1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package fragmentation contains the implementation of IP fragmentation.
// It is based on RFC 791 and RFC 815.
package fragmentation
import (
"errors"
"fmt"
"log"
"time"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/tcpip/buffer"
)
const (
// DefaultReassembleTimeout is based on the linux stack: net.ipv4.ipfrag_time.
DefaultReassembleTimeout = 30 * time.Second
// HighFragThreshold is the threshold at which we start trimming old
// fragmented packets. Linux uses a default value of 4 MB. See
// net.ipv4.ipfrag_high_thresh for more information.
HighFragThreshold = 4 << 20 // 4MB
// LowFragThreshold is the threshold we reach to when we start dropping
// older fragmented packets. It's important that we keep enough room for newer
// packets to be re-assembled. Hence, this needs to be lower than
// HighFragThreshold enough. Linux uses a default value of 3 MB. See
// net.ipv4.ipfrag_low_thresh for more information.
LowFragThreshold = 3 << 20 // 3MB
// minBlockSize is the minimum block size for fragments.
minBlockSize = 1
)
var (
// ErrInvalidArgs indicates to the caller that that an invalid argument was
// provided.
ErrInvalidArgs = errors.New("invalid args")
)
// FragmentID is the identifier for a fragment.
type FragmentID struct {
// Source is the source address of the fragment.
Source tcpip.Address
// Destination is the destination address of the fragment.
Destination tcpip.Address
// ID is the identification value of the fragment.
//
// This is a uint32 because IPv6 uses a 32-bit identification value.
ID uint32
// The protocol for the packet.
Protocol uint8
}
// Fragmentation is the main structure that other modules
// of the stack should use to implement IP Fragmentation.
type Fragmentation struct {
mu sync.Mutex
highLimit int
lowLimit int
reassemblers map[FragmentID]*reassembler
rList reassemblerList
size int
timeout time.Duration
blockSize uint16
clock tcpip.Clock
releaseJob *tcpip.Job
}
// NewFragmentation creates a new Fragmentation.
//
// blockSize specifies the fragment block size, in bytes.
//
// highMemoryLimit specifies the limit on the memory consumed
// by the fragments stored by Fragmentation (overhead of internal data-structures
// is not accounted). Fragments are dropped when the limit is reached.
//
// lowMemoryLimit specifies the limit on which we will reach by dropping
// fragments after reaching highMemoryLimit.
//
// reassemblingTimeout specifies the maximum time allowed to reassemble a packet.
// Fragments are lazily evicted only when a new a packet with an
// already existing fragmentation-id arrives after the timeout.
func NewFragmentation(blockSize uint16, highMemoryLimit, lowMemoryLimit int, reassemblingTimeout time.Duration, clock tcpip.Clock) *Fragmentation {
if lowMemoryLimit >= highMemoryLimit {
lowMemoryLimit = highMemoryLimit
}
if lowMemoryLimit < 0 {
lowMemoryLimit = 0
}
if blockSize < minBlockSize {
blockSize = minBlockSize
}
f := &Fragmentation{
reassemblers: make(map[FragmentID]*reassembler),
highLimit: highMemoryLimit,
lowLimit: lowMemoryLimit,
timeout: reassemblingTimeout,
blockSize: blockSize,
clock: clock,
}
f.releaseJob = tcpip.NewJob(f.clock, &f.mu, f.releaseReassemblersLocked)
return f
}
// Process processes an incoming fragment belonging to an ID and returns a
// complete packet and its protocol number when all the packets belonging to
// that ID have been received.
//
// [first, last] is the range of the fragment bytes.
//
// first must be a multiple of the block size f is configured with. The size
// of the fragment data must be a multiple of the block size, unless there are
// no fragments following this fragment (more set to false).
//
// proto is the protocol number marked in the fragment being processed. It has
// to be given here outside of the FragmentID struct because IPv6 should not use
// the protocol to identify a fragment.
func (f *Fragmentation) Process(
id FragmentID, first, last uint16, more bool, proto uint8, vv buffer.VectorisedView) (
buffer.VectorisedView, uint8, bool, error) {
if first > last {
return buffer.VectorisedView{}, 0, false, fmt.Errorf("first=%d is greater than last=%d: %w", first, last, ErrInvalidArgs)
}
if first%f.blockSize != 0 {
return buffer.VectorisedView{}, 0, false, fmt.Errorf("first=%d is not a multiple of block size=%d: %w", first, f.blockSize, ErrInvalidArgs)
}
fragmentSize := last - first + 1
if more && fragmentSize%f.blockSize != 0 {
return buffer.VectorisedView{}, 0, false, fmt.Errorf("fragment size=%d bytes is not a multiple of block size=%d on non-final fragment: %w", fragmentSize, f.blockSize, ErrInvalidArgs)
}
if l := vv.Size(); l < int(fragmentSize) {
return buffer.VectorisedView{}, 0, false, fmt.Errorf("got fragment size=%d bytes less than the expected fragment size=%d bytes (first=%d last=%d): %w", l, fragmentSize, first, last, ErrInvalidArgs)
}
vv.CapLength(int(fragmentSize))
f.mu.Lock()
r, ok := f.reassemblers[id]
if !ok {
r = newReassembler(id, f.clock)
f.reassemblers[id] = r
wasEmpty := f.rList.Empty()
f.rList.PushFront(r)
if wasEmpty {
// If we have just pushed a first reassembler into an empty list, we
// should kickstart the release job. The release job will keep
// rescheduling itself until the list becomes empty.
f.releaseReassemblersLocked()
}
}
f.mu.Unlock()
res, firstFragmentProto, done, consumed, err := r.process(first, last, more, proto, vv)
if err != nil {
// We probably got an invalid sequence of fragments. Just
// discard the reassembler and move on.
f.mu.Lock()
f.release(r)
f.mu.Unlock()
return buffer.VectorisedView{}, 0, false, fmt.Errorf("fragmentation processing error: %w", err)
}
f.mu.Lock()
f.size += consumed
if done {
f.release(r)
}
// Evict reassemblers if we are consuming more memory than highLimit until
// we reach lowLimit.
if f.size > f.highLimit {
for f.size > f.lowLimit {
tail := f.rList.Back()
if tail == nil {
break
}
f.release(tail)
}
}
f.mu.Unlock()
return res, firstFragmentProto, done, nil
}
func (f *Fragmentation) release(r *reassembler) {
// Before releasing a fragment we need to check if r is already marked as done.
// Otherwise, we would delete it twice.
if r.checkDoneOrMark() {
return
}
delete(f.reassemblers, r.id)
f.rList.Remove(r)
f.size -= r.size
if f.size < 0 {
log.Printf("memory counter < 0 (%d), this is an accounting bug that requires investigation", f.size)
f.size = 0
}
}
// releaseReassemblersLocked releases already-expired reassemblers, then
// schedules the job to call back itself for the remaining reassemblers if
// any. This function must be called with f.mu locked.
func (f *Fragmentation) releaseReassemblersLocked() {
now := f.clock.NowMonotonic()
for {
// The reassembler at the end of the list is the oldest.
r := f.rList.Back()
if r == nil {
// The list is empty.
break
}
elapsed := time.Duration(now-r.creationTime) * time.Nanosecond
if f.timeout > elapsed {
// If the oldest reassembler has not expired, schedule the release
// job so that this function is called back when it has expired.
f.releaseJob.Schedule(f.timeout - elapsed)
break
}
// If the oldest reassembler has already expired, release it.
f.release(r)
}
}
|