1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package sharedmem
import (
"math"
"syscall"
"gvisor.dev/gvisor/pkg/tcpip/buffer"
"gvisor.dev/gvisor/pkg/tcpip/link/sharedmem/queue"
)
const (
nilID = math.MaxUint64
)
// tx holds all state associated with a tx queue.
type tx struct {
data []byte
q queue.Tx
ids idManager
bufs bufferManager
}
// init initializes all state needed by the tx queue based on the information
// provided.
//
// The caller always retains ownership of all file descriptors passed in. The
// queue implementation will duplicate any that it may need in the future.
func (t *tx) init(mtu uint32, c *QueueConfig) error {
// Map in all buffers.
txPipe, err := getBuffer(c.TxPipeFD)
if err != nil {
return err
}
rxPipe, err := getBuffer(c.RxPipeFD)
if err != nil {
syscall.Munmap(txPipe)
return err
}
data, err := getBuffer(c.DataFD)
if err != nil {
syscall.Munmap(txPipe)
syscall.Munmap(rxPipe)
return err
}
// Initialize state based on buffers.
t.q.Init(txPipe, rxPipe)
t.ids.init()
t.bufs.init(0, len(data), int(mtu))
t.data = data
return nil
}
// cleanup releases all resources allocated during init(). It must only be
// called if init() has previously succeeded.
func (t *tx) cleanup() {
a, b := t.q.Bytes()
syscall.Munmap(a)
syscall.Munmap(b)
syscall.Munmap(t.data)
}
// transmit sends a packet made of bufs. Returns a boolean that specifies
// whether the packet was successfully transmitted.
func (t *tx) transmit(bufs ...buffer.View) bool {
// Pull completions from the tx queue and add their buffers back to the
// pool so that we can reuse them.
for {
id, ok := t.q.CompletedPacket()
if !ok {
break
}
if buf := t.ids.remove(id); buf != nil {
t.bufs.free(buf)
}
}
bSize := t.bufs.entrySize
total := uint32(0)
for _, data := range bufs {
total += uint32(len(data))
}
bufCount := (total + bSize - 1) / bSize
// Allocate enough buffers to hold all the data.
var buf *queue.TxBuffer
for i := bufCount; i != 0; i-- {
b := t.bufs.alloc()
if b == nil {
// Failed to get all buffers. Return to the pool
// whatever we had managed to get.
if buf != nil {
t.bufs.free(buf)
}
return false
}
b.Next = buf
buf = b
}
// Copy data into allocated buffers.
nBuf := buf
var dBuf []byte
for _, data := range bufs {
for len(data) > 0 {
if len(dBuf) == 0 {
dBuf = t.data[nBuf.Offset:][:nBuf.Size]
nBuf = nBuf.Next
}
n := copy(dBuf, data)
data = data[n:]
dBuf = dBuf[n:]
}
}
// Get an id for this packet and send it out.
id := t.ids.add(buf)
if !t.q.Enqueue(id, total, bufCount, buf) {
t.ids.remove(id)
t.bufs.free(buf)
return false
}
return true
}
// getBuffer returns a memory region mapped to the full contents of the given
// file descriptor.
func getBuffer(fd int) ([]byte, error) {
var s syscall.Stat_t
if err := syscall.Fstat(fd, &s); err != nil {
return nil, err
}
// Check that size doesn't overflow an int.
if s.Size > int64(^uint(0)>>1) {
return nil, syscall.EDOM
}
return syscall.Mmap(fd, 0, int(s.Size), syscall.PROT_READ|syscall.PROT_WRITE, syscall.MAP_SHARED|syscall.MAP_FILE)
}
// idDescriptor is used by idManager to either point to a tx buffer (in case
// the ID is assigned) or to the next free element (if the id is not assigned).
type idDescriptor struct {
buf *queue.TxBuffer
nextFree uint64
}
// idManager is a manager of tx buffer identifiers. It assigns unique IDs to
// tx buffers that are added to it; the IDs can only be reused after they have
// been removed.
//
// The ID assignments are stored so that the tx buffers can be retrieved from
// the IDs previously assigned to them.
type idManager struct {
// ids is a slice containing all tx buffers. The ID is the index into
// this slice.
ids []idDescriptor
// freeList a list of free IDs.
freeList uint64
}
// init initializes the id manager.
func (m *idManager) init() {
m.freeList = nilID
}
// add assigns an ID to the given tx buffer.
func (m *idManager) add(b *queue.TxBuffer) uint64 {
if i := m.freeList; i != nilID {
// There is an id available in the free list, just use it.
m.ids[i].buf = b
m.freeList = m.ids[i].nextFree
return i
}
// We need to expand the id descriptor.
m.ids = append(m.ids, idDescriptor{buf: b})
return uint64(len(m.ids) - 1)
}
// remove retrieves the tx buffer associated with the given ID, and removes the
// ID from the assigned table so that it can be reused in the future.
func (m *idManager) remove(i uint64) *queue.TxBuffer {
if i >= uint64(len(m.ids)) {
return nil
}
desc := &m.ids[i]
b := desc.buf
if b == nil {
// The provided id is not currently assigned.
return nil
}
desc.buf = nil
desc.nextFree = m.freeList
m.freeList = i
return b
}
// bufferManager manages a buffer region broken up into smaller, equally sized
// buffers. Smaller buffers can be allocated and freed.
type bufferManager struct {
freeList *queue.TxBuffer
curOffset uint64
limit uint64
entrySize uint32
}
// init initializes the buffer manager.
func (b *bufferManager) init(initialOffset, size, entrySize int) {
b.freeList = nil
b.curOffset = uint64(initialOffset)
b.limit = uint64(initialOffset + size/entrySize*entrySize)
b.entrySize = uint32(entrySize)
}
// alloc allocates a buffer from the manager, if one is available.
func (b *bufferManager) alloc() *queue.TxBuffer {
if b.freeList != nil {
// There is a descriptor ready for reuse in the free list.
d := b.freeList
b.freeList = d.Next
d.Next = nil
return d
}
if b.curOffset < b.limit {
// There is room available in the never-used range, so create
// a new descriptor for it.
d := &queue.TxBuffer{
Offset: b.curOffset,
Size: b.entrySize,
}
b.curOffset += uint64(b.entrySize)
return d
}
return nil
}
// free returns all buffers in the list to the buffer manager so that they can
// be reused.
func (b *bufferManager) free(d *queue.TxBuffer) {
// Find the last buffer in the list.
last := d
for last.Next != nil {
last = last.Next
}
// Push list onto free list.
last.Next = b.freeList
b.freeList = d
}
|