summaryrefslogtreecommitdiffhomepage
path: root/pkg/tcpip/link/sharedmem/sharedmem.go
blob: bcb37a465323f5212e9927c034102d2ebdff5916 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//go:build linux
// +build linux

// Package sharedmem provides the implemention of data-link layer endpoints
// backed by shared memory.
//
// Shared memory endpoints can be used in the networking stack by calling New()
// to create a new endpoint, and then passing it as an argument to
// Stack.CreateNIC().
package sharedmem

import (
	"fmt"
	"sync/atomic"

	"gvisor.dev/gvisor/pkg/eventfd"
	"gvisor.dev/gvisor/pkg/log"
	"gvisor.dev/gvisor/pkg/sync"
	"gvisor.dev/gvisor/pkg/tcpip"
	"gvisor.dev/gvisor/pkg/tcpip/buffer"
	"gvisor.dev/gvisor/pkg/tcpip/header"
	"gvisor.dev/gvisor/pkg/tcpip/link/rawfile"
	"gvisor.dev/gvisor/pkg/tcpip/link/sharedmem/queue"
	"gvisor.dev/gvisor/pkg/tcpip/stack"
)

// QueueConfig holds all the file descriptors needed to describe a tx or rx
// queue over shared memory. It is used when creating new shared memory
// endpoints to describe tx and rx queues.
type QueueConfig struct {
	// DataFD is a file descriptor for the file that contains the data to
	// be transmitted via this queue. Descriptors contain offsets within
	// this file.
	DataFD int

	// EventFD is a file descriptor for the event that is signaled when
	// data is becomes available in this queue.
	EventFD eventfd.Eventfd

	// TxPipeFD is a file descriptor for the tx pipe associated with the
	// queue.
	TxPipeFD int

	// RxPipeFD is a file descriptor for the rx pipe associated with the
	// queue.
	RxPipeFD int

	// SharedDataFD is a file descriptor for the file that contains shared
	// state between the two ends of the queue. This data specifies, for
	// example, whether EventFD signaling is enabled or disabled.
	SharedDataFD int
}

// FDs returns the FD's in the QueueConfig as a slice of ints. This must
// be used in conjunction with QueueConfigFromFDs to ensure the order
// of FDs matches when reconstructing the config when serialized or sent
// as part of control messages.
func (q *QueueConfig) FDs() []int {
	return []int{q.DataFD, q.EventFD.FD(), q.TxPipeFD, q.RxPipeFD, q.SharedDataFD}
}

// QueueConfigFromFDs constructs a QueueConfig out of a slice of ints where each
// entry represents an file descriptor. The order of FDs in the slice must be in
// the order specified below for the config to be valid. QueueConfig.FDs()
// should be used when the config needs to be serialized or sent as part of a
// control message to ensure the correct order.
func QueueConfigFromFDs(fds []int) (QueueConfig, error) {
	if len(fds) != 5 {
		return QueueConfig{}, fmt.Errorf("insufficient number of fds: len(fds): %d, want: 5", len(fds))
	}
	return QueueConfig{
		DataFD:       fds[0],
		EventFD:      eventfd.Wrap(fds[1]),
		TxPipeFD:     fds[2],
		RxPipeFD:     fds[3],
		SharedDataFD: fds[4],
	}, nil
}

// Options specify the details about the sharedmem endpoint to be created.
type Options struct {
	// MTU is the mtu to use for this endpoint.
	MTU uint32

	// BufferSize is the size of each scatter/gather buffer that will hold packet
	// data.
	//
	// NOTE: This directly determines number of packets that can be held in
	// the ring buffer at any time. This does not have to be sized to the MTU as
	// the shared memory queue design allows usage of more than one buffer to be
	// used to make up a given packet.
	BufferSize uint32

	// LinkAddress is the link address for this endpoint (required).
	LinkAddress tcpip.LinkAddress

	// TX is the transmit queue configuration for this shared memory endpoint.
	TX QueueConfig

	// RX is the receive queue configuration for this shared memory endpoint.
	RX QueueConfig

	// PeerFD is the fd for the connected peer which can be used to detect
	// peer disconnects.
	PeerFD int

	// OnClosed is a function that is called when the endpoint is being closed
	// (probably due to peer going away)
	OnClosed func(err tcpip.Error)

	// TXChecksumOffload if true, indicates that this endpoints capability
	// set should include CapabilityTXChecksumOffload.
	TXChecksumOffload bool

	// RXChecksumOffload if true, indicates that this endpoints capability
	// set should include CapabilityRXChecksumOffload.
	RXChecksumOffload bool
}

type endpoint struct {
	// mtu (maximum transmission unit) is the maximum size of a packet.
	// mtu is immutable.
	mtu uint32

	// bufferSize is the size of each individual buffer.
	// bufferSize is immutable.
	bufferSize uint32

	// addr is the local address of this endpoint.
	// addr is immutable.
	addr tcpip.LinkAddress

	// peerFD is an fd to the peer that can be used to detect when the
	// peer is gone.
	// peerFD is immutable.
	peerFD int

	// caps holds the endpoint capabilities.
	caps stack.LinkEndpointCapabilities

	// hdrSize is the size of the link layer header if any.
	// hdrSize is immutable.
	hdrSize uint32

	// rx is the receive queue.
	rx rx

	// stopRequested is to be accessed atomically only, and determines if
	// the worker goroutines should stop.
	stopRequested uint32

	// Wait group used to indicate that all workers have stopped.
	completed sync.WaitGroup

	// onClosed is a function to be called when the FD's peer (if any) closes
	// its end of the communication pipe.
	onClosed func(tcpip.Error)

	// mu protects the following fields.
	mu sync.Mutex

	// tx is the transmit queue.
	// +checklocks:mu
	tx tx

	// workerStarted specifies whether the worker goroutine was started.
	// +checklocks:mu
	workerStarted bool
}

// New creates a new shared-memory-based endpoint. Buffers will be broken up
// into buffers of "bufferSize" bytes.
func New(opts Options) (stack.LinkEndpoint, error) {
	e := &endpoint{
		mtu:        opts.MTU,
		bufferSize: opts.BufferSize,
		addr:       opts.LinkAddress,
		peerFD:     opts.PeerFD,
		onClosed:   opts.OnClosed,
	}

	if err := e.tx.init(opts.BufferSize, &opts.TX); err != nil {
		return nil, err
	}

	if err := e.rx.init(opts.BufferSize, &opts.RX); err != nil {
		e.tx.cleanup()
		return nil, err
	}

	e.caps = stack.LinkEndpointCapabilities(0)
	if opts.RXChecksumOffload {
		e.caps |= stack.CapabilityRXChecksumOffload
	}

	if opts.TXChecksumOffload {
		e.caps |= stack.CapabilityTXChecksumOffload
	}

	if opts.LinkAddress != "" {
		e.hdrSize = header.EthernetMinimumSize
		e.caps |= stack.CapabilityResolutionRequired
	}
	return e, nil
}

// Close frees all resources associated with the endpoint.
func (e *endpoint) Close() {
	// Tell dispatch goroutine to stop, then write to the eventfd so that
	// it wakes up in case it's sleeping.
	atomic.StoreUint32(&e.stopRequested, 1)
	e.rx.eventFD.Notify()

	// Cleanup the queues inline if the worker hasn't started yet; we also
	// know it won't start from now on because stopRequested is set to 1.
	e.mu.Lock()
	defer e.mu.Unlock()
	workerPresent := e.workerStarted

	if !workerPresent {
		e.tx.cleanup()
		e.rx.cleanup()
	}
}

// Wait implements stack.LinkEndpoint.Wait. It waits until all workers have
// stopped after a Close() call.
func (e *endpoint) Wait() {
	e.completed.Wait()
}

// Attach implements stack.LinkEndpoint.Attach. It launches the goroutine that
// reads packets from the rx queue.
func (e *endpoint) Attach(dispatcher stack.NetworkDispatcher) {
	e.mu.Lock()
	if !e.workerStarted && atomic.LoadUint32(&e.stopRequested) == 0 {
		e.workerStarted = true
		e.completed.Add(1)

		// Spin up a goroutine to monitor for peer shutdown.
		if e.peerFD >= 0 {
			e.completed.Add(1)
			go func() {
				defer e.completed.Done()
				b := make([]byte, 1)
				// When sharedmem endpoint is in use the peerFD is never used for any data
				// transfer and this Read should only return if the peer is shutting down.
				_, err := rawfile.BlockingRead(e.peerFD, b)
				if e.onClosed != nil {
					e.onClosed(err)
				}
			}()
		}

		// Link endpoints are not savable. When transportation endpoints
		// are saved, they stop sending outgoing packets and all
		// incoming packets are rejected.
		go e.dispatchLoop(dispatcher) // S/R-SAFE: see above.
	}
	e.mu.Unlock()
}

// IsAttached implements stack.LinkEndpoint.IsAttached.
func (e *endpoint) IsAttached() bool {
	e.mu.Lock()
	defer e.mu.Unlock()
	return e.workerStarted
}

// MTU implements stack.LinkEndpoint.MTU. It returns the value initialized
// during construction.
func (e *endpoint) MTU() uint32 {
	return e.mtu - e.hdrSize
}

// Capabilities implements stack.LinkEndpoint.Capabilities.
func (e *endpoint) Capabilities() stack.LinkEndpointCapabilities {
	return e.caps
}

// MaxHeaderLength implements stack.LinkEndpoint.MaxHeaderLength. It returns the
// ethernet frame header size.
func (e *endpoint) MaxHeaderLength() uint16 {
	return uint16(e.hdrSize)
}

// LinkAddress implements stack.LinkEndpoint.LinkAddress. It returns the local
// link address.
func (e *endpoint) LinkAddress() tcpip.LinkAddress {
	return e.addr
}

// AddHeader implements stack.LinkEndpoint.AddHeader.
func (e *endpoint) AddHeader(local, remote tcpip.LinkAddress, protocol tcpip.NetworkProtocolNumber, pkt *stack.PacketBuffer) {
	// Add ethernet header if needed.
	eth := header.Ethernet(pkt.LinkHeader().Push(header.EthernetMinimumSize))
	ethHdr := &header.EthernetFields{
		DstAddr: remote,
		Type:    protocol,
	}

	// Preserve the src address if it's set in the route.
	if local != "" {
		ethHdr.SrcAddr = local
	} else {
		ethHdr.SrcAddr = e.addr
	}
	eth.Encode(ethHdr)
}

// WriteRawPacket implements stack.LinkEndpoint.
func (*endpoint) WriteRawPacket(*stack.PacketBuffer) tcpip.Error { return &tcpip.ErrNotSupported{} }

// +checklocks:e.mu
func (e *endpoint) writePacketLocked(r stack.RouteInfo, protocol tcpip.NetworkProtocolNumber, pkt *stack.PacketBuffer) tcpip.Error {
	if e.addr != "" {
		e.AddHeader(r.LocalLinkAddress, r.RemoteLinkAddress, protocol, pkt)
	}

	views := pkt.Views()
	// Transmit the packet.
	ok := e.tx.transmit(views...)
	if !ok {
		return &tcpip.ErrWouldBlock{}
	}

	return nil
}

// WritePacket writes outbound packets to the file descriptor. If it is not
// currently writable, the packet is dropped.
func (e *endpoint) WritePacket(r stack.RouteInfo, protocol tcpip.NetworkProtocolNumber, pkt *stack.PacketBuffer) tcpip.Error {
	e.mu.Lock()
	defer e.mu.Unlock()
	if err := e.writePacketLocked(r, protocol, pkt); err != nil {
		return err
	}
	e.tx.notify()
	return nil
}

// WritePackets implements stack.LinkEndpoint.WritePackets.
func (e *endpoint) WritePackets(r stack.RouteInfo, pkts stack.PacketBufferList, protocol tcpip.NetworkProtocolNumber) (int, tcpip.Error) {
	n := 0
	var err tcpip.Error
	e.mu.Lock()
	defer e.mu.Unlock()
	for pkt := pkts.Front(); pkt != nil; pkt = pkt.Next() {
		if err = e.writePacketLocked(r, pkt.NetworkProtocolNumber, pkt); err != nil {
			break
		}
		n++
	}
	// WritePackets never returns an error if it successfully transmitted at least
	// one packet.
	if err != nil && n == 0 {
		return 0, err
	}
	e.tx.notify()
	return n, nil
}

// dispatchLoop reads packets from the rx queue in a loop and dispatches them
// to the network stack.
func (e *endpoint) dispatchLoop(d stack.NetworkDispatcher) {
	// Post initial set of buffers.
	limit := e.rx.q.PostedBuffersLimit()
	if l := uint64(len(e.rx.data)) / uint64(e.bufferSize); limit > l {
		limit = l
	}
	for i := uint64(0); i < limit; i++ {
		b := queue.RxBuffer{
			Offset: i * uint64(e.bufferSize),
			Size:   e.bufferSize,
			ID:     i,
		}
		if !e.rx.q.PostBuffers([]queue.RxBuffer{b}) {
			log.Warningf("Unable to post %v-th buffer", i)
		}
	}

	// Read in a loop until a stop is requested.
	var rxb []queue.RxBuffer
	for atomic.LoadUint32(&e.stopRequested) == 0 {
		var n uint32
		rxb, n = e.rx.postAndReceive(rxb, &e.stopRequested)

		// Copy data from the shared area to its own buffer, then
		// prepare to repost the buffer.
		b := make([]byte, n)
		offset := uint32(0)
		for i := range rxb {
			copy(b[offset:], e.rx.data[rxb[i].Offset:][:rxb[i].Size])
			offset += rxb[i].Size

			rxb[i].Size = e.bufferSize
		}

		pkt := stack.NewPacketBuffer(stack.PacketBufferOptions{
			Data: buffer.View(b).ToVectorisedView(),
		})

		var src, dst tcpip.LinkAddress
		var proto tcpip.NetworkProtocolNumber
		if e.addr != "" {
			hdr, ok := pkt.LinkHeader().Consume(header.EthernetMinimumSize)
			if !ok {
				continue
			}
			eth := header.Ethernet(hdr)
			src = eth.SourceAddress()
			dst = eth.DestinationAddress()
			proto = eth.Type()
		} else {
			// We don't get any indication of what the packet is, so try to guess
			// if it's an IPv4 or IPv6 packet.
			// IP version information is at the first octet, so pulling up 1 byte.
			h, ok := pkt.Data().PullUp(1)
			if !ok {
				continue
			}
			switch header.IPVersion(h) {
			case header.IPv4Version:
				proto = header.IPv4ProtocolNumber
			case header.IPv6Version:
				proto = header.IPv6ProtocolNumber
			default:
				continue
			}
		}

		// Send packet up the stack.
		d.DeliverNetworkPacket(src, dst, proto, pkt)
	}

	e.mu.Lock()
	defer e.mu.Unlock()

	// Clean state.
	e.tx.cleanup()
	e.rx.cleanup()

	e.completed.Done()
}

// ARPHardwareType implements stack.LinkEndpoint.ARPHardwareType
func (*endpoint) ARPHardwareType() header.ARPHardwareType {
	return header.ARPHardwareEther
}