1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
|
// Copyright 2021 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package ipv4
import (
"fmt"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/tcpip/buffer"
"gvisor.dev/gvisor/pkg/tcpip/header"
"gvisor.dev/gvisor/pkg/tcpip/stack"
)
// icmpv4DestinationUnreachableSockError is a general ICMPv4 Destination
// Unreachable error.
//
// +stateify savable
type icmpv4DestinationUnreachableSockError struct{}
// Origin implements tcpip.SockErrorCause.
func (*icmpv4DestinationUnreachableSockError) Origin() tcpip.SockErrOrigin {
return tcpip.SockExtErrorOriginICMP
}
// Type implements tcpip.SockErrorCause.
func (*icmpv4DestinationUnreachableSockError) Type() uint8 {
return uint8(header.ICMPv4DstUnreachable)
}
// Info implements tcpip.SockErrorCause.
func (*icmpv4DestinationUnreachableSockError) Info() uint32 {
return 0
}
var _ stack.TransportError = (*icmpv4DestinationHostUnreachableSockError)(nil)
// icmpv4DestinationHostUnreachableSockError is an ICMPv4 Destination Host
// Unreachable error.
//
// It indicates that a packet was not able to reach the destination host.
//
// +stateify savable
type icmpv4DestinationHostUnreachableSockError struct {
icmpv4DestinationUnreachableSockError
}
// Code implements tcpip.SockErrorCause.
func (*icmpv4DestinationHostUnreachableSockError) Code() uint8 {
return uint8(header.ICMPv4HostUnreachable)
}
// Kind implements stack.TransportError.
func (*icmpv4DestinationHostUnreachableSockError) Kind() stack.TransportErrorKind {
return stack.DestinationHostUnreachableTransportError
}
var _ stack.TransportError = (*icmpv4DestinationPortUnreachableSockError)(nil)
// icmpv4DestinationPortUnreachableSockError is an ICMPv4 Destination Port
// Unreachable error.
//
// It indicates that a packet reached the destination host, but the transport
// protocol was not active on the destination port.
//
// +stateify savable
type icmpv4DestinationPortUnreachableSockError struct {
icmpv4DestinationUnreachableSockError
}
// Code implements tcpip.SockErrorCause.
func (*icmpv4DestinationPortUnreachableSockError) Code() uint8 {
return uint8(header.ICMPv4PortUnreachable)
}
// Kind implements stack.TransportError.
func (*icmpv4DestinationPortUnreachableSockError) Kind() stack.TransportErrorKind {
return stack.DestinationPortUnreachableTransportError
}
var _ stack.TransportError = (*icmpv4FragmentationNeededSockError)(nil)
// icmpv4FragmentationNeededSockError is an ICMPv4 Destination Unreachable error
// due to fragmentation being required but the packet was set to not be
// fragmented.
//
// It indicates that a link exists on the path to the destination with an MTU
// that is too small to carry the packet.
//
// +stateify savable
type icmpv4FragmentationNeededSockError struct {
icmpv4DestinationUnreachableSockError
mtu uint32
}
// Code implements tcpip.SockErrorCause.
func (*icmpv4FragmentationNeededSockError) Code() uint8 {
return uint8(header.ICMPv4FragmentationNeeded)
}
// Info implements tcpip.SockErrorCause.
func (e *icmpv4FragmentationNeededSockError) Info() uint32 {
return e.mtu
}
// Kind implements stack.TransportError.
func (*icmpv4FragmentationNeededSockError) Kind() stack.TransportErrorKind {
return stack.PacketTooBigTransportError
}
func (e *endpoint) checkLocalAddress(addr tcpip.Address) bool {
if e.nic.Spoofing() {
return true
}
if addressEndpoint := e.AcquireAssignedAddress(addr, false, stack.NeverPrimaryEndpoint); addressEndpoint != nil {
addressEndpoint.DecRef()
return true
}
return false
}
// handleControl handles the case when an ICMP error packet contains the headers
// of the original packet that caused the ICMP one to be sent. This information
// is used to find out which transport endpoint must be notified about the ICMP
// packet. We only expect the payload, not the enclosing ICMP packet.
func (e *endpoint) handleControl(errInfo stack.TransportError, pkt *stack.PacketBuffer) {
h, ok := pkt.Data().PullUp(header.IPv4MinimumSize)
if !ok {
return
}
hdr := header.IPv4(h)
// We don't use IsValid() here because ICMP only requires that the IP
// header plus 8 bytes of the transport header be included. So it's
// likely that it is truncated, which would cause IsValid to return
// false.
//
// Drop packet if it doesn't have the basic IPv4 header or if the
// original source address doesn't match an address we own.
srcAddr := hdr.SourceAddress()
if !e.checkLocalAddress(srcAddr) {
return
}
hlen := int(hdr.HeaderLength())
if pkt.Data().Size() < hlen || hdr.FragmentOffset() != 0 {
// We won't be able to handle this if it doesn't contain the
// full IPv4 header, or if it's a fragment not at offset 0
// (because it won't have the transport header).
return
}
// Keep needed information before trimming header.
p := hdr.TransportProtocol()
dstAddr := hdr.DestinationAddress()
// Skip the ip header, then deliver the error.
if _, ok := pkt.Data().Consume(hlen); !ok {
panic(fmt.Sprintf("could not consume the IP header of %d bytes", hlen))
}
e.dispatcher.DeliverTransportError(srcAddr, dstAddr, ProtocolNumber, p, errInfo, pkt)
}
func (e *endpoint) handleICMP(pkt *stack.PacketBuffer) {
received := e.stats.icmp.packetsReceived
// ICMP packets don't have their TransportHeader fields set. See
// icmp/protocol.go:protocol.Parse for a full explanation. Not all ICMP types
// require consuming the header, so we only call PullUp.
v, ok := pkt.Data().PullUp(header.ICMPv4MinimumSize)
if !ok {
received.invalid.Increment()
return
}
h := header.ICMPv4(v)
// Only do in-stack processing if the checksum is correct.
if pkt.Data().AsRange().Checksum() != 0xffff {
received.invalid.Increment()
// It's possible that a raw socket expects to receive this regardless
// of checksum errors. If it's an echo request we know it's safe because
// we are the only handler, however other types do not cope well with
// packets with checksum errors.
switch h.Type() {
case header.ICMPv4Echo:
e.dispatcher.DeliverTransportPacket(header.ICMPv4ProtocolNumber, pkt)
}
return
}
iph := header.IPv4(pkt.NetworkHeader().View())
var newOptions header.IPv4Options
if opts := iph.Options(); len(opts) != 0 {
// RFC 1122 section 3.2.2.6 (page 43) (and similar for other round trip
// type ICMP packets):
// If a Record Route and/or Time Stamp option is received in an
// ICMP Echo Request, this option (these options) SHOULD be
// updated to include the current host and included in the IP
// header of the Echo Reply message, without "truncation".
// Thus, the recorded route will be for the entire round trip.
//
// So we need to let the option processor know how it should handle them.
var op optionsUsage
if h.Type() == header.ICMPv4Echo {
op = &optionUsageEcho{}
} else {
op = &optionUsageReceive{}
}
var optProblem *header.IPv4OptParameterProblem
newOptions, _, optProblem = e.processIPOptions(pkt, opts, op)
if optProblem != nil {
if optProblem.NeedICMP {
_ = e.protocol.returnError(&icmpReasonParamProblem{
pointer: optProblem.Pointer,
}, pkt)
e.stats.ip.MalformedPacketsReceived.Increment()
}
return
}
copied := copy(opts, newOptions)
if copied != len(newOptions) {
panic(fmt.Sprintf("copied %d bytes of new options, expected %d bytes", copied, len(newOptions)))
}
for i := copied; i < len(opts); i++ {
// Pad with 0 (EOL). RFC 791 page 23 says "The padding is zero".
opts[i] = byte(header.IPv4OptionListEndType)
}
}
// TODO(b/112892170): Meaningfully handle all ICMP types.
switch h.Type() {
case header.ICMPv4Echo:
received.echoRequest.Increment()
// DeliverTransportPacket will take ownership of pkt so don't use it beyond
// this point. Make a deep copy of the data before pkt gets sent as we will
// be modifying fields. Both the ICMP header (with its type modified to
// EchoReply) and payload are reused in the reply packet.
//
// TODO(gvisor.dev/issue/4399): The copy may not be needed if there are no
// waiting endpoints. Consider moving responsibility for doing the copy to
// DeliverTransportPacket so that is is only done when needed.
replyData := pkt.Data().AsRange().ToOwnedView()
ipHdr := header.IPv4(pkt.NetworkHeader().View())
localAddressBroadcast := pkt.NetworkPacketInfo.LocalAddressBroadcast
// It's possible that a raw socket expects to receive this.
e.dispatcher.DeliverTransportPacket(header.ICMPv4ProtocolNumber, pkt)
pkt = nil
// Take the base of the incoming request IP header but replace the options.
replyHeaderLength := uint8(header.IPv4MinimumSize + len(newOptions))
replyIPHdr := header.IPv4(append(iph[:header.IPv4MinimumSize:header.IPv4MinimumSize], newOptions...))
replyIPHdr.SetHeaderLength(replyHeaderLength)
// As per RFC 1122 section 3.2.1.3, when a host sends any datagram, the IP
// source address MUST be one of its own IP addresses (but not a broadcast
// or multicast address).
localAddr := ipHdr.DestinationAddress()
if localAddressBroadcast || header.IsV4MulticastAddress(localAddr) {
localAddr = ""
}
r, err := e.protocol.stack.FindRoute(e.nic.ID(), localAddr, ipHdr.SourceAddress(), ProtocolNumber, false /* multicastLoop */)
if err != nil {
// If we cannot find a route to the destination, silently drop the packet.
return
}
defer r.Release()
sent := e.stats.icmp.packetsSent
if !e.protocol.allowICMPReply(header.ICMPv4EchoReply, header.ICMPv4UnusedCode) {
sent.rateLimited.Increment()
return
}
// TODO(gvisor.dev/issue/3810:) When adding protocol numbers into the
// header information, we may have to change this code to handle the
// ICMP header no longer being in the data buffer.
// Because IP and ICMP are so closely intertwined, we need to handcraft our
// IP header to be able to follow RFC 792. The wording on page 13 is as
// follows:
// IP Fields:
// Addresses
// The address of the source in an echo message will be the
// destination of the echo reply message. To form an echo reply
// message, the source and destination addresses are simply reversed,
// the type code changed to 0, and the checksum recomputed.
//
// This was interpreted by early implementors to mean that all options must
// be copied from the echo request IP header to the echo reply IP header
// and this behaviour is still relied upon by some applications.
//
// Create a copy of the IP header we received, options and all, and change
// The fields we need to alter.
//
// We need to produce the entire packet in the data segment in order to
// use WriteHeaderIncludedPacket(). WriteHeaderIncludedPacket sets the
// total length and the header checksum so we don't need to set those here.
replyIPHdr.SetSourceAddress(r.LocalAddress())
replyIPHdr.SetDestinationAddress(r.RemoteAddress())
replyIPHdr.SetTTL(r.DefaultTTL())
replyICMPHdr := header.ICMPv4(replyData)
replyICMPHdr.SetType(header.ICMPv4EchoReply)
replyICMPHdr.SetChecksum(0)
replyICMPHdr.SetChecksum(^header.Checksum(replyData, 0))
replyVV := buffer.View(replyIPHdr).ToVectorisedView()
replyVV.AppendView(replyData)
replyPkt := stack.NewPacketBuffer(stack.PacketBufferOptions{
ReserveHeaderBytes: int(r.MaxHeaderLength()),
Data: replyVV,
})
replyPkt.TransportProtocolNumber = header.ICMPv4ProtocolNumber
if err := r.WriteHeaderIncludedPacket(replyPkt); err != nil {
sent.dropped.Increment()
return
}
sent.echoReply.Increment()
case header.ICMPv4EchoReply:
received.echoReply.Increment()
// ICMP sockets expect the ICMP header to be present, so we don't consume
// the ICMP header.
e.dispatcher.DeliverTransportPacket(header.ICMPv4ProtocolNumber, pkt)
case header.ICMPv4DstUnreachable:
received.dstUnreachable.Increment()
mtu := h.MTU()
code := h.Code()
if _, ok := pkt.Data().Consume(header.ICMPv4MinimumSize); !ok {
panic("could not consume ICMPv4MinimumSize bytes")
}
switch code {
case header.ICMPv4HostUnreachable:
e.handleControl(&icmpv4DestinationHostUnreachableSockError{}, pkt)
case header.ICMPv4PortUnreachable:
e.handleControl(&icmpv4DestinationPortUnreachableSockError{}, pkt)
case header.ICMPv4FragmentationNeeded:
networkMTU, err := calculateNetworkMTU(uint32(mtu), header.IPv4MinimumSize)
if err != nil {
networkMTU = 0
}
e.handleControl(&icmpv4FragmentationNeededSockError{mtu: networkMTU}, pkt)
}
case header.ICMPv4SrcQuench:
received.srcQuench.Increment()
case header.ICMPv4Redirect:
received.redirect.Increment()
case header.ICMPv4TimeExceeded:
received.timeExceeded.Increment()
case header.ICMPv4ParamProblem:
received.paramProblem.Increment()
case header.ICMPv4Timestamp:
received.timestamp.Increment()
case header.ICMPv4TimestampReply:
received.timestampReply.Increment()
case header.ICMPv4InfoRequest:
received.infoRequest.Increment()
case header.ICMPv4InfoReply:
received.infoReply.Increment()
default:
received.invalid.Increment()
}
}
// ======= ICMP Error packet generation =========
// icmpReason is a marker interface for IPv4 specific ICMP errors.
type icmpReason interface {
isICMPReason()
// isForwarding indicates whether or not the error arose while attempting to
// forward a packet.
isForwarding() bool
}
// icmpReasonPortUnreachable is an error where the transport protocol has no
// listener and no alternative means to inform the sender.
type icmpReasonPortUnreachable struct{}
func (*icmpReasonPortUnreachable) isICMPReason() {}
func (*icmpReasonPortUnreachable) isForwarding() bool {
return false
}
// icmpReasonProtoUnreachable is an error where the transport protocol is
// not supported.
type icmpReasonProtoUnreachable struct{}
func (*icmpReasonProtoUnreachable) isICMPReason() {}
func (*icmpReasonProtoUnreachable) isForwarding() bool {
return false
}
// icmpReasonTTLExceeded is an error where a packet's time to live exceeded in
// transit to its final destination, as per RFC 792 page 6, Time Exceeded
// Message.
type icmpReasonTTLExceeded struct{}
func (*icmpReasonTTLExceeded) isICMPReason() {}
func (*icmpReasonTTLExceeded) isForwarding() bool {
// If we hit a TTL Exceeded error, then we know we are operating as a router.
// As per RFC 792 page 6, Time Exceeded Message,
//
// If the gateway processing a datagram finds the time to live field
// is zero it must discard the datagram. The gateway may also notify
// the source host via the time exceeded message.
return true
}
// icmpReasonReassemblyTimeout is an error where insufficient fragments are
// received to complete reassembly of a packet within a configured time after
// the reception of the first-arriving fragment of that packet.
type icmpReasonReassemblyTimeout struct{}
func (*icmpReasonReassemblyTimeout) isICMPReason() {}
func (*icmpReasonReassemblyTimeout) isForwarding() bool {
return false
}
// icmpReasonParamProblem is an error to use to request a Parameter Problem
// message to be sent.
type icmpReasonParamProblem struct {
pointer byte
forwarding bool
}
func (*icmpReasonParamProblem) isICMPReason() {}
func (r *icmpReasonParamProblem) isForwarding() bool {
return r.forwarding
}
// icmpReasonNetworkUnreachable is an error in which the network specified in
// the internet destination field of the datagram is unreachable.
type icmpReasonNetworkUnreachable struct{}
func (*icmpReasonNetworkUnreachable) isICMPReason() {}
func (*icmpReasonNetworkUnreachable) isForwarding() bool {
// If we hit a Net Unreachable error, then we know we are operating as
// a router. As per RFC 792 page 5, Destination Unreachable Message,
//
// If, according to the information in the gateway's routing tables,
// the network specified in the internet destination field of a
// datagram is unreachable, e.g., the distance to the network is
// infinity, the gateway may send a destination unreachable message to
// the internet source host of the datagram.
return true
}
// icmpReasonFragmentationNeeded is an error where a packet requires
// fragmentation while also having the Don't Fragment flag set, as per RFC 792
// page 3, Destination Unreachable Message.
type icmpReasonFragmentationNeeded struct{}
func (*icmpReasonFragmentationNeeded) isICMPReason() {}
func (*icmpReasonFragmentationNeeded) isForwarding() bool {
// If we hit a Don't Fragment error, then we know we are operating as a router.
// As per RFC 792 page 4, Destination Unreachable Message,
//
// Another case is when a datagram must be fragmented to be forwarded by a
// gateway yet the Don't Fragment flag is on. In this case the gateway must
// discard the datagram and may return a destination unreachable message.
return true
}
// icmpReasonHostUnreachable is an error in which the host specified in the
// internet destination field of the datagram is unreachable.
type icmpReasonHostUnreachable struct{}
func (*icmpReasonHostUnreachable) isICMPReason() {}
func (*icmpReasonHostUnreachable) isForwarding() bool {
// If we hit a Host Unreachable error, then we know we are operating as a
// router. As per RFC 792 page 5, Destination Unreachable Message,
//
// In addition, in some networks, the gateway may be able to determine
// if the internet destination host is unreachable. Gateways in these
// networks may send destination unreachable messages to the source host
// when the destination host is unreachable.
return true
}
// returnError takes an error descriptor and generates the appropriate ICMP
// error packet for IPv4 and sends it back to the remote device that sent
// the problematic packet. It incorporates as much of that packet as
// possible as well as any error metadata as is available. returnError
// expects pkt to hold a valid IPv4 packet as per the wire format.
func (p *protocol) returnError(reason icmpReason, pkt *stack.PacketBuffer) tcpip.Error {
origIPHdr := header.IPv4(pkt.NetworkHeader().View())
origIPHdrSrc := origIPHdr.SourceAddress()
origIPHdrDst := origIPHdr.DestinationAddress()
// We check we are responding only when we are allowed to.
// See RFC 1812 section 4.3.2.7 (shown below).
//
// =========
// 4.3.2.7 When Not to Send ICMP Errors
//
// An ICMP error message MUST NOT be sent as the result of receiving:
//
// o An ICMP error message, or
//
// o A packet which fails the IP header validation tests described in
// Section [5.2.2] (except where that section specifically permits
// the sending of an ICMP error message), or
//
// o A packet destined to an IP broadcast or IP multicast address, or
//
// o A packet sent as a Link Layer broadcast or multicast, or
//
// o Any fragment of a datagram other then the first fragment (i.e., a
// packet for which the fragment offset in the IP header is nonzero).
//
// TODO(gvisor.dev/issues/4058): Make sure we don't send ICMP errors in
// response to a non-initial fragment, but it currently can not happen.
if pkt.NetworkPacketInfo.LocalAddressBroadcast || header.IsV4MulticastAddress(origIPHdrDst) || origIPHdrSrc == header.IPv4Any {
return nil
}
// If we are operating as a router/gateway, don't use the packet's destination
// address as the response's source address as we should not not own the
// destination address of a packet we are forwarding.
localAddr := origIPHdrDst
if reason.isForwarding() {
localAddr = ""
}
// Even if we were able to receive a packet from some remote, we may not have
// a route to it - the remote may be blocked via routing rules. We must always
// consult our routing table and find a route to the remote before sending any
// packet.
route, err := p.stack.FindRoute(pkt.NICID, localAddr, origIPHdrSrc, ProtocolNumber, false /* multicastLoop */)
if err != nil {
return err
}
defer route.Release()
p.mu.Lock()
// We retrieve an endpoint using the newly constructed route's NICID rather
// than the packet's NICID. The packet's NICID corresponds to the NIC on
// which it arrived, which isn't necessarily the same as the NIC on which it
// will be transmitted. On the other hand, the route's NIC *is* guaranteed
// to be the NIC on which the packet will be transmitted.
netEP, ok := p.mu.eps[route.NICID()]
p.mu.Unlock()
if !ok {
return &tcpip.ErrNotConnected{}
}
transportHeader := pkt.TransportHeader().View()
// Don't respond to icmp error packets.
if origIPHdr.Protocol() == uint8(header.ICMPv4ProtocolNumber) {
// TODO(gvisor.dev/issue/3810):
// Unfortunately the current stack pretty much always has ICMPv4 headers
// in the Data section of the packet but there is no guarantee that is the
// case. If this is the case grab the header to make it like all other
// packet types. When this is cleaned up the Consume should be removed.
if transportHeader.IsEmpty() {
var ok bool
transportHeader, ok = pkt.TransportHeader().Consume(header.ICMPv4MinimumSize)
if !ok {
return nil
}
} else if transportHeader.Size() < header.ICMPv4MinimumSize {
return nil
}
// We need to decide to explicitly name the packets we can respond to or
// the ones we can not respond to. The decision is somewhat arbitrary and
// if problems arise this could be reversed. It was judged less of a breach
// of protocol to not respond to unknown non-error packets than to respond
// to unknown error packets so we take the first approach.
switch header.ICMPv4(transportHeader).Type() {
case
header.ICMPv4EchoReply,
header.ICMPv4Echo,
header.ICMPv4Timestamp,
header.ICMPv4TimestampReply,
header.ICMPv4InfoRequest,
header.ICMPv4InfoReply:
default:
// Assume any type we don't know about may be an error type.
return nil
}
}
sent := netEP.stats.icmp.packetsSent
icmpType, icmpCode, counter, pointer := func() (header.ICMPv4Type, header.ICMPv4Code, tcpip.MultiCounterStat, byte) {
switch reason := reason.(type) {
case *icmpReasonPortUnreachable:
return header.ICMPv4DstUnreachable, header.ICMPv4PortUnreachable, sent.dstUnreachable, 0
case *icmpReasonProtoUnreachable:
return header.ICMPv4DstUnreachable, header.ICMPv4ProtoUnreachable, sent.dstUnreachable, 0
case *icmpReasonNetworkUnreachable:
return header.ICMPv4DstUnreachable, header.ICMPv4NetUnreachable, sent.dstUnreachable, 0
case *icmpReasonHostUnreachable:
return header.ICMPv4DstUnreachable, header.ICMPv4HostUnreachable, sent.dstUnreachable, 0
case *icmpReasonFragmentationNeeded:
return header.ICMPv4DstUnreachable, header.ICMPv4FragmentationNeeded, sent.dstUnreachable, 0
case *icmpReasonTTLExceeded:
return header.ICMPv4TimeExceeded, header.ICMPv4TTLExceeded, sent.timeExceeded, 0
case *icmpReasonReassemblyTimeout:
return header.ICMPv4TimeExceeded, header.ICMPv4ReassemblyTimeout, sent.timeExceeded, 0
case *icmpReasonParamProblem:
return header.ICMPv4ParamProblem, header.ICMPv4UnusedCode, sent.paramProblem, reason.pointer
default:
panic(fmt.Sprintf("unsupported ICMP type %T", reason))
}
}()
if !p.allowICMPReply(icmpType, icmpCode) {
sent.rateLimited.Increment()
return nil
}
// Now work out how much of the triggering packet we should return.
// As per RFC 1812 Section 4.3.2.3
//
// ICMP datagram SHOULD contain as much of the original
// datagram as possible without the length of the ICMP
// datagram exceeding 576 bytes.
//
// NOTE: The above RFC referenced is different from the original
// recommendation in RFC 1122 and RFC 792 where it mentioned that at
// least 8 bytes of the payload must be included. Today linux and other
// systems implement the RFC 1812 definition and not the original
// requirement. We treat 8 bytes as the minimum but will try send more.
mtu := int(route.MTU())
const maxIPData = header.IPv4MinimumProcessableDatagramSize - header.IPv4MinimumSize
if mtu > maxIPData {
mtu = maxIPData
}
available := mtu - header.ICMPv4MinimumSize
if available < len(origIPHdr)+header.ICMPv4MinimumErrorPayloadSize {
return nil
}
payloadLen := len(origIPHdr) + transportHeader.Size() + pkt.Data().Size()
if payloadLen > available {
payloadLen = available
}
// The buffers used by pkt may be used elsewhere in the system.
// For example, an AF_RAW or AF_PACKET socket may use what the transport
// protocol considers an unreachable destination. Thus we deep copy pkt to
// prevent multiple ownership and SR errors. The new copy is a vectorized
// view with the entire incoming IP packet reassembled and truncated as
// required. This is now the payload of the new ICMP packet and no longer
// considered a packet in its own right.
newHeader := append(buffer.View(nil), origIPHdr...)
newHeader = append(newHeader, transportHeader...)
payload := newHeader.ToVectorisedView()
if dataCap := payloadLen - payload.Size(); dataCap > 0 {
payload.AppendView(pkt.Data().AsRange().Capped(dataCap).ToOwnedView())
} else {
payload.CapLength(payloadLen)
}
icmpPkt := stack.NewPacketBuffer(stack.PacketBufferOptions{
ReserveHeaderBytes: int(route.MaxHeaderLength()) + header.ICMPv4MinimumSize,
Data: payload,
})
icmpPkt.TransportProtocolNumber = header.ICMPv4ProtocolNumber
icmpHdr := header.ICMPv4(icmpPkt.TransportHeader().Push(header.ICMPv4MinimumSize))
icmpHdr.SetCode(icmpCode)
icmpHdr.SetType(icmpType)
icmpHdr.SetPointer(pointer)
icmpHdr.SetChecksum(header.ICMPv4Checksum(icmpHdr, icmpPkt.Data().AsRange().Checksum()))
if err := route.WritePacket(
stack.NetworkHeaderParams{
Protocol: header.ICMPv4ProtocolNumber,
TTL: route.DefaultTTL(),
TOS: stack.DefaultTOS,
},
icmpPkt,
); err != nil {
sent.dropped.Increment()
return err
}
counter.Increment()
return nil
}
// OnReassemblyTimeout implements fragmentation.TimeoutHandler.
func (p *protocol) OnReassemblyTimeout(pkt *stack.PacketBuffer) {
// OnReassemblyTimeout sends a Time Exceeded Message, as per RFC 792:
//
// If a host reassembling a fragmented datagram cannot complete the
// reassembly due to missing fragments within its time limit it discards the
// datagram, and it may send a time exceeded message.
//
// If fragment zero is not available then no time exceeded need be sent at
// all.
if pkt != nil {
p.returnError(&icmpReasonReassemblyTimeout{}, pkt)
}
}
|