1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
|
// Copyright 2018 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package sniffer provides the implementation of data-link layer endpoints that
// wrap another endpoint and logs inbound and outbound packets.
//
// Sniffer endpoints can be used in the networking stack by calling New(eID) to
// create a new endpoint, where eID is the ID of the endpoint being wrapped,
// and then passing it as an argument to Stack.CreateNIC().
package sniffer
import (
"bytes"
"encoding/binary"
"fmt"
"io"
"os"
"sync/atomic"
"time"
"gvisor.googlesource.com/gvisor/pkg/log"
"gvisor.googlesource.com/gvisor/pkg/tcpip"
"gvisor.googlesource.com/gvisor/pkg/tcpip/buffer"
"gvisor.googlesource.com/gvisor/pkg/tcpip/header"
"gvisor.googlesource.com/gvisor/pkg/tcpip/stack"
)
// LogPackets is a flag used to enable or disable packet logging via the log
// package. Valid values are 0 or 1.
//
// LogPackets must be accessed atomically.
var LogPackets uint32 = 1
// LogPacketsToFile is a flag used to enable or disable logging packets to a
// pcap file. Valid values are 0 or 1. A file must have been specified when the
// sniffer was created for this flag to have effect.
//
// LogPacketsToFile must be accessed atomically.
var LogPacketsToFile uint32 = 1
type endpoint struct {
dispatcher stack.NetworkDispatcher
lower stack.LinkEndpoint
file *os.File
maxPCAPLen uint32
}
// New creates a new sniffer link-layer endpoint. It wraps around another
// endpoint and logs packets and they traverse the endpoint.
func New(lower tcpip.LinkEndpointID) tcpip.LinkEndpointID {
return stack.RegisterLinkEndpoint(&endpoint{
lower: stack.FindLinkEndpoint(lower),
})
}
func zoneOffset() (int32, error) {
loc, err := time.LoadLocation("Local")
if err != nil {
return 0, err
}
date := time.Date(0, 0, 0, 0, 0, 0, 0, loc)
_, offset := date.Zone()
return int32(offset), nil
}
func writePCAPHeader(w io.Writer, maxLen uint32) error {
offset, err := zoneOffset()
if err != nil {
return err
}
return binary.Write(w, binary.BigEndian, pcapHeader{
// From https://wiki.wireshark.org/Development/LibpcapFileFormat
MagicNumber: 0xa1b2c3d4,
VersionMajor: 2,
VersionMinor: 4,
Thiszone: offset,
Sigfigs: 0,
Snaplen: maxLen,
Network: 101, // LINKTYPE_RAW
})
}
// NewWithFile creates a new sniffer link-layer endpoint. It wraps around
// another endpoint and logs packets and they traverse the endpoint.
//
// Packets can be logged to file in the pcap format. A sniffer created
// with this function will not emit packets using the standard log
// package.
//
// snapLen is the maximum amount of a packet to be saved. Packets with a length
// less than or equal too snapLen will be saved in their entirety. Longer
// packets will be truncated to snapLen.
func NewWithFile(lower tcpip.LinkEndpointID, file *os.File, snapLen uint32) (tcpip.LinkEndpointID, error) {
if err := writePCAPHeader(file, snapLen); err != nil {
return 0, err
}
return stack.RegisterLinkEndpoint(&endpoint{
lower: stack.FindLinkEndpoint(lower),
file: file,
maxPCAPLen: snapLen,
}), nil
}
// DeliverNetworkPacket implements the stack.NetworkDispatcher interface. It is
// called by the link-layer endpoint being wrapped when a packet arrives, and
// logs the packet before forwarding to the actual dispatcher.
func (e *endpoint) DeliverNetworkPacket(linkEP stack.LinkEndpoint, remoteLinkAddr tcpip.LinkAddress, protocol tcpip.NetworkProtocolNumber, vv *buffer.VectorisedView) {
if atomic.LoadUint32(&LogPackets) == 1 && e.file == nil {
logPacket("recv", protocol, vv.First())
}
if e.file != nil && atomic.LoadUint32(&LogPacketsToFile) == 1 {
vs := vv.Views()
length := vv.Size()
if length > int(e.maxPCAPLen) {
length = int(e.maxPCAPLen)
}
buf := bytes.NewBuffer(make([]byte, 0, pcapPacketHeaderLen+length))
if err := binary.Write(buf, binary.BigEndian, newPCAPPacketHeader(uint32(length), uint32(vv.Size()))); err != nil {
panic(err)
}
for _, v := range vs {
if length == 0 {
break
}
if len(v) > length {
v = v[:length]
}
if _, err := buf.Write([]byte(v)); err != nil {
panic(err)
}
length -= len(v)
}
if _, err := e.file.Write(buf.Bytes()); err != nil {
panic(err)
}
}
e.dispatcher.DeliverNetworkPacket(e, remoteLinkAddr, protocol, vv)
}
// Attach implements the stack.LinkEndpoint interface. It saves the dispatcher
// and registers with the lower endpoint as its dispatcher so that "e" is called
// for inbound packets.
func (e *endpoint) Attach(dispatcher stack.NetworkDispatcher) {
e.dispatcher = dispatcher
e.lower.Attach(e)
}
// IsAttached implements stack.LinkEndpoint.IsAttached.
func (e *endpoint) IsAttached() bool {
return e.dispatcher != nil
}
// MTU implements stack.LinkEndpoint.MTU. It just forwards the request to the
// lower endpoint.
func (e *endpoint) MTU() uint32 {
return e.lower.MTU()
}
// Capabilities implements stack.LinkEndpoint.Capabilities. It just forwards the
// request to the lower endpoint.
func (e *endpoint) Capabilities() stack.LinkEndpointCapabilities {
return e.lower.Capabilities()
}
// MaxHeaderLength implements the stack.LinkEndpoint interface. It just forwards
// the request to the lower endpoint.
func (e *endpoint) MaxHeaderLength() uint16 {
return e.lower.MaxHeaderLength()
}
func (e *endpoint) LinkAddress() tcpip.LinkAddress {
return e.lower.LinkAddress()
}
// WritePacket implements the stack.LinkEndpoint interface. It is called by
// higher-level protocols to write packets; it just logs the packet and forwards
// the request to the lower endpoint.
func (e *endpoint) WritePacket(r *stack.Route, hdr *buffer.Prependable, payload buffer.VectorisedView, protocol tcpip.NetworkProtocolNumber) *tcpip.Error {
if atomic.LoadUint32(&LogPackets) == 1 && e.file == nil {
logPacket("send", protocol, hdr.UsedBytes())
}
if e.file != nil && atomic.LoadUint32(&LogPacketsToFile) == 1 {
hdrBuf := hdr.UsedBytes()
length := len(hdrBuf) + payload.Size()
if length > int(e.maxPCAPLen) {
length = int(e.maxPCAPLen)
}
buf := bytes.NewBuffer(make([]byte, 0, pcapPacketHeaderLen+length))
if err := binary.Write(buf, binary.BigEndian, newPCAPPacketHeader(uint32(length), uint32(len(hdrBuf)+payload.Size()))); err != nil {
panic(err)
}
if len(hdrBuf) > length {
hdrBuf = hdrBuf[:length]
}
if _, err := buf.Write(hdrBuf); err != nil {
panic(err)
}
length -= len(hdrBuf)
if length > 0 {
for _, v := range payload.Views() {
if len(v) > length {
v = v[:length]
}
n, err := buf.Write(v)
if err != nil {
panic(err)
}
length -= n
if length == 0 {
break
}
}
}
if _, err := e.file.Write(buf.Bytes()); err != nil {
panic(err)
}
}
return e.lower.WritePacket(r, hdr, payload, protocol)
}
func logPacket(prefix string, protocol tcpip.NetworkProtocolNumber, b buffer.View) {
// Figure out the network layer info.
var transProto uint8
src := tcpip.Address("unknown")
dst := tcpip.Address("unknown")
id := 0
size := uint16(0)
switch protocol {
case header.IPv4ProtocolNumber:
ipv4 := header.IPv4(b)
src = ipv4.SourceAddress()
dst = ipv4.DestinationAddress()
transProto = ipv4.Protocol()
size = ipv4.TotalLength() - uint16(ipv4.HeaderLength())
b = b[ipv4.HeaderLength():]
id = int(ipv4.ID())
case header.IPv6ProtocolNumber:
ipv6 := header.IPv6(b)
src = ipv6.SourceAddress()
dst = ipv6.DestinationAddress()
transProto = ipv6.NextHeader()
size = ipv6.PayloadLength()
b = b[header.IPv6MinimumSize:]
case header.ARPProtocolNumber:
arp := header.ARP(b)
log.Infof(
"%s arp %v (%v) -> %v (%v) valid:%v",
prefix,
tcpip.Address(arp.ProtocolAddressSender()), tcpip.LinkAddress(arp.HardwareAddressSender()),
tcpip.Address(arp.ProtocolAddressTarget()), tcpip.LinkAddress(arp.HardwareAddressTarget()),
arp.IsValid(),
)
return
default:
log.Infof("%s unknown network protocol", prefix)
return
}
// Figure out the transport layer info.
transName := "unknown"
srcPort := uint16(0)
dstPort := uint16(0)
details := ""
switch tcpip.TransportProtocolNumber(transProto) {
case header.ICMPv4ProtocolNumber:
transName = "icmp"
icmp := header.ICMPv4(b)
icmpType := "unknown"
switch icmp.Type() {
case header.ICMPv4EchoReply:
icmpType = "echo reply"
case header.ICMPv4DstUnreachable:
icmpType = "destination unreachable"
case header.ICMPv4SrcQuench:
icmpType = "source quench"
case header.ICMPv4Redirect:
icmpType = "redirect"
case header.ICMPv4Echo:
icmpType = "echo"
case header.ICMPv4TimeExceeded:
icmpType = "time exceeded"
case header.ICMPv4ParamProblem:
icmpType = "param problem"
case header.ICMPv4Timestamp:
icmpType = "timestamp"
case header.ICMPv4TimestampReply:
icmpType = "timestamp reply"
case header.ICMPv4InfoRequest:
icmpType = "info request"
case header.ICMPv4InfoReply:
icmpType = "info reply"
}
log.Infof("%s %s %v -> %v %s len:%d id:%04x code:%d", prefix, transName, src, dst, icmpType, size, id, icmp.Code())
return
case header.ICMPv6ProtocolNumber:
transName = "icmp"
icmp := header.ICMPv6(b)
icmpType := "unknown"
switch icmp.Type() {
case header.ICMPv6DstUnreachable:
icmpType = "destination unreachable"
case header.ICMPv6PacketTooBig:
icmpType = "packet too big"
case header.ICMPv6TimeExceeded:
icmpType = "time exceeded"
case header.ICMPv6ParamProblem:
icmpType = "param problem"
case header.ICMPv6EchoRequest:
icmpType = "echo request"
case header.ICMPv6EchoReply:
icmpType = "echo reply"
case header.ICMPv6RouterSolicit:
icmpType = "router solicit"
case header.ICMPv6RouterAdvert:
icmpType = "router advert"
case header.ICMPv6NeighborSolicit:
icmpType = "neighbor solicit"
case header.ICMPv6NeighborAdvert:
icmpType = "neighbor advert"
case header.ICMPv6RedirectMsg:
icmpType = "redirect message"
}
log.Infof("%s %s %v -> %v %s len:%d id:%04x code:%d", prefix, transName, src, dst, icmpType, size, id, icmp.Code())
return
case header.UDPProtocolNumber:
transName = "udp"
udp := header.UDP(b)
srcPort = udp.SourcePort()
dstPort = udp.DestinationPort()
size -= header.UDPMinimumSize
details = fmt.Sprintf("xsum: 0x%x", udp.Checksum())
case header.TCPProtocolNumber:
transName = "tcp"
tcp := header.TCP(b)
offset := int(tcp.DataOffset())
if offset < header.TCPMinimumSize {
details += fmt.Sprintf("invalid packet: tcp data offset too small %d", offset)
break
}
if offset > len(tcp) {
details += fmt.Sprintf("invalid packet: tcp data offset %d larger than packet buffer length %d", offset, len(tcp))
break
}
srcPort = tcp.SourcePort()
dstPort = tcp.DestinationPort()
size -= uint16(offset)
// Initialize the TCP flags.
flags := tcp.Flags()
flagsStr := []byte("FSRPAU")
for i := range flagsStr {
if flags&(1<<uint(i)) == 0 {
flagsStr[i] = ' '
}
}
details = fmt.Sprintf("flags:0x%02x (%v) seqnum: %v ack: %v win: %v xsum:0x%x", flags, string(flagsStr), tcp.SequenceNumber(), tcp.AckNumber(), tcp.WindowSize(), tcp.Checksum())
if flags&header.TCPFlagSyn != 0 {
details += fmt.Sprintf(" options: %+v", header.ParseSynOptions(tcp.Options(), flags&header.TCPFlagAck != 0))
} else {
details += fmt.Sprintf(" options: %+v", tcp.ParsedOptions())
}
default:
log.Infof("%s %v -> %v unknown transport protocol: %d", prefix, src, dst, transProto)
return
}
log.Infof("%s %s %v:%v -> %v:%v len:%d id:%04x %s", prefix, transName, src, srcPort, dst, dstPort, size, id, details)
}
|