summaryrefslogtreecommitdiffhomepage
path: root/pkg/tcpip/network/fragmentation/fragmentation.go
blob: ffbadb6e2c3a188901b6f7f2755e7509a5d230d7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Package fragmentation contains the implementation of IP fragmentation.
// It is based on RFC 791 and RFC 815.
package fragmentation

import (
	"errors"
	"fmt"
	"log"
	"time"

	"gvisor.dev/gvisor/pkg/sync"
	"gvisor.dev/gvisor/pkg/tcpip/buffer"
)

const (
	// DefaultReassembleTimeout is based on the linux stack: net.ipv4.ipfrag_time.
	DefaultReassembleTimeout = 30 * time.Second

	// HighFragThreshold is the threshold at which we start trimming old
	// fragmented packets. Linux uses a default value of 4 MB. See
	// net.ipv4.ipfrag_high_thresh for more information.
	HighFragThreshold = 4 << 20 // 4MB

	// LowFragThreshold is the threshold we reach to when we start dropping
	// older fragmented packets. It's important that we keep enough room for newer
	// packets to be re-assembled. Hence, this needs to be lower than
	// HighFragThreshold enough. Linux uses a default value of 3 MB. See
	// net.ipv4.ipfrag_low_thresh for more information.
	LowFragThreshold = 3 << 20 // 3MB

	// minBlockSize is the minimum block size for fragments.
	minBlockSize = 1
)

var (
	// ErrInvalidArgs indicates to the caller that that an invalid argument was
	// provided.
	ErrInvalidArgs = errors.New("invalid args")
)

// Fragmentation is the main structure that other modules
// of the stack should use to implement IP Fragmentation.
type Fragmentation struct {
	mu           sync.Mutex
	highLimit    int
	lowLimit     int
	reassemblers map[uint32]*reassembler
	rList        reassemblerList
	size         int
	timeout      time.Duration
	blockSize    uint16
}

// NewFragmentation creates a new Fragmentation.
//
// blockSize specifies the fragment block size, in bytes.
//
// highMemoryLimit specifies the limit on the memory consumed
// by the fragments stored by Fragmentation (overhead of internal data-structures
// is not accounted). Fragments are dropped when the limit is reached.
//
// lowMemoryLimit specifies the limit on which we will reach by dropping
// fragments after reaching highMemoryLimit.
//
// reassemblingTimeout specifies the maximum time allowed to reassemble a packet.
// Fragments are lazily evicted only when a new a packet with an
// already existing fragmentation-id arrives after the timeout.
func NewFragmentation(blockSize uint16, highMemoryLimit, lowMemoryLimit int, reassemblingTimeout time.Duration) *Fragmentation {
	if lowMemoryLimit >= highMemoryLimit {
		lowMemoryLimit = highMemoryLimit
	}

	if lowMemoryLimit < 0 {
		lowMemoryLimit = 0
	}

	if blockSize < minBlockSize {
		blockSize = minBlockSize
	}

	return &Fragmentation{
		reassemblers: make(map[uint32]*reassembler),
		highLimit:    highMemoryLimit,
		lowLimit:     lowMemoryLimit,
		timeout:      reassemblingTimeout,
		blockSize:    blockSize,
	}
}

// Process processes an incoming fragment belonging to an ID and returns a
// complete packet when all the packets belonging to that ID have been received.
//
// [first, last] is the range of the fragment bytes.
//
// first must be a multiple of the block size f is configured with. The size
// of the fragment data must be a multiple of the block size, unless there are
// no fragments following this fragment (more set to false).
func (f *Fragmentation) Process(id uint32, first, last uint16, more bool, vv buffer.VectorisedView) (buffer.VectorisedView, bool, error) {
	if first > last {
		return buffer.VectorisedView{}, false, fmt.Errorf("first=%d is greater than last=%d: %w", first, last, ErrInvalidArgs)
	}

	if first%f.blockSize != 0 {
		return buffer.VectorisedView{}, false, fmt.Errorf("first=%d is not a multiple of block size=%d: %w", first, f.blockSize, ErrInvalidArgs)
	}

	fragmentSize := last - first + 1
	if more && fragmentSize%f.blockSize != 0 {
		return buffer.VectorisedView{}, false, fmt.Errorf("fragment size=%d bytes is not a multiple of block size=%d on non-final fragment: %w", fragmentSize, f.blockSize, ErrInvalidArgs)
	}

	if l := vv.Size(); l < int(fragmentSize) {
		return buffer.VectorisedView{}, false, fmt.Errorf("got fragment size=%d bytes less than the expected fragment size=%d bytes (first=%d last=%d): %w", l, fragmentSize, first, last, ErrInvalidArgs)
	}
	vv.CapLength(int(fragmentSize))

	f.mu.Lock()
	r, ok := f.reassemblers[id]
	if ok && r.tooOld(f.timeout) {
		// This is very likely to be an id-collision or someone performing a slow-rate attack.
		f.release(r)
		ok = false
	}
	if !ok {
		r = newReassembler(id)
		f.reassemblers[id] = r
		f.rList.PushFront(r)
	}
	f.mu.Unlock()

	res, done, consumed, err := r.process(first, last, more, vv)
	if err != nil {
		// We probably got an invalid sequence of fragments. Just
		// discard the reassembler and move on.
		f.mu.Lock()
		f.release(r)
		f.mu.Unlock()
		return buffer.VectorisedView{}, false, fmt.Errorf("fragmentation processing error: %v", err)
	}
	f.mu.Lock()
	f.size += consumed
	if done {
		f.release(r)
	}
	// Evict reassemblers if we are consuming more memory than highLimit until
	// we reach lowLimit.
	if f.size > f.highLimit {
		for f.size > f.lowLimit {
			tail := f.rList.Back()
			if tail == nil {
				break
			}
			f.release(tail)
		}
	}
	f.mu.Unlock()
	return res, done, nil
}

func (f *Fragmentation) release(r *reassembler) {
	// Before releasing a fragment we need to check if r is already marked as done.
	// Otherwise, we would delete it twice.
	if r.checkDoneOrMark() {
		return
	}

	delete(f.reassemblers, r.id)
	f.rList.Remove(r)
	f.size -= r.size
	if f.size < 0 {
		log.Printf("memory counter < 0 (%d), this is an accounting bug that requires investigation", f.size)
		f.size = 0
	}
}