summaryrefslogtreecommitdiffhomepage
path: root/pkg/tcpip/network/ipv4/icmp.go
blob: 3407755eda8709078dca27f733f16d13f454fb96 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package ipv4

import (
	"fmt"

	"gvisor.dev/gvisor/pkg/tcpip"
	"gvisor.dev/gvisor/pkg/tcpip/buffer"
	"gvisor.dev/gvisor/pkg/tcpip/header"
	"gvisor.dev/gvisor/pkg/tcpip/stack"
)

// handleControl handles the case when an ICMP packet contains the headers of
// the original packet that caused the ICMP one to be sent. This information is
// used to find out which transport endpoint must be notified about the ICMP
// packet.
func (e *endpoint) handleControl(typ stack.ControlType, extra uint32, pkt *stack.PacketBuffer) {
	h, ok := pkt.Data.PullUp(header.IPv4MinimumSize)
	if !ok {
		return
	}
	hdr := header.IPv4(h)

	// We don't use IsValid() here because ICMP only requires that the IP
	// header plus 8 bytes of the transport header be included. So it's
	// likely that it is truncated, which would cause IsValid to return
	// false.
	//
	// Drop packet if it doesn't have the basic IPv4 header or if the
	// original source address doesn't match an address we own.
	src := hdr.SourceAddress()
	if e.protocol.stack.CheckLocalAddress(e.nic.ID(), ProtocolNumber, src) == 0 {
		return
	}

	hlen := int(hdr.HeaderLength())
	if pkt.Data.Size() < hlen || hdr.FragmentOffset() != 0 {
		// We won't be able to handle this if it doesn't contain the
		// full IPv4 header, or if it's a fragment not at offset 0
		// (because it won't have the transport header).
		return
	}

	// Skip the ip header, then deliver control message.
	pkt.Data.TrimFront(hlen)
	p := hdr.TransportProtocol()
	e.dispatcher.DeliverTransportControlPacket(src, hdr.DestinationAddress(), ProtocolNumber, p, typ, extra, pkt)
}

func (e *endpoint) handleICMP(r *stack.Route, pkt *stack.PacketBuffer) {
	stats := r.Stats()
	received := stats.ICMP.V4PacketsReceived
	// TODO(gvisor.dev/issue/170): ICMP packets don't have their
	// TransportHeader fields set. See icmp/protocol.go:protocol.Parse for a
	// full explanation.
	v, ok := pkt.Data.PullUp(header.ICMPv4MinimumSize)
	if !ok {
		received.Invalid.Increment()
		return
	}
	h := header.ICMPv4(v)

	// TODO(b/112892170): Meaningfully handle all ICMP types.
	switch h.Type() {
	case header.ICMPv4Echo:
		received.Echo.Increment()

		// Only send a reply if the checksum is valid.
		headerChecksum := h.Checksum()
		h.SetChecksum(0)
		calculatedChecksum := ^header.ChecksumVV(pkt.Data, 0 /* initial */)
		h.SetChecksum(headerChecksum)
		if calculatedChecksum != headerChecksum {
			// It's possible that a raw socket still expects to receive this.
			e.dispatcher.DeliverTransportPacket(r, header.ICMPv4ProtocolNumber, pkt)
			received.Invalid.Increment()
			return
		}

		// DeliverTransportPacket will take ownership of pkt so don't use it beyond
		// this point. Make a deep copy of the data before pkt gets sent as we will
		// be modifying fields.
		//
		// TODO(gvisor.dev/issue/4399): The copy may not be needed if there are no
		// waiting endpoints. Consider moving responsibility for doing the copy to
		// DeliverTransportPacket so that is is only done when needed.
		replyData := pkt.Data.ToOwnedView()
		replyIPHdr := header.IPv4(append(buffer.View(nil), pkt.NetworkHeader().View()...))

		e.dispatcher.DeliverTransportPacket(r, header.ICMPv4ProtocolNumber, pkt)

		// As per RFC 1122 section 3.2.1.3, when a host sends any datagram, the IP
		// source address MUST be one of its own IP addresses (but not a broadcast
		// or multicast address).
		localAddr := r.LocalAddress
		if r.IsInboundBroadcast() || header.IsV4MulticastAddress(localAddr) {
			localAddr = ""
		}

		r, err := r.Stack().FindRoute(e.nic.ID(), localAddr, r.RemoteAddress, ProtocolNumber, false /* multicastLoop */)
		if err != nil {
			// If we cannot find a route to the destination, silently drop the packet.
			return
		}
		defer r.Release()

		// TODO(gvisor.dev/issue/3810:) When adding protocol numbers into the
		// header information, we may have to change this code to handle the
		// ICMP header no longer being in the data buffer.

		// Because IP and ICMP are so closely intertwined, we need to handcraft our
		// IP header to be able to follow RFC 792. The wording on page 13 is as
		// follows:
		//   IP Fields:
		//   Addresses
		//     The address of the source in an echo message will be the
		//     destination of the echo reply message.  To form an echo reply
		//     message, the source and destination addresses are simply reversed,
		//     the type code changed to 0, and the checksum recomputed.
		//
		// This was interpreted by early implementors to mean that all options must
		// be copied from the echo request IP header to the echo reply IP header
		// and this behaviour is still relied upon by some applications.
		//
		// Create a copy of the IP header we received, options and all, and change
		// The fields we need to alter.
		//
		// We need to produce the entire packet in the data segment in order to
		// use WriteHeaderIncludedPacket().
		replyIPHdr.SetSourceAddress(r.LocalAddress)
		replyIPHdr.SetDestinationAddress(r.RemoteAddress)
		replyIPHdr.SetTTL(r.DefaultTTL())

		replyICMPHdr := header.ICMPv4(replyData)
		replyICMPHdr.SetType(header.ICMPv4EchoReply)
		replyICMPHdr.SetChecksum(0)
		replyICMPHdr.SetChecksum(^header.Checksum(replyData, 0))

		replyVV := buffer.View(replyIPHdr).ToVectorisedView()
		replyVV.AppendView(replyData)
		replyPkt := stack.NewPacketBuffer(stack.PacketBufferOptions{
			ReserveHeaderBytes: int(r.MaxHeaderLength()),
			Data:               replyVV,
		})
		replyPkt.TransportProtocolNumber = header.ICMPv4ProtocolNumber

		// The checksum will be calculated so we don't need to do it here.
		sent := stats.ICMP.V4PacketsSent
		if err := r.WriteHeaderIncludedPacket(replyPkt); err != nil {
			sent.Dropped.Increment()
			return
		}
		sent.EchoReply.Increment()

	case header.ICMPv4EchoReply:
		received.EchoReply.Increment()

		e.dispatcher.DeliverTransportPacket(r, header.ICMPv4ProtocolNumber, pkt)

	case header.ICMPv4DstUnreachable:
		received.DstUnreachable.Increment()

		pkt.Data.TrimFront(header.ICMPv4MinimumSize)
		switch h.Code() {
		case header.ICMPv4HostUnreachable:
			e.handleControl(stack.ControlNoRoute, 0, pkt)

		case header.ICMPv4PortUnreachable:
			e.handleControl(stack.ControlPortUnreachable, 0, pkt)

		case header.ICMPv4FragmentationNeeded:
			mtu := uint32(h.MTU())
			e.handleControl(stack.ControlPacketTooBig, calculateMTU(mtu), pkt)
		}

	case header.ICMPv4SrcQuench:
		received.SrcQuench.Increment()

	case header.ICMPv4Redirect:
		received.Redirect.Increment()

	case header.ICMPv4TimeExceeded:
		received.TimeExceeded.Increment()

	case header.ICMPv4ParamProblem:
		received.ParamProblem.Increment()

	case header.ICMPv4Timestamp:
		received.Timestamp.Increment()

	case header.ICMPv4TimestampReply:
		received.TimestampReply.Increment()

	case header.ICMPv4InfoRequest:
		received.InfoRequest.Increment()

	case header.ICMPv4InfoReply:
		received.InfoReply.Increment()

	default:
		received.Invalid.Increment()
	}
}

// ======= ICMP Error packet generation =========

// icmpReason is a marker interface for IPv4 specific ICMP errors.
type icmpReason interface {
	isICMPReason()
}

// icmpReasonPortUnreachable is an error where the transport protocol has no
// listener and no alternative means to inform the sender.
type icmpReasonPortUnreachable struct{}

func (*icmpReasonPortUnreachable) isICMPReason() {}

// icmpReasonProtoUnreachable is an error where the transport protocol is
// not supported.
type icmpReasonProtoUnreachable struct{}

func (*icmpReasonProtoUnreachable) isICMPReason() {}

// returnError takes an error descriptor and generates the appropriate ICMP
// error packet for IPv4 and sends it back to the remote device that sent
// the problematic packet. It incorporates as much of that packet as
// possible as well as any error metadata as is available. returnError
// expects pkt to hold a valid IPv4 packet as per the wire format.
func (p *protocol) returnError(r *stack.Route, reason icmpReason, pkt *stack.PacketBuffer) *tcpip.Error {
	// We check we are responding only when we are allowed to.
	// See RFC 1812 section 4.3.2.7 (shown below).
	//
	// =========
	// 4.3.2.7 When Not to Send ICMP Errors
	//
	//  An ICMP error message MUST NOT be sent as the result of receiving:
	//
	//  o An ICMP error message, or
	//
	//  o A packet which fails the IP header validation tests described in
	//    Section [5.2.2] (except where that section specifically permits
	//    the sending of an ICMP error message), or
	//
	//  o A packet destined to an IP broadcast or IP multicast address, or
	//
	//  o A packet sent as a Link Layer broadcast or multicast, or
	//
	//  o Any fragment of a datagram other then the first fragment (i.e., a
	// packet for which the fragment offset in the IP header is nonzero).
	//
	// TODO(gvisor.dev/issues/4058): Make sure we don't send ICMP errors in
	// response to a non-initial fragment, but it currently can not happen.

	if r.IsInboundBroadcast() || header.IsV4MulticastAddress(r.LocalAddress) || r.RemoteAddress == header.IPv4Any {
		return nil
	}

	// Even if we were able to receive a packet from some remote, we may not have
	// a route to it - the remote may be blocked via routing rules. We must always
	// consult our routing table and find a route to the remote before sending any
	// packet.
	route, err := p.stack.FindRoute(r.NICID(), r.LocalAddress, r.RemoteAddress, ProtocolNumber, false /* multicastLoop */)
	if err != nil {
		return err
	}
	defer route.Release()
	// From this point on, the incoming route should no longer be used; route
	// must be used to send the ICMP error.
	r = nil

	sent := p.stack.Stats().ICMP.V4PacketsSent
	if !p.stack.AllowICMPMessage() {
		sent.RateLimited.Increment()
		return nil
	}

	networkHeader := pkt.NetworkHeader().View()
	transportHeader := pkt.TransportHeader().View()

	// Don't respond to icmp error packets.
	if header.IPv4(networkHeader).Protocol() == uint8(header.ICMPv4ProtocolNumber) {
		// TODO(gvisor.dev/issue/3810):
		// Unfortunately the current stack pretty much always has ICMPv4 headers
		// in the Data section of the packet but there is no guarantee that is the
		// case. If this is the case grab the header to make it like all other
		// packet types. When this is cleaned up the Consume should be removed.
		if transportHeader.IsEmpty() {
			var ok bool
			transportHeader, ok = pkt.TransportHeader().Consume(header.ICMPv4MinimumSize)
			if !ok {
				return nil
			}
		} else if transportHeader.Size() < header.ICMPv4MinimumSize {
			return nil
		}
		// We need to decide to explicitly name the packets we can respond to or
		// the ones we can not respond to. The decision is somewhat arbitrary and
		// if problems arise this could be reversed. It was judged less of a breach
		// of protocol to not respond to unknown non-error packets than to respond
		// to unknown error packets so we take the first approach.
		switch header.ICMPv4(transportHeader).Type() {
		case
			header.ICMPv4EchoReply,
			header.ICMPv4Echo,
			header.ICMPv4Timestamp,
			header.ICMPv4TimestampReply,
			header.ICMPv4InfoRequest,
			header.ICMPv4InfoReply:
		default:
			// Assume any type we don't know about may be an error type.
			return nil
		}
	}

	// Now work out how much of the triggering packet we should return.
	// As per RFC 1812 Section 4.3.2.3
	//
	//   ICMP datagram SHOULD contain as much of the original
	//   datagram as possible without the length of the ICMP
	//   datagram exceeding 576 bytes.
	//
	// NOTE: The above RFC referenced is different from the original
	// recommendation in RFC 1122 and RFC 792 where it mentioned that at
	// least 8 bytes of the payload must be included. Today linux and other
	// systems implement the RFC 1812 definition and not the original
	// requirement. We treat 8 bytes as the minimum but will try send more.
	mtu := int(route.MTU())
	if mtu > header.IPv4MinimumProcessableDatagramSize {
		mtu = header.IPv4MinimumProcessableDatagramSize
	}
	headerLen := int(route.MaxHeaderLength()) + header.ICMPv4MinimumSize
	available := int(mtu) - headerLen

	if available < header.IPv4MinimumSize+header.ICMPv4MinimumErrorPayloadSize {
		return nil
	}

	payloadLen := networkHeader.Size() + transportHeader.Size() + pkt.Data.Size()
	if payloadLen > available {
		payloadLen = available
	}

	// The buffers used by pkt may be used elsewhere in the system.
	// For example, an AF_RAW or AF_PACKET socket may use what the transport
	// protocol considers an unreachable destination. Thus we deep copy pkt to
	// prevent multiple ownership and SR errors. The new copy is a vectorized
	// view with the entire incoming IP packet reassembled and truncated as
	// required. This is now the payload of the new ICMP packet and no longer
	// considered a packet in its own right.
	newHeader := append(buffer.View(nil), networkHeader...)
	newHeader = append(newHeader, transportHeader...)
	payload := newHeader.ToVectorisedView()
	payload.AppendView(pkt.Data.ToView())
	payload.CapLength(payloadLen)

	icmpPkt := stack.NewPacketBuffer(stack.PacketBufferOptions{
		ReserveHeaderBytes: headerLen,
		Data:               payload,
	})

	icmpPkt.TransportProtocolNumber = header.ICMPv4ProtocolNumber

	icmpHdr := header.ICMPv4(icmpPkt.TransportHeader().Push(header.ICMPv4MinimumSize))
	switch reason.(type) {
	case *icmpReasonPortUnreachable:
		icmpHdr.SetCode(header.ICMPv4PortUnreachable)
	case *icmpReasonProtoUnreachable:
		icmpHdr.SetCode(header.ICMPv4ProtoUnreachable)
	default:
		panic(fmt.Sprintf("unsupported ICMP type %T", reason))
	}
	icmpHdr.SetType(header.ICMPv4DstUnreachable)
	icmpHdr.SetChecksum(header.ICMPv4Checksum(icmpHdr, icmpPkt.Data))
	counter := sent.DstUnreachable

	if err := route.WritePacket(
		nil, /* gso */
		stack.NetworkHeaderParams{
			Protocol: header.ICMPv4ProtocolNumber,
			TTL:      route.DefaultTTL(),
			TOS:      stack.DefaultTOS,
		},
		icmpPkt,
	); err != nil {
		sent.Dropped.Increment()
		return err
	}
	counter.Increment()
	return nil
}