1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
|
// Copyright 2016 The Netstack Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package queue provides the implementation of transmit and receive queues
// based on shared memory ring buffers.
package queue
import (
"encoding/binary"
"sync/atomic"
"gvisor.googlesource.com/gvisor/pkg/log"
"gvisor.googlesource.com/gvisor/pkg/tcpip/link/sharedmem/pipe"
)
const (
// Offsets within a posted buffer.
postedOffset = 0
postedSize = 8
postedRemainingInGroup = 12
postedUserData = 16
postedID = 24
sizeOfPostedBuffer = 32
// Offsets within a received packet header.
consumedPacketSize = 0
consumedPacketReserved = 4
sizeOfConsumedPacketHeader = 8
// Offsets within a consumed buffer.
consumedOffset = 0
consumedSize = 8
consumedUserData = 12
consumedID = 20
sizeOfConsumedBuffer = 28
// The following are the allowed states of the shared data area.
eventFDUninitialized = 0
eventFDDisabled = 1
eventFDEnabled = 2
)
// RxBuffer is the descriptor of a receive buffer.
type RxBuffer struct {
Offset uint64
Size uint32
ID uint64
UserData uint64
}
// Rx is a receive queue. It is implemented with one tx and one rx pipe: the tx
// pipe is used to "post" buffers, while the rx pipe is used to receive packets
// whose contents have been written to previously posted buffers.
//
// This struct is thread-compatible.
type Rx struct {
tx pipe.Tx
rx pipe.Rx
sharedEventFDState *uint32
}
// Init initializes the receive queue with the given pipes, and shared state
// pointer -- the latter is used to enable/disable eventfd notifications.
func (r *Rx) Init(tx, rx []byte, sharedEventFDState *uint32) {
r.sharedEventFDState = sharedEventFDState
r.tx.Init(tx)
r.rx.Init(rx)
}
// EnableNotification updates the shared state such that the peer will notify
// the eventfd when there are packets to be dequeued.
func (r *Rx) EnableNotification() {
atomic.StoreUint32(r.sharedEventFDState, eventFDEnabled)
}
// DisableNotification updates the shared state such that the peer will not
// notify the eventfd.
func (r *Rx) DisableNotification() {
atomic.StoreUint32(r.sharedEventFDState, eventFDDisabled)
}
// PostedBuffersLimit returns the maximum number of buffers that can be posted
// before the tx queue fills up.
func (r *Rx) PostedBuffersLimit() uint64 {
return r.tx.Capacity(sizeOfPostedBuffer)
}
// PostBuffers makes the given buffers available for receiving data from the
// peer. Once they are posted, the peer is free to write to them and will
// eventually post them back for consumption.
func (r *Rx) PostBuffers(buffers []RxBuffer) bool {
for i := range buffers {
b := r.tx.Push(sizeOfPostedBuffer)
if b == nil {
r.tx.Abort()
return false
}
pb := &buffers[i]
binary.LittleEndian.PutUint64(b[postedOffset:], pb.Offset)
binary.LittleEndian.PutUint32(b[postedSize:], pb.Size)
binary.LittleEndian.PutUint32(b[postedRemainingInGroup:], 0)
binary.LittleEndian.PutUint64(b[postedUserData:], pb.UserData)
binary.LittleEndian.PutUint64(b[postedID:], pb.ID)
}
r.tx.Flush()
return true
}
// Dequeue receives buffers that have been previously posted by PostBuffers()
// and that have been filled by the peer and posted back.
//
// This is similar to append() in that new buffers are appended to "bufs", with
// reallocation only if "bufs" doesn't have enough capacity.
func (r *Rx) Dequeue(bufs []RxBuffer) ([]RxBuffer, uint32) {
for {
outBufs := bufs
// Pull the next descriptor from the rx pipe.
b := r.rx.Pull()
if b == nil {
return bufs, 0
}
if len(b) < sizeOfConsumedPacketHeader {
log.Warningf("Ignoring packet header: size (%v) is less than header size (%v)", len(b), sizeOfConsumedPacketHeader)
r.rx.Flush()
continue
}
totalDataSize := binary.LittleEndian.Uint32(b[consumedPacketSize:])
// Calculate the number of buffer descriptors and copy them
// over to the output.
count := (len(b) - sizeOfConsumedPacketHeader) / sizeOfConsumedBuffer
offset := sizeOfConsumedPacketHeader
buffersSize := uint32(0)
for i := count; i > 0; i-- {
s := binary.LittleEndian.Uint32(b[offset+consumedSize:])
buffersSize += s
if buffersSize < s {
// The buffer size overflows an unsigned 32-bit
// integer, so break out and force it to be
// ignored.
totalDataSize = 1
buffersSize = 0
break
}
outBufs = append(outBufs, RxBuffer{
Offset: binary.LittleEndian.Uint64(b[offset+consumedOffset:]),
Size: s,
ID: binary.LittleEndian.Uint64(b[offset+consumedID:]),
})
offset += sizeOfConsumedBuffer
}
r.rx.Flush()
if buffersSize < totalDataSize {
// The descriptor is corrupted, ignore it.
log.Warningf("Ignoring packet: actual data size (%v) less than expected size (%v)", buffersSize, totalDataSize)
continue
}
return outBufs, totalDataSize
}
}
// Bytes returns the byte slices on which the queue operates.
func (r *Rx) Bytes() (tx, rx []byte) {
return r.tx.Bytes(), r.rx.Bytes()
}
// DecodeRxBufferHeader decodes the header of a buffer posted on an rx queue.
func DecodeRxBufferHeader(b []byte) RxBuffer {
return RxBuffer{
Offset: binary.LittleEndian.Uint64(b[postedOffset:]),
Size: binary.LittleEndian.Uint32(b[postedSize:]),
ID: binary.LittleEndian.Uint64(b[postedID:]),
UserData: binary.LittleEndian.Uint64(b[postedUserData:]),
}
}
// RxCompletionSize returns the number of bytes needed to encode an rx
// completion containing "count" buffers.
func RxCompletionSize(count int) uint64 {
return sizeOfConsumedPacketHeader + uint64(count)*sizeOfConsumedBuffer
}
// EncodeRxCompletion encodes an rx completion header.
func EncodeRxCompletion(b []byte, size, reserved uint32) {
binary.LittleEndian.PutUint32(b[consumedPacketSize:], size)
binary.LittleEndian.PutUint32(b[consumedPacketReserved:], reserved)
}
// EncodeRxCompletionBuffer encodes the i-th rx completion buffer header.
func EncodeRxCompletionBuffer(b []byte, i int, rxb RxBuffer) {
b = b[RxCompletionSize(i):]
binary.LittleEndian.PutUint64(b[consumedOffset:], rxb.Offset)
binary.LittleEndian.PutUint32(b[consumedSize:], rxb.Size)
binary.LittleEndian.PutUint64(b[consumedUserData:], rxb.UserData)
binary.LittleEndian.PutUint64(b[consumedID:], rxb.ID)
}
|