1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package sniffer provides the implementation of data-link layer endpoints that
// wrap another endpoint and logs inbound and outbound packets.
//
// Sniffer endpoints can be used in the networking stack by calling New(eID) to
// create a new endpoint, where eID is the ID of the endpoint being wrapped,
// and then passing it as an argument to Stack.CreateNIC().
package sniffer
import (
"encoding/binary"
"fmt"
"io"
"sync/atomic"
"time"
"gvisor.dev/gvisor/pkg/log"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/tcpip/buffer"
"gvisor.dev/gvisor/pkg/tcpip/header"
"gvisor.dev/gvisor/pkg/tcpip/header/parse"
"gvisor.dev/gvisor/pkg/tcpip/link/nested"
"gvisor.dev/gvisor/pkg/tcpip/stack"
)
// LogPackets is a flag used to enable or disable packet logging via the log
// package. Valid values are 0 or 1.
//
// LogPackets must be accessed atomically.
var LogPackets uint32 = 1
// LogPacketsToPCAP is a flag used to enable or disable logging packets to a
// pcap writer. Valid values are 0 or 1. A writer must have been specified when the
// sniffer was created for this flag to have effect.
//
// LogPacketsToPCAP must be accessed atomically.
var LogPacketsToPCAP uint32 = 1
type endpoint struct {
nested.Endpoint
writer io.Writer
maxPCAPLen uint32
}
var _ stack.GSOEndpoint = (*endpoint)(nil)
var _ stack.LinkEndpoint = (*endpoint)(nil)
var _ stack.NetworkDispatcher = (*endpoint)(nil)
// New creates a new sniffer link-layer endpoint. It wraps around another
// endpoint and logs packets and they traverse the endpoint.
func New(lower stack.LinkEndpoint) stack.LinkEndpoint {
sniffer := &endpoint{}
sniffer.Endpoint.Init(lower, sniffer)
return sniffer
}
func zoneOffset() (int32, error) {
loc, err := time.LoadLocation("Local")
if err != nil {
return 0, err
}
date := time.Date(0, 0, 0, 0, 0, 0, 0, loc)
_, offset := date.Zone()
return int32(offset), nil
}
func writePCAPHeader(w io.Writer, maxLen uint32) error {
offset, err := zoneOffset()
if err != nil {
return err
}
return binary.Write(w, binary.BigEndian, pcapHeader{
// From https://wiki.wireshark.org/Development/LibpcapFileFormat
MagicNumber: 0xa1b2c3d4,
VersionMajor: 2,
VersionMinor: 4,
Thiszone: offset,
Sigfigs: 0,
Snaplen: maxLen,
Network: 101, // LINKTYPE_RAW
})
}
// NewWithWriter creates a new sniffer link-layer endpoint. It wraps around
// another endpoint and logs packets as they traverse the endpoint.
//
// Packets are logged to writer in the pcap format. A sniffer created with this
// function will not emit packets using the standard log package.
//
// snapLen is the maximum amount of a packet to be saved. Packets with a length
// less than or equal to snapLen will be saved in their entirety. Longer
// packets will be truncated to snapLen.
func NewWithWriter(lower stack.LinkEndpoint, writer io.Writer, snapLen uint32) (stack.LinkEndpoint, error) {
if err := writePCAPHeader(writer, snapLen); err != nil {
return nil, err
}
sniffer := &endpoint{
writer: writer,
maxPCAPLen: snapLen,
}
sniffer.Endpoint.Init(lower, sniffer)
return sniffer, nil
}
// DeliverNetworkPacket implements the stack.NetworkDispatcher interface. It is
// called by the link-layer endpoint being wrapped when a packet arrives, and
// logs the packet before forwarding to the actual dispatcher.
func (e *endpoint) DeliverNetworkPacket(remote, local tcpip.LinkAddress, protocol tcpip.NetworkProtocolNumber, pkt *stack.PacketBuffer) {
e.dumpPacket("recv", nil, protocol, pkt)
e.Endpoint.DeliverNetworkPacket(remote, local, protocol, pkt)
}
// DeliverOutboundPacket implements stack.NetworkDispatcher.DeliverOutboundPacket.
func (e *endpoint) DeliverOutboundPacket(remote, local tcpip.LinkAddress, protocol tcpip.NetworkProtocolNumber, pkt *stack.PacketBuffer) {
e.Endpoint.DeliverOutboundPacket(remote, local, protocol, pkt)
}
func (e *endpoint) dumpPacket(prefix string, gso *stack.GSO, protocol tcpip.NetworkProtocolNumber, pkt *stack.PacketBuffer) {
writer := e.writer
if writer == nil && atomic.LoadUint32(&LogPackets) == 1 {
logPacket(prefix, protocol, pkt, gso)
}
if writer != nil && atomic.LoadUint32(&LogPacketsToPCAP) == 1 {
totalLength := pkt.Size()
length := totalLength
if max := int(e.maxPCAPLen); length > max {
length = max
}
if err := binary.Write(writer, binary.BigEndian, newPCAPPacketHeader(uint32(length), uint32(totalLength))); err != nil {
panic(err)
}
write := func(b []byte) {
if len(b) > length {
b = b[:length]
}
for len(b) != 0 {
n, err := writer.Write(b)
if err != nil {
panic(err)
}
b = b[n:]
length -= n
}
}
for _, v := range pkt.Views() {
if length == 0 {
break
}
write(v)
}
}
}
// WritePacket implements the stack.LinkEndpoint interface. It is called by
// higher-level protocols to write packets; it just logs the packet and
// forwards the request to the lower endpoint.
func (e *endpoint) WritePacket(r *stack.Route, gso *stack.GSO, protocol tcpip.NetworkProtocolNumber, pkt *stack.PacketBuffer) *tcpip.Error {
e.dumpPacket("send", gso, protocol, pkt)
return e.Endpoint.WritePacket(r, gso, protocol, pkt)
}
// WritePackets implements the stack.LinkEndpoint interface. It is called by
// higher-level protocols to write packets; it just logs the packet and
// forwards the request to the lower endpoint.
func (e *endpoint) WritePackets(r *stack.Route, gso *stack.GSO, pkts stack.PacketBufferList, protocol tcpip.NetworkProtocolNumber) (int, *tcpip.Error) {
for pkt := pkts.Front(); pkt != nil; pkt = pkt.Next() {
e.dumpPacket("send", gso, protocol, pkt)
}
return e.Endpoint.WritePackets(r, gso, pkts, protocol)
}
// WriteRawPacket implements stack.LinkEndpoint.WriteRawPacket.
func (e *endpoint) WriteRawPacket(vv buffer.VectorisedView) *tcpip.Error {
e.dumpPacket("send", nil, 0, stack.NewPacketBuffer(stack.PacketBufferOptions{
Data: vv,
}))
return e.Endpoint.WriteRawPacket(vv)
}
func logPacket(prefix string, protocol tcpip.NetworkProtocolNumber, pkt *stack.PacketBuffer, gso *stack.GSO) {
// Figure out the network layer info.
var transProto uint8
src := tcpip.Address("unknown")
dst := tcpip.Address("unknown")
var size uint16
var id uint32
var fragmentOffset uint16
var moreFragments bool
// Clone the packet buffer to not modify the original.
//
// We don't clone the original packet buffer so that the new packet buffer
// does not have any of its headers set.
//
// We trim the link headers from the cloned buffer as the sniffer doesn't
// handle link headers.
vv := buffer.NewVectorisedView(pkt.Size(), pkt.Views())
vv.TrimFront(len(pkt.LinkHeader().View()))
pkt = stack.NewPacketBuffer(stack.PacketBufferOptions{Data: vv})
switch protocol {
case header.IPv4ProtocolNumber:
if ok := parse.IPv4(pkt); !ok {
return
}
ipv4 := header.IPv4(pkt.NetworkHeader().View())
fragmentOffset = ipv4.FragmentOffset()
moreFragments = ipv4.Flags()&header.IPv4FlagMoreFragments == header.IPv4FlagMoreFragments
src = ipv4.SourceAddress()
dst = ipv4.DestinationAddress()
transProto = ipv4.Protocol()
size = ipv4.TotalLength() - uint16(ipv4.HeaderLength())
id = uint32(ipv4.ID())
case header.IPv6ProtocolNumber:
proto, fragID, fragOffset, fragMore, ok := parse.IPv6(pkt)
if !ok {
return
}
ipv6 := header.IPv6(pkt.NetworkHeader().View())
src = ipv6.SourceAddress()
dst = ipv6.DestinationAddress()
transProto = uint8(proto)
size = ipv6.PayloadLength()
id = fragID
moreFragments = fragMore
fragmentOffset = fragOffset
case header.ARPProtocolNumber:
if parse.ARP(pkt) {
return
}
arp := header.ARP(pkt.NetworkHeader().View())
log.Infof(
"%s arp %s (%s) -> %s (%s) valid:%t",
prefix,
tcpip.Address(arp.ProtocolAddressSender()), tcpip.LinkAddress(arp.HardwareAddressSender()),
tcpip.Address(arp.ProtocolAddressTarget()), tcpip.LinkAddress(arp.HardwareAddressTarget()),
arp.IsValid(),
)
return
default:
log.Infof("%s unknown network protocol", prefix)
return
}
// Figure out the transport layer info.
transName := "unknown"
srcPort := uint16(0)
dstPort := uint16(0)
details := ""
switch tcpip.TransportProtocolNumber(transProto) {
case header.ICMPv4ProtocolNumber:
transName = "icmp"
hdr, ok := pkt.Data.PullUp(header.ICMPv4MinimumSize)
if !ok {
break
}
icmp := header.ICMPv4(hdr)
icmpType := "unknown"
if fragmentOffset == 0 {
switch icmp.Type() {
case header.ICMPv4EchoReply:
icmpType = "echo reply"
case header.ICMPv4DstUnreachable:
icmpType = "destination unreachable"
case header.ICMPv4SrcQuench:
icmpType = "source quench"
case header.ICMPv4Redirect:
icmpType = "redirect"
case header.ICMPv4Echo:
icmpType = "echo"
case header.ICMPv4TimeExceeded:
icmpType = "time exceeded"
case header.ICMPv4ParamProblem:
icmpType = "param problem"
case header.ICMPv4Timestamp:
icmpType = "timestamp"
case header.ICMPv4TimestampReply:
icmpType = "timestamp reply"
case header.ICMPv4InfoRequest:
icmpType = "info request"
case header.ICMPv4InfoReply:
icmpType = "info reply"
}
}
log.Infof("%s %s %s -> %s %s len:%d id:%04x code:%d", prefix, transName, src, dst, icmpType, size, id, icmp.Code())
return
case header.ICMPv6ProtocolNumber:
transName = "icmp"
hdr, ok := pkt.Data.PullUp(header.ICMPv6MinimumSize)
if !ok {
break
}
icmp := header.ICMPv6(hdr)
icmpType := "unknown"
switch icmp.Type() {
case header.ICMPv6DstUnreachable:
icmpType = "destination unreachable"
case header.ICMPv6PacketTooBig:
icmpType = "packet too big"
case header.ICMPv6TimeExceeded:
icmpType = "time exceeded"
case header.ICMPv6ParamProblem:
icmpType = "param problem"
case header.ICMPv6EchoRequest:
icmpType = "echo request"
case header.ICMPv6EchoReply:
icmpType = "echo reply"
case header.ICMPv6RouterSolicit:
icmpType = "router solicit"
case header.ICMPv6RouterAdvert:
icmpType = "router advert"
case header.ICMPv6NeighborSolicit:
icmpType = "neighbor solicit"
case header.ICMPv6NeighborAdvert:
icmpType = "neighbor advert"
case header.ICMPv6RedirectMsg:
icmpType = "redirect message"
}
log.Infof("%s %s %s -> %s %s len:%d id:%04x code:%d", prefix, transName, src, dst, icmpType, size, id, icmp.Code())
return
case header.UDPProtocolNumber:
transName = "udp"
if ok := parse.UDP(pkt); !ok {
break
}
udp := header.UDP(pkt.TransportHeader().View())
if fragmentOffset == 0 {
srcPort = udp.SourcePort()
dstPort = udp.DestinationPort()
details = fmt.Sprintf("xsum: 0x%x", udp.Checksum())
size -= header.UDPMinimumSize
}
case header.TCPProtocolNumber:
transName = "tcp"
if ok := parse.TCP(pkt); !ok {
break
}
tcp := header.TCP(pkt.TransportHeader().View())
if fragmentOffset == 0 {
offset := int(tcp.DataOffset())
if offset < header.TCPMinimumSize {
details += fmt.Sprintf("invalid packet: tcp data offset too small %d", offset)
break
}
if size := pkt.Data.Size() + len(tcp); offset > size && !moreFragments {
details += fmt.Sprintf("invalid packet: tcp data offset %d larger than tcp packet length %d", offset, size)
break
}
srcPort = tcp.SourcePort()
dstPort = tcp.DestinationPort()
size -= uint16(offset)
// Initialize the TCP flags.
flags := tcp.Flags()
flagsStr := []byte("FSRPAU")
for i := range flagsStr {
if flags&(1<<uint(i)) == 0 {
flagsStr[i] = ' '
}
}
details = fmt.Sprintf("flags:0x%02x (%s) seqnum: %d ack: %d win: %d xsum:0x%x", flags, string(flagsStr), tcp.SequenceNumber(), tcp.AckNumber(), tcp.WindowSize(), tcp.Checksum())
if flags&header.TCPFlagSyn != 0 {
details += fmt.Sprintf(" options: %+v", header.ParseSynOptions(tcp.Options(), flags&header.TCPFlagAck != 0))
} else {
details += fmt.Sprintf(" options: %+v", tcp.ParsedOptions())
}
}
default:
log.Infof("%s %s -> %s unknown transport protocol: %d", prefix, src, dst, transProto)
return
}
if gso != nil {
details += fmt.Sprintf(" gso: %+v", gso)
}
log.Infof("%s %s %s:%d -> %s:%d len:%d id:%04x %s", prefix, transName, src, srcPort, dst, dstPort, size, id, details)
}
|