stack.PacketOut == 0 {
		return pkts.Len(), nil
	}

	for pkt := pkts.Front(); pkt != nil; pkt = pkt.Next() {
		e.addIPHeader(r.LocalAddress, r.RemoteAddress, pkt, params, nil /* options */)
		networkMTU, err := calculateNetworkMTU(e.nic.MTU(), uint32(pkt.NetworkHeader().View().Size()))
		if err != nil {
			r.Stats().IP.OutgoingPacketErrors.IncrementBy(uint64(pkts.Len()))
			return 0, err
		}

		if packetMustBeFragmented(pkt, networkMTU, gso) {
			// Keep track of the packet that is about to be fragmented so it can be
			// removed once the fragmentation is done.
			originalPkt := pkt
			if _, _, err := e.handleFragments(r, gso, networkMTU, pkt, func(fragPkt *stack.PacketBuffer) *tcpip.Error {
				// Modify the packet list in place with the new fragments.
				pkts.InsertAfter(pkt, fragPkt)
				pkt = fragPkt
				return nil
			}); err != nil {
				panic(fmt.Sprintf("e.handleFragments(_, _, %d, _, _) = %s", networkMTU, err))
			}
			// Remove the packet that was just fragmented and process the rest.
			pkts.Remove(originalPkt)
		}
	}

	nicName := e.protocol.stack.FindNICNameFromID(e.nic.ID())
	// iptables filtering. All packets that reach here are locally
	// generated.
	dropped, natPkts := e.protocol.stack.IPTables().CheckPackets(stack.Output, pkts, gso, r, nicName)
	if len(dropped) == 0 && len(natPkts) == 0 {
		// Fast path: If no packets are to be dropped then we can just invoke the
		// faster WritePackets API directly.
		n, err := e.nic.WritePackets(r, gso, pkts, ProtocolNumber)
		r.Stats().IP.PacketsSent.IncrementBy(uint64(n))
		if err != nil {
			r.Stats().IP.OutgoingPacketErrors.IncrementBy(uint64(pkts.Len() - n))
		}
		return n, err
	}
	r.Stats().IP.IPTablesOutputDropped.IncrementBy(uint64(len(dropped)))

	// Slow path as we are dropping some packets in the batch degrade to
	// emitting one packet at a time.
	n := 0
	for pkt := pkts.Front(); pkt != nil; pkt = pkt.Next() {
		if _, ok := dropped[pkt]; ok {
			continue
		}
		if _, ok := natPkts[pkt]; ok {
			netHeader := header.IPv4(pkt.NetworkHeader().View())
			if ep, err := e.protocol.stack.FindNetworkEndpoint(ProtocolNumber, netHeader.DestinationAddress()); err == nil {
				pkt := pkt.CloneToInbound()
				if e.protocol.stack.ParsePacketBuffer(ProtocolNumber, pkt) == stack.ParsedOK {
					// Since we rewrote the packet but it is being routed back to us, we
					// can safely assume the checksum is valid.
					pkt.RXTransportChecksumValidated = true
					ep.(*endpoint).handlePacket(pkt)
				}
				n++
				continue
			}
		}
		if err := e.nic.WritePacket(r, gso, ProtocolNumber, pkt); err != nil {
			r.Stats().IP.PacketsSent.IncrementBy(uint64(n))
			r.Stats().IP.OutgoingPacketErrors.IncrementBy(uint64(pkts.Len() - n - len(dropped)))
			// Dropped packets aren't errors, so include them in
			// the return value.
			return n + len(dropped), err
		}
		n++
	}
	r.Stats().IP.PacketsSent.IncrementBy(uint64(n))
	// Dropped packets aren't errors, so include them in the return value.
	return n + len(dropped), nil
}

// WriteHeaderIncludedPacket implements stack.NetworkEndpoint.
func (e *endpoint) WriteHeaderIncludedPacket(r *stack.Route, pkt *stack.PacketBuffer) *tcpip.Error {
	// The packet already has an IP header, but there are a few required
	// checks.
	h, ok := pkt.Data.PullUp(header.IPv4MinimumSize)
	if !ok {
		return tcpip.ErrMalformedHeader
	}

	hdrLen := header.IPv4(h).HeaderLength()
	if hdrLen < header.IPv4MinimumSize {
		return tcpip.ErrMalformedHeader
	}

	h, ok = pkt.Data.PullUp(int(hdrLen))
	if !ok {
		return tcpip.ErrMalformedHeader
	}
	ip := header.IPv4(h)

	// Always set the total length.
	pktSize := pkt.Data.Size()
	ip.SetTotalLength(uint16(pktSize))

	// Set the source address when zero.
	if ip.SourceAddress() == header.IPv4Any {
		ip.SetSourceAddress(r.LocalAddress)
	}

	// Set the destination. If the packet already included a destination, it will
	// be part of the route anyways.
	ip.SetDestinationAddress(r.RemoteAddress)

	// Set the packet ID when zero.
	if ip.ID() == 0 {
		// RFC 6864 section 4.3 mandates uniqueness of ID values for
		// non-atomic datagrams, so assign an ID to all such datagrams
		// according to the definition given in RFC 6864 section 4.
		if ip.Flags()&header.IPv4FlagDontFragment == 0 || ip.Flags()&header.IPv4FlagMoreFragments != 0 || ip.FragmentOffset() > 0 {
			ip.SetID(uint16(atomic.AddUint32(&e.protocol.ids[hashRoute(r.LocalAddress, r.RemoteAddress, 0 /* protocol */, e.protocol.hashIV)%buckets], 1)))
		}
	}

	// Always set the checksum.
	ip.SetChecksum(0)
	ip.SetChecksum(^ip.CalculateChecksum())

	// Populate the packet buffer's network header and don't allow an invalid
	// packet to be sent.
	//
	// Note that parsing only makes sure that the packet is well formed as per the
	// wire format. We also want to check if the header's fields are valid before
	// sending the packet.
	if !parse.IPv4(pkt) || !header.IPv4(pkt.NetworkHeader().View()).IsValid(pktSize) {
		return tcpip.ErrMalformedHeader
	}

	return e.writePacket(r, nil /* gso */, pkt, true /* headerIncluded */)
}

// forwardPacket attempts to forward a packet to its final destination.
func (e *endpoint) forwardPacket(pkt *stack.PacketBuffer) *tcpip.Error {
	h := header.IPv4(pkt.NetworkHeader().View())
	ttl := h.TTL()
	if ttl == 0 {
		// As per RFC 792 page 6, Time Exceeded Message,
		//
		//  If the gateway processing a datagram finds the time to live field
		//  is zero it must discard the datagram.  The gateway may also notify
		//  the source host via the time exceeded message.
		return e.protocol.returnError(&icmpReasonTTLExceeded{}, pkt)
	}

	dstAddr := h.DestinationAddress()

	// Check if the destination is owned by the stack.
	networkEndpoint, err := e.protocol.stack.FindNetworkEndpoint(ProtocolNumber, dstAddr)
	if err == nil {
		networkEndpoint.(*endpoint).handlePacket(pkt)
		return nil
	}
	if err != tcpip.ErrBadAddress {
		return err
	}

	r, err := e.protocol.stack.FindRoute(0, "", dstAddr, ProtocolNumber, false /* multicastLoop */)
	if err != nil {
		return err
	}
	defer r.Release()

	// We need to do a deep copy of the IP packet because
	// WriteHeaderIncludedPacket takes ownership of the packet buffer, but we do
	// not own it.
	newHdr := header.IPv4(stack.PayloadSince(pkt.NetworkHeader()))

	// As per RFC 791 page 30, Time to Live,
	//
	//   This field must be decreased at each point that the internet header
	//   is processed to reflect the time spent processing the datagram.
	//   Even if no local information is available on the time actually
	//   spent, the field must be decremented by 1.
	newHdr.SetTTL(ttl - 1)

	return r.WriteHeaderIncludedPacket(stack.NewPacketBuffer(stack.PacketBufferOptions{
		ReserveHeaderBytes: int(r.MaxHeaderLength()),
		Data:               buffer.View(newHdr).ToVectorisedView(),
	}))
}

// HandlePacket is called by the link layer when new ipv4 packets arrive for
// this endpoint.
func (e *endpoint) HandlePacket(pkt *stack.PacketBuffer) {
	stats := e.protocol.stack.Stats()
	stats.IP.PacketsReceived.Increment()

	if !e.isEnabled() {
		stats.IP.DisabledPacketsReceived.Increment()
		return
	}

	// Loopback traffic skips the prerouting chain.
	if !e.nic.IsLoopback() {
		if ok := e.protocol.stack.IPTables().Check(stack.Prerouting, pkt, nil, nil, e.MainAddress().Address, ""); !ok {
			// iptables is telling us to drop the packet.
			stats.IP.IPTablesPreroutingDropped.Increment()
			return
		}
	}

	e.handlePacket(pkt)
}

// handlePacket is like HandlePacket except it does not perform the prerouting
// iptables hook.
func (e *endpoint) handlePacket(pkt *stack.PacketBuffer) {
	pkt.NICID = e.nic.ID()
	stats := e.protocol.stack.Stats()

	h := header.IPv4(pkt.NetworkHeader().View())
	if !h.IsValid(pkt.Data.Size() + pkt.NetworkHeader().View().Size() + pkt.TransportHeader().View().Size()) {
		stats.IP.MalformedPacketsReceived.Increment()
		return
	}

	// There has been some confusion regarding verifying checksums. We need
	// just look for negative 0 (0xffff) as the checksum, as it's not possible to
	// get positive 0 (0) for the checksum. Some bad implementations could get it
	// when doing entry replacement in the early days of the Internet,
	// however the lore that one needs to check for both persists.
	//
	// RFC 1624 section 1 describes the source of this confusion as:
	//     [the partial recalculation method described in RFC 1071] computes a
	//     result for certain cases that differs from the one obtained from
	//     scratch (one's complement of one's complement sum of the original
	//     fields).
	//
	// However RFC 1624 section 5 clarifies that if using the verification method
	// "recommended by RFC 1071, it does not matter if an intermediate system
	// generated a -0 instead of +0".
	//
	// RFC1071 page 1 specifies the verification method as:
	//	  (3)  To check a checksum, the 1's complement sum is computed over the
	//        same set of octets, including the checksum field.  If the result
	//        is all 1 bits (-0 in 1's complement arithmetic), the check
	//        succeeds.
	if h.CalculateChecksum() != 0xffff {
		stats.IP.MalformedPacketsReceived.Increment()
		return
	}

	srcAddr := h.SourceAddress()
	dstAddr := h.DestinationAddress()

	// As per RFC 1122 section 3.2.1.3:
	//   When a host sends any datagram, the IP source address MUST
	//   be one of its own IP addresses (but not a broadcast or
	//   multicast address).
	if srcAddr == header.IPv4Broadcast || header.IsV4MulticastAddress(srcAddr) {
		stats.IP.InvalidSourceAddressesReceived.Increment()
		return
	}
	// Make sure the source address is not a subnet-local broadcast address.
	if addressEndpoint := e.AcquireAssignedAddress(srcAddr, false /* createTemp */, stack.NeverPrimaryEndpoint); addressEndpoint != nil {
		subnet := addressEndpoint.Subnet()
		addressEndpoint.DecRef()
		if subnet.IsBroadcast(srcAddr) {
			stats.IP.InvalidSourceAddressesReceived.Increment()
			return
		}
	}

	// The destination address should be an address we own or a group we joined
	// for us to receive the packet. Otherwise, attempt to forward the packet.
	if addressEndpoint := e.AcquireAssignedAddress(dstAddr, e.nic.Promiscuous(), stack.CanBePrimaryEndpoint); addressEndpoint != nil {
		subnet := addressEndpoint.AddressWithPrefix().Subnet()
		addressEndpoint.DecRef()
		pkt.NetworkPacketInfo.LocalAddressBroadcast = subnet.IsBroadcast(dstAddr) || dstAddr == header.IPv4Broadcast
	} else if !e.IsInGroup(dstAddr) {
		if !e.protocol.Forwarding() {
			stats.IP.InvalidDestinationAddressesReceived.Increment()
			return
		}

		_ = e.forwardPacket(pkt)
		return
	}

	// iptables filtering. All packets that reach here are intended for
	// this machine and will not be forwarded.
	if ok := e.protocol.stack.IPTables().Check(stack.Input, pkt, nil, nil, "", ""); !ok {
		// iptables is telling us to drop the packet.
		stats.IP.IPTablesInputDropped.Increment()
		return
	}

	if h.More() || h.FragmentOffset() != 0 {
		if pkt.Data.Size()+pkt.TransportHeader().View().Size() == 0 {
			// Drop the packet as it's marked as a fragment but has
			// no payload.
			stats.IP.MalformedPacketsReceived.Increment()
			stats.IP.MalformedFragmentsReceived.Increment()
			return
		}
		// The packet is a fragment, let's try to reassemble it.
		start := h.FragmentOffset()
		// Drop the fragment if the size of the reassembled payload would exceed the
		// maximum payload size.
		//
		// Note that this addition doesn't overflow even on 32bit architecture
		// because pkt.Data.Size() should not exceed 65535 (the max IP datagram
		// size). Otherwise the packet would've been rejected as invalid before
		// reaching here.
		if int(start)+pkt.Data.Size() > header.IPv4MaximumPayloadSize {
			stats.IP.MalformedPacketsReceived.Increment()
			stats.IP.MalformedFragmentsReceived.Increment()
			return
		}

		proto := h.Protocol()
		data, _, ready, err := e.protocol.fragmentation.Process(
			// As per RFC 791 section 2.3, the identification value is unique
			// for a source-destination pair and protocol.
			fragmentation.FragmentID{
				Source:      h.SourceAddress(),
				Destination: h.DestinationAddress(),
				ID:          uint32(h.ID()),
				Protocol:    proto,
			},
			start,
			start+uint16(pkt.Data.Size())-1,
			h.More(),
			proto,
			pkt,
		)
		if err != nil {
			stats.IP.MalformedPacketsReceived.Increment()
			stats.IP.MalformedFragmentsReceived.Increment()
			return
		}
		if !ready {
			return
		}
		pkt.Data = data

		// The reassembler doesn't take care of fixing up the header, so we need
		// to do it here.
		h.SetTotalLength(uint16(pkt.Data.Size() + len((h))))
		h.SetFlagsFragmentOffset(0, 0)
	}
	stats.IP.PacketsDelivered.Increment()

	p := h.TransportProtocol()
	if p == header.ICMPv4ProtocolNumber {
		// TODO(gvisor.dev/issues/3810): when we sort out ICMP and transport
		// headers, the setting of the transport number here should be
		// unnecessary and removed.
		pkt.TransportProtocolNumber = p
		e.handleICMP(pkt)
		return
	}
	if p == header.IGMPProtocolNumber {
		e.mu.Lock()
		e.mu.igmp.handleIGMP(pkt)
		e.mu.Unlock()
		return
	}
	if opts := h.Options(); len(opts) != 0 {
		// TODO(gvisor.dev/issue/4586):
		// When we add forwarding support we should use the verified options
		// rather than just throwing them away.
		aux, _, err := e.processIPOptions(pkt, opts, &optionUsageReceive{})
		if err != nil {
			switch {
			case
				errors.Is(err, header.ErrIPv4OptDuplicate),
				errors.Is(err, errIPv4RecordRouteOptInvalidPointer),
				errors.Is(err, errIPv4RecordRouteOptInvalidLength),
				errors.Is(err, errIPv4TimestampOptInvalidLength),
				errors.Is(err, errIPv4TimestampOptInvalidPointer),
				errors.Is(err, errIPv4TimestampOptOverflow):
				_ = e.protocol.returnError(&icmpReasonParamProblem{pointer: aux}, pkt)
				stats.MalformedRcvdPackets.Increment()
				stats.IP.MalformedPacketsReceived.Increment()
			}
			return
		}
	}

	switch res := e.dispatcher.DeliverTransportPacket(p, pkt); res {
	case stack.TransportPacketHandled:
	case stack.TransportPacketDestinationPortUnreachable:
		// As per RFC: 1122 Section 3.2.2.1 A host SHOULD generate Destination
		//   Unreachable messages with code:
		//     3 (Port Unreachable), when the designated transport protocol
		//     (e.g., UDP) is unable to demultiplex the datagram but has no
		//     protocol mechanism to inform the sender.
		_ = e.protocol.returnError(&icmpReasonPortUnreachable{}, pkt)
	case stack.TransportPacketProtocolUnreachable:
		// As per RFC: 1122 Section 3.2.2.1
		//   A host SHOULD generate Destination Unreachable messages with code:
		//     2 (Protocol Unreachable), when the designated transport protocol
		//     is not supported
		_ = e.protocol.returnError(&icmpReasonProtoUnreachable{}, pkt)
	default:
		panic(fmt.Sprintf("unrecognized result from DeliverTransportPacket = %d", res))
	}
}

// Close cleans up resources associated with the endpoint.
func (e *endpoint) Close() {
	e.mu.Lock()
	defer e.mu.Unlock()

	e.disableLocked()
	e.mu.addressableEndpointState.Cleanup()
}

// AddAndAcquirePermanentAddress implements stack.AddressableEndpoint.
func (e *endpoint) AddAndAcquirePermanentAddress(addr tcpip.AddressWithPrefix, peb stack.PrimaryEndpointBehavior, configType stack.AddressConfigType, deprecated bool) (stack.AddressEndpoint, *tcpip.Error) {
	e.mu.Lock()
	defer e.mu.Unlock()

	ep, err := e.mu.addressableEndpointState.AddAndAcquirePermanentAddress(addr, peb, configType, deprecated)
	if err == nil {
		e.mu.igmp.sendQueuedReports()
	}
	return ep, err
}

// RemovePermanentAddress implements stack.AddressableEndpoint.
func (e *endpoint) RemovePermanentAddress(addr tcpip.Address) *tcpip.Error {
	e.mu.Lock()
	defer e.mu.Unlock()
	return e.mu.addressableEndpointState.RemovePermanentAddress(addr)
}

// MainAddress implements stack.AddressableEndpoint.
func (e *endpoint) MainAddress() tcpip.AddressWithPrefix {
	e.mu.RLock()
	defer e.mu.RUnlock()
	return e.mu.addressableEndpointState.MainAddress()
}

// AcquireAssignedAddress implements stack.AddressableEndpoint.
func (e *endpoint) AcquireAssignedAddress(localAddr tcpip.Address, allowTemp bool, tempPEB stack.PrimaryEndpointBehavior) stack.AddressEndpoint {
	e.mu.Lock()
	defer e.mu.Unlock()

	loopback := e.nic.IsLoopback()
	return e.mu.addressableEndpointState.AcquireAssignedAddressOrMatching(localAddr, func(addressEndpoint stack.AddressEndpoint) bool {
		subnet := addressEndpoint.Subnet()
		// IPv4 has a notion of a subnet broadcast address and considers the
		// loopback interface bound to an address's whole subnet (on linux).
		return subnet.IsBroadcast(localAddr) || (loopback && subnet.Contains(localAddr))
	}, allowTemp, tempPEB)
}

// AcquireOutgoingPrimaryAddress implements stack.AddressableEndpoint.
func (e *endpoint) AcquireOutgoingPrimaryAddress(remoteAddr tcpip.Address, allowExpired bool) stack.AddressEndpoint {
	e.mu.RLock()
	defer e.mu.RUnlock()
	return e.acquireOutgoingPrimaryAddressRLocked(remoteAddr, allowExpired)
}

// acquireOutgoingPrimaryAddressRLocked is like AcquireOutgoingPrimaryAddress
// but with locking requirements
//
// Precondition: igmp.ep.mu must be read locked.
func (e *endpoint) acquireOutgoingPrimaryAddressRLocked(remoteAddr tcpip.Address, allowExpired bool) stack.AddressEndpoint {
	return e.mu.addressableEndpointState.AcquireOutgoingPrimaryAddress(remoteAddr, allowExpired)
}

// PrimaryAddresses implements stack.AddressableEndpoint.
func (e *endpoint) PrimaryAddresses() []tcpip.AddressWithPrefix {
	e.mu.RLock()
	defer e.mu.RUnlock()
	return e.mu.addressableEndpointState.PrimaryAddresses()
}

// PermanentAddresses implements stack.AddressableEndpoint.
func (e *endpoint) PermanentAddresses() []tcpip.AddressWithPrefix {
	e.mu.RLock()
	defer e.mu.RUnlock()
	return e.mu.addressableEndpointState.PermanentAddresses()
}

// JoinGroup implements stack.GroupAddressableEndpoint.
func (e *endpoint) JoinGroup(addr tcpip.Address) *tcpip.Error {
	e.mu.Lock()
	defer e.mu.Unlock()
	return e.joinGroupLocked(addr)
}

// joinGroupLocked is like JoinGroup but with locking requirements.
//
// Precondition: e.mu must be locked.
func (e *endpoint) joinGroupLocked(addr tcpip.Address) *tcpip.Error {
	if !header.IsV4MulticastAddress(addr) {
		return tcpip.ErrBadAddress
	}

	e.mu.igmp.joinGroup(addr)
	return nil
}

// LeaveGroup implements stack.GroupAddressableEndpoint.
func (e *endpoint) LeaveGroup(addr tcpip.Address) *tcpip.Error {
	e.mu.Lock()
	defer e.mu.Unlock()
	return e.leaveGroupLocked(addr)
}

// leaveGroupLocked is like LeaveGroup but with locking requirements.
//
// Precondition: e.mu must be locked.
func (e *endpoint) leaveGroupLocked(addr tcpip.Address) *tcpip.Error {
	return e.mu.igmp.leaveGroup(addr)
}

// IsInGroup implements stack.GroupAddressableEndpoint.
func (e *endpoint) IsInGroup(addr tcpip.Address) bool {
	e.mu.RLock()
	defer e.mu.RUnlock()
	return e.mu.igmp.isInGroup(addr)
}

var _ stack.ForwardingNetworkProtocol = (*protocol)(nil)
var _ stack.NetworkProtocol = (*protocol)(nil)
var _ fragmentation.TimeoutHandler = (*protocol)(nil)

type protocol struct {
	stack *stack.Stack

	// defaultTTL is the current default TTL for the protocol. Only the
	// uint8 portion of it is meaningful.
	//
	// Must be accessed using atomic operations.
	defaultTTL uint32

	// forwarding is set to 1 when the protocol has forwarding enabled and 0
	// when it is disabled.
	//
	// Must be accessed using atomic operations.
	forwarding uint32

	ids    []uint32
	hashIV uint32

	fragmentation *fragmentation.Fragmentation

	options Options
}

// Number returns the ipv4 protocol number.
func (p *protocol) Number() tcpip.NetworkProtocolNumber {
	return ProtocolNumber
}

// MinimumPacketSize returns the minimum valid ipv4 packet size.
func (p *protocol) MinimumPacketSize() int {
	return header.IPv4MinimumSize
}

// DefaultPrefixLen returns the IPv4 default prefix length.
func (p *protocol) DefaultPrefixLen() int {
	return header.IPv4AddressSize * 8
}

// ParseAddresses implements NetworkProtocol.ParseAddresses.
func (*protocol) ParseAddresses(v buffer.View) (src, dst tcpip.Address) {
	h := header.IPv4(v)
	return h.SourceAddress(), h.DestinationAddress()
}

// SetOption implements NetworkProtocol.SetOption.
func (p *protocol) SetOption(option tcpip.SettableNetworkProtocolOption) *tcpip.Error {
	switch v := option.(type) {
	case *tcpip.DefaultTTLOption:
		p.SetDefaultTTL(uint8(*v))
		return nil
	default:
		return tcpip.ErrUnknownProtocolOption
	}
}

// Option implements NetworkProtocol.Option.
func (p *protocol) Option(option tcpip.GettableNetworkProtocolOption) *tcpip.Error {
	switch v := option.(type) {
	case *tcpip.DefaultTTLOption:
		*v = tcpip.DefaultTTLOption(p.DefaultTTL())
		return nil
	default:
		return tcpip.ErrUnknownProtocolOption
	}
}

// SetDefaultTTL sets the default TTL for endpoints created with this protocol.
func (p *protocol) SetDefaultTTL(ttl uint8) {
	atomic.StoreUint32(&p.defaultTTL, uint32(ttl))
}

// DefaultTTL returns the default TTL for endpoints created with this protocol.
func (p *protocol) DefaultTTL() uint8 {
	return uint8(atomic.LoadUint32(&p.defaultTTL))
}

// Close implements stack.TransportProtocol.Close.
func (*protocol) Close() {}

// Wait implements stack.TransportProtocol.Wait.
func (*protocol) Wait() {}

// Parse implements stack.NetworkProtocol.Parse.
func (*protocol) Parse(pkt *stack.PacketBuffer) (proto tcpip.TransportProtocolNumber, hasTransportHdr bool, ok bool) {
	if ok := parse.IPv4(pkt); !ok {
		return 0, false, false
	}

	ipHdr := header.IPv4(pkt.NetworkHeader().View())
	return ipHdr.TransportProtocol(), !ipHdr.More() && ipHdr.FragmentOffset() == 0, true
}

// Forwarding implements stack.ForwardingNetworkProtocol.
func (p *protocol) Forwarding() bool {
	return uint8(atomic.LoadUint32(&p.forwarding)) == 1
}

// SetForwarding implements stack.ForwardingNetworkProtocol.
func (p *protocol) SetForwarding(v bool) {
	if v {
		atomic.StoreUint32(&p.forwarding, 1)
	} else {
		atomic.StoreUint32(&p.forwarding, 0)
	}
}

// calculateNetworkMTU calculates the network-layer payload MTU based on the
// link-layer payload mtu.
func calculateNetworkMTU(linkMTU, networkHeaderSize uint32) (uint32, *tcpip.Error) {
	if linkMTU < header.IPv4MinimumMTU {
		return 0, tcpip.ErrInvalidEndpointState
	}

	// As per RFC 791 section 3.1, an IPv4 header cannot exceed 60 bytes in
	// length:
	//   The maximal internet header is 60 octets, and a typical internet header
	//   is 20 octets, allowing a margin for headers of higher level protocols.
	if networkHeaderSize > header.IPv4MaximumHeaderSize {
		return 0, tcpip.ErrMalformedHeader
	}

	networkMTU := linkMTU
	if networkMTU > MaxTotalSize {
		networkMTU = MaxTotalSize
	}

	return networkMTU - uint32(networkHeaderSize), nil
}

func packetMustBeFragmented(pkt *stack.PacketBuffer, networkMTU uint32, gso *stack.GSO) bool {
	payload := pkt.TransportHeader().View().Size() + pkt.Data.Size()
	return (gso == nil || gso.Type == stack.GSONone) && uint32(payload) > networkMTU
}

// addressToUint32 translates an IPv4 address into its little endian uint32
// representation.
//
// This function does the same thing as binary.LittleEndian.Uint32 but operates
// on a tcpip.Address (a string) without the need to convert it to a byte slice,
// which would cause an allocation.
func addressToUint32(addr tcpip.Address) uint32 {
	_ = addr[3] // bounds check hint to compiler
	return uint32(addr[0]) | uint32(addr[1])<<8 | uint32(addr[2])<<16 | uint32(addr[3])<<24
}

// hashRoute calculates a hash value for the given source/destination pair using
// the addresses, transport protocol number and a 32-bit number to generate the
// hash.
func hashRoute(srcAddr, dstAddr tcpip.Address, protocol tcpip.TransportProtocolNumber, hashIV uint32) uint32 {
	a := addressToUint32(srcAddr)
	b := addressToUint32(dstAddr)
	return hash.Hash3Words(a, b, uint32(protocol), hashIV)
}

// Options holds options to configure a new protocol.
type Options struct {
	// IGMP holds options for IGMP.
	IGMP IGMPOptions
}

// NewProtocolWithOptions returns an IPv4 network protocol.
func NewProtocolWithOptions(opts Options) stack.NetworkProtocolFactory {
	ids := make([]uint32, buckets)

	// Randomly initialize hashIV and the ids.
	r := hash.RandN32(1 + buckets)
	for i := range ids {
		ids[i] = r[i]
	}
	hashIV := r[buckets]

	return func(s *stack.Stack) stack.NetworkProtocol {
		p := &protocol{
			stack:      s,
			ids:        ids,
			hashIV:     hashIV,
			defaultTTL: DefaultTTL,
			options:    opts,
		}
		p.fragmentation = fragmentation.NewFragmentation(fragmentblockSize, fragmentation.HighFragThreshold, fragmentation.LowFragThreshold, ReassembleTimeout, s.Clock(), p)
		return p
	}
}

// NewProtocol is equivalent to NewProtocolWithOptions with an empty Options.
func NewProtocol(s *stack.Stack) stack.NetworkProtocol {
	return NewProtocolWithOptions(Options{})(s)
}

func buildNextFragment(pf *fragmentation.PacketFragmenter, originalIPHeader header.IPv4) (*stack.PacketBuffer, bool) {
	fragPkt, offset, copied, more := pf.BuildNextFragment()
	fragPkt.NetworkProtocolNumber = ProtocolNumber

	originalIPHeaderLength := len(originalIPHeader)
	nextFragIPHeader := header.IPv4(fragPkt.NetworkHeader().Push(originalIPHeaderLength))
	fragPkt.NetworkProtocolNumber = ProtocolNumber

	if copied := copy(nextFragIPHeader, originalIPHeader); copied != len(originalIPHeader) {
		panic(fmt.Sprintf("wrong number of bytes copied into fragmentIPHeaders: got = %d, want = %d", copied, originalIPHeaderLength))
	}

	flags := originalIPHeader.Flags()
	if more {
		flags |= header.IPv4FlagMoreFragments
	}
	nextFragIPHeader.SetFlagsFragmentOffset(flags, uint16(offset))
	nextFragIPHeader.SetTotalLength(uint16(nextFragIPHeader.HeaderLength()) + uint16(copied))
	nextFragIPHeader.SetChecksum(0)
	nextFragIPHeader.SetChecksum(^nextFragIPHeader.CalculateChecksum())

	return fragPkt, more
}

// optionAction describes possible actions that may be taken on an option
// while processing it.
type optionAction uint8

const (
	// optionRemove says that the option should not be in the output option set.
	optionRemove optionAction = iota

	// optionProcess says that the option should be fully processed.
	optionProcess

	// optionVerify says the option should be checked and passed unchanged.
	optionVerify

	// optionPass says to pass the output set without checking.
	optionPass
)

// optionActions list what to do for each option in a given scenario.
type optionActions struct {
	// timestamp controls what to do with a Timestamp option.
	timestamp optionAction

	// recordroute controls what to do with a Record Route option.
	recordRoute optionAction

	// unknown controls what to do with an unknown option.
	unknown optionAction
}

// optionsUsage specifies the ways options may be operated upon for a given
// scenario during packet processing.
type optionsUsage interface {
	actions() optionActions
}

// optionUsageReceive implements optionsUsage for received packets.
type optionUsageReceive struct{}

// actions implements optionsUsage.
func (*optionUsageReceive) actions() optionActions {
	return optionActions{
		timestamp:   optionVerify,
		recordRoute: optionVerify,
		unknown:     optionPass,
	}
}

// TODO(gvisor.dev/issue/4586): Add an entry here for forwarding when it
// is enabled (Process, Process, Pass) and for fragmenting (Process, Process,
// Pass for frag1, but Remove,Remove,Remove for all other frags).

// optionUsageEcho implements optionsUsage for echo packet processing.
type optionUsageEcho struct{}

// actions implements optionsUsage.
func (*optionUsageEcho) actions() optionActions {
	return optionActions{
		timestamp:   optionProcess,
		recordRoute: optionProcess,
		unknown:     optionRemove,
	}
}

var (
	errIPv4TimestampOptInvalidLength  = errors.New("invalid Timestamp length")
	errIPv4TimestampOptInvalidPointer = errors.New("invalid Timestamp pointer")
	errIPv4TimestampOptOverflow       = errors.New("overflow in Timestamp")
	errIPv4TimestampOptInvalidFlags   = errors.New("invalid Timestamp flags")
)

// handleTimestamp does any required processing on a Timestamp option
// in place.
func handleTimestamp(tsOpt header.IPv4OptionTimestamp, localAddress tcpip.Address, clock tcpip.Clock, usage optionsUsage) (uint8, error) {
	flags := tsOpt.Flags()
	var entrySize uint8
	switch flags {
	case header.IPv4OptionTimestampOnlyFlag:
		entrySize = header.IPv4OptionTimestampSize
	case
		header.IPv4OptionTimestampWithIPFlag,
		header.IPv4OptionTimestampWithPredefinedIPFlag:
		entrySize = header.IPv4OptionTimestampWithAddrSize
	default:
		return header.IPv4OptTSOFLWAndFLGOffset, errIPv4TimestampOptInvalidFlags
	}

	pointer := tsOpt.Pointer()
	// RFC 791 page 22 states: "The smallest legal value is 5."
	// Since the pointer is 1 based, and the header is 4 bytes long the
	// pointer must point beyond the header therefore 4 or less is bad.
	if pointer <= header.IPv4OptionTimestampHdrLength {
		return header.IPv4OptTSPointerOffset, errIPv4TimestampOptInvalidPointer
	}
	// To simplify processing below, base further work on the array of timestamps
	// beyond the header, rather than on the whole option. Also to aid
	// calculations set 'nextSlot' to be 0 based as in the packet it is 1 based.
	nextSlot := pointer - (header.IPv4OptionTimestampHdrLength + 1)
	optLen := tsOpt.Size()
	dataLength := optLen - header.IPv4OptionTimestampHdrLength

	// In the section below, we verify the pointer, length and overflow counter
	// fields of the option. The distinction is in which byte you return as being
	// in error in the ICMP packet. Offsets 1 (length), 2 pointer)
	// or 3 (overflowed counter).
	//
	// The following RFC sections cover this section:
	//
	// RFC 791 (page 22):
	//    If there is some room but not enough room for a full timestamp
	//    to be inserted, or the overflow count itself overflows, the
	//    original datagram is considered to be in error and is discarded.
	//    In either case an ICMP parameter problem message may be sent to
	//    the source host [3].
	//
	// You can get this situation in two ways. Firstly if the data area is not
	// a multiple of the entry size or secondly, if the pointer is not at a
	// multiple of the entry size. The wording of the RFC suggests that
	// this is not an error until you actually run out of space.
	if pointer > optLen {
		// RFC 791 (page 22) says we should switch to using the overflow count.
		//    If the timestamp data area is already full (the pointer exceeds
		//    the length) the datagram is forwarded without inserting the
		//    timestamp, but the overflow count is incremented by one.
		if flags == header.IPv4OptionTimestampWithPredefinedIPFlag {
			// By definition we have nothing to do.
			return 0, nil
		}

		if tsOpt.IncOverflow() != 0 {
			return 0, nil
		}
		// The overflow count is also full.
		return header.IPv4OptTSOFLWAndFLGOffset, errIPv4TimestampOptOverflow
	}
	if nextSlot+entrySize > dataLength {
		// The data area isn't full but there isn't room for a new entry.
		// Either Length or Pointer could be bad.
		if false {
			// We must select Pointer for Linux compatibility, even if
			// only the length is bad.
			// The Linux code is at (in October 2020)
			// https://github.com/torvalds/linux/blob/bbf5c979011a099af5dc76498918ed7df445635b/net/ipv4/ip_options.c#L367-L370
			//		if (optptr[2]+3 > optlen) {
			//			pp_ptr = optptr + 2;
			//			goto error;
			//		}
			// which doesn't distinguish between which of optptr[2] or optlen
			// is wrong, but just arbitrarily decides on optptr+2.
			if dataLength%entrySize != 0 {
				// The Data section size should be a multiple of the expected
				// timestamp entry size.
				return header.IPv4OptionLengthOffset, errIPv4TimestampOptInvalidLength
			}
			// If the size is OK, the pointer must be corrupted.
		}
		return header.IPv4OptTSPointerOffset, errIPv4TimestampOptInvalidPointer
	}

	if usage.actions().timestamp == optionProcess {
		tsOpt.UpdateTimestamp(localAddress, clock)
	}
	return 0, nil
}

var (
	errIPv4RecordRouteOptInvalidLength  = errors.New("invalid length in Record Route")
	errIPv4RecordRouteOptInvalidPointer = errors.New("invalid pointer in Record Route")
)

// handleRecordRoute checks and processes a Record route option. It is much
// like the timestamp type 1 option, but without timestamps. The passed in
// address is stored in the option in the correct spot if possible.
func handleRecordRoute(rrOpt header.IPv4OptionRecordRoute, localAddress tcpip.Address, usage optionsUsage) (uint8, error) {
	optlen := rrOpt.Size()

	if optlen < header.IPv4AddressSize+header.IPv4OptionRecordRouteHdrLength {
		return header.IPv4OptionLengthOffset, errIPv4RecordRouteOptInvalidLength
	}

	pointer := rrOpt.Pointer()
	// RFC 791 page 20 states:
	//      The pointer is relative to this option, and the
	//      smallest legal value for the pointer is 4.
	// Since the pointer is 1 based, and the header is 3 bytes long the
	// pointer must point beyond the header therefore 3 or less is bad.
	if pointer <= header.IPv4OptionRecordRouteHdrLength {
		return header.IPv4OptRRPointerOffset, errIPv4RecordRouteOptInvalidPointer
	}

	// RFC 791 page 21 says
	//       If the route data area is already full (the pointer exceeds the
	//       length) the datagram is forwarded without inserting the address
	//       into the recorded route. If there is some room but not enough
	//       room for a full address to be inserted, the original datagram is
	//       considered to be in error and is discarded.  In either case an
	//       ICMP parameter problem message may be sent to the source
	//       host.
	// The use of the words "In either case" suggests that a 'full' RR option
	// could generate an ICMP at every hop after it fills up. We chose to not
	// do this (as do most implementations). It is probable that the inclusion
	// of these words is a copy/paste error from the timestamp option where
	// there are two failure reasons given.
	if pointer > optlen {
		return 0, nil
	}

	// The data area isn't full but there isn't room for a new entry.
	// Either Length or Pointer could be bad. We must select Pointer for Linux
	// compatibility, even if only the length is bad. NB. pointer is 1 based.
	if pointer+header.IPv4AddressSize > optlen+1 {
		if false {
			// This is what we would do if we were not being Linux compatible.
			// Check for bad pointer or length value. Must be a multiple of 4 after
			// accounting for the 3 byte header and not within that header.
			// RFC 791, page 20 says:
			//       The pointer is relative to this option, and the
			//       smallest legal value for the pointer is 4.
			//
			//       A recorded route is composed of a series of internet addresses.
			//       Each internet address is 32 bits or 4 octets.
			// Linux skips this test so we must too.  See Linux code at:
			// https://github.com/torvalds/linux/blob/bbf5c979011a099af5dc76498918ed7df445635b/net/ipv4/ip_options.c#L338-L341
			//    if (optptr[2]+3 > optlen) {
			//      pp_ptr = optptr + 2;
			//      goto error;
			//    }
			if (optlen-header.IPv4OptionRecordRouteHdrLength)%header.IPv4AddressSize != 0 {
				// Length is bad, not on integral number of slots.
				return header.IPv4OptionLengthOffset, errIPv4RecordRouteOptInvalidLength
			}
			// If not length, the fault must be with the pointer.
		}
		return header.IPv4OptRRPointerOffset, errIPv4RecordRouteOptInvalidPointer
	}
	if usage.actions().recordRoute == optionVerify {
		return 0, nil
	}
	rrOpt.StoreAddress(localAddress)
	return 0, nil
}

// processIPOptions parses the IPv4 options and produces a new set of options
// suitable for use in the next step of packet processing as informed by usage.
// The original will not be touched.
//
// Returns
// - The location of an error if there was one (or 0 if no error)
// - If there is an error, information as to what it was was.
// - The replacement option set.
func (e *endpoint) processIPOptions(pkt *stack.PacketBuffer, orig header.IPv4Options, usage optionsUsage) (uint8, header.IPv4Options, error) {
	stats := e.protocol.stack.Stats()
	opts := header.IPv4Options(orig)
	optIter := opts.MakeIterator()

	// Each option other than NOP must only appear (RFC 791 section 3.1, at the
	// definition of every type). Keep track of each of the possible types in
	// the 8 bit 'type' field.
	var seenOptions [math.MaxUint8 + 1]bool

	// TODO(gvisor.dev/issue/4586):
	// This will need tweaking  when we start really forwarding packets
	// as we may need to get two addresses, for rx and tx interfaces.
	// We will also have to take usage into account.
	prefixedAddress, err := e.protocol.stack.GetMainNICAddress(e.nic.ID(), ProtocolNumber)
	localAddress := prefixedAddress.Address
	if err != nil {
		h := header.IPv4(pkt.NetworkHeader().View())
		dstAddr := h.DestinationAddress()
		if pkt.NetworkPacketInfo.LocalAddressBroadcast || header.IsV4MulticastAddress(dstAddr) {
			return 0 /* errCursor */, nil, header.ErrIPv4OptionAddress
		}
		localAddress = dstAddr
	}

	for {
		option, done, err := optIter.Next()
		if done || err != nil {
			return optIter.ErrCursor, optIter.Finalize(), err
		}
		optType := option.Type()
		if optType == header.IPv4OptionNOPType {
			optIter.PushNOPOrEnd(optType)
			continue
		}
		if optType == header.IPv4OptionListEndType {
			optIter.PushNOPOrEnd(optType)
			return 0 /* errCursor */, optIter.Finalize(), nil /* err */
		}

		// check for repeating options (multiple NOPs are OK)
		if seenOptions[optType] {
			return optIter.ErrCursor, nil, header.ErrIPv4OptDuplicate
		}
		seenOptions[optType] = true

		optLen := int(option.Size())
		switch option := option.(type) {
		case *header.IPv4OptionTimestamp:
			stats.IP.OptionTSReceived.Increment()
			if usage.actions().timestamp != optionRemove {
				clock := e.protocol.stack.Clock()
				newBuffer := optIter.RemainingBuffer()[:len(*option)]
				_ = copy(newBuffer, option.Contents())
				offset, err := handleTimestamp(header.IPv4OptionTimestamp(newBuffer), localAddress, clock, usage)
				if err != nil {
					return optIter.ErrCursor + offset, nil, err
				}
				optIter.ConsumeBuffer(optLen)
			}

		case *header.IPv4OptionRecordRoute:
			stats.IP.OptionRRReceived.Increment()
			if usage.actions().recordRoute != optionRemove {
				newBuffer := optIter.RemainingBuffer()[:len(*option)]
				_ = copy(newBuffer, option.Contents())
				offset, err := handleRecordRoute(header.IPv4OptionRecordRoute(newBuffer), localAddress, usage)
				if err != nil {
					return optIter.ErrCursor + offset, nil, err
				}
				optIter.ConsumeBuffer(optLen)
			}

		default:
			stats.IP.OptionUnknownReceived.Increment()
			if usage.actions().unknown == optionPass {
				newBuffer := optIter.RemainingBuffer()[:optLen]
				// Arguments already heavily checked.. ignore result.
				_ = copy(newBuffer, option.Contents())
				optIter.ConsumeBuffer(optLen)
			}
		}
	}
}