summaryrefslogtreecommitdiffhomepage
path: root/pkg/tcpip/faketime/faketime.go
blob: fb819d7a8172456b0d045adfb5be17fdac04ed7e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
// Copyright 2020 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Package faketime provides a fake clock that implements tcpip.Clock interface.
package faketime

import (
	"container/heap"
	"fmt"
	"sync"
	"time"

	"gvisor.dev/gvisor/pkg/tcpip"
)

// NullClock implements a clock that never advances.
type NullClock struct{}

var _ tcpip.Clock = (*NullClock)(nil)

// NowNanoseconds implements tcpip.Clock.NowNanoseconds.
func (*NullClock) NowNanoseconds() int64 {
	return 0
}

// NowMonotonic implements tcpip.Clock.NowMonotonic.
func (*NullClock) NowMonotonic() int64 {
	return 0
}

// AfterFunc implements tcpip.Clock.AfterFunc.
func (*NullClock) AfterFunc(time.Duration, func()) tcpip.Timer {
	return nil
}

type notificationChannels struct {
	mu struct {
		sync.Mutex

		ch []<-chan struct{}
	}
}

func (n *notificationChannels) add(ch <-chan struct{}) {
	n.mu.Lock()
	defer n.mu.Unlock()
	n.mu.ch = append(n.mu.ch, ch)
}

// wait returns once all the notification channels are readable.
//
// Channels that are added while waiting on existing channels will be waited on
// as well.
func (n *notificationChannels) wait() {
	for {
		n.mu.Lock()
		ch := n.mu.ch
		n.mu.ch = nil
		n.mu.Unlock()

		if len(ch) == 0 {
			break
		}

		for _, c := range ch {
			<-c
		}
	}
}

// ManualClock implements tcpip.Clock and only advances manually with Advance
// method.
type ManualClock struct {
	// runningTimers tracks the completion of timer callbacks that began running
	// immediately upon their scheduling. It is used to ensure the proper ordering
	// of timer callback dispatch.
	runningTimers notificationChannels

	mu struct {
		sync.RWMutex

		// now is the current (fake) time of the clock.
		now time.Time

		// times is min-heap of times.
		times timeHeap

		// timers holds the timers scheduled for each time.
		timers map[time.Time]map[*manualTimer]struct{}
	}
}

// NewManualClock creates a new ManualClock instance.
func NewManualClock() *ManualClock {
	c := &ManualClock{}

	c.mu.Lock()
	defer c.mu.Unlock()

	// Set the initial time to a non-zero value since the zero value is used to
	// detect inactive timers.
	c.mu.now = time.Unix(0, 0)
	c.mu.timers = make(map[time.Time]map[*manualTimer]struct{})

	return c
}

var _ tcpip.Clock = (*ManualClock)(nil)

// NowNanoseconds implements tcpip.Clock.NowNanoseconds.
func (mc *ManualClock) NowNanoseconds() int64 {
	mc.mu.RLock()
	defer mc.mu.RUnlock()
	return mc.mu.now.UnixNano()
}

// NowMonotonic implements tcpip.Clock.NowMonotonic.
func (mc *ManualClock) NowMonotonic() int64 {
	return mc.NowNanoseconds()
}

// AfterFunc implements tcpip.Clock.AfterFunc.
func (mc *ManualClock) AfterFunc(d time.Duration, f func()) tcpip.Timer {
	mt := &manualTimer{
		clock: mc,
		f:     f,
	}

	mc.mu.Lock()
	defer mc.mu.Unlock()

	mt.mu.Lock()
	defer mt.mu.Unlock()

	mc.resetTimerLocked(mt, d)
	return mt
}

// resetTimerLocked schedules a timer to be fired after the given duration.
//
// Precondition: mc.mu and mt.mu must be locked.
func (mc *ManualClock) resetTimerLocked(mt *manualTimer, d time.Duration) {
	if !mt.mu.firesAt.IsZero() {
		panic("tried to reset an active timer")
	}

	t := mc.mu.now.Add(d)

	if !mc.mu.now.Before(t) {
		// If the timer is scheduled to fire immediately, call its callback
		// in a new goroutine immediately.
		//
		// It needs to be called in its own goroutine to escape its current
		// execution context - like an actual timer.
		ch := make(chan struct{})
		mc.runningTimers.add(ch)

		go func() {
			defer close(ch)

			mt.f()
		}()

		return
	}

	mt.mu.firesAt = t

	timers, ok := mc.mu.timers[t]
	if !ok {
		timers = make(map[*manualTimer]struct{})
		mc.mu.timers[t] = timers
		heap.Push(&mc.mu.times, t)
	}

	timers[mt] = struct{}{}
}

// stopTimerLocked stops a timer from firing.
//
// Precondition: mc.mu and mt.mu must be locked.
func (mc *ManualClock) stopTimerLocked(mt *manualTimer) {
	t := mt.mu.firesAt
	mt.mu.firesAt = time.Time{}

	if t.IsZero() {
		panic("tried to stop an inactive timer")
	}

	timers, ok := mc.mu.timers[t]
	if !ok {
		err := fmt.Sprintf("tried to stop an active timer but the clock does not have anything scheduled for the timer @ t = %s %p\nScheduled timers @:", t.UTC(), mt)
		for t := range mc.mu.timers {
			err += fmt.Sprintf("%s\n", t.UTC())
		}
		panic(err)
	}

	if _, ok := timers[mt]; !ok {
		panic(fmt.Sprintf("did not have an entry in timers for an active timer @ t = %s", t.UTC()))
	}

	delete(timers, mt)

	if len(timers) == 0 {
		delete(mc.mu.timers, t)
	}
}

// Advance executes all work that have been scheduled to execute within d from
// the current time. Blocks until all work has completed execution.
func (mc *ManualClock) Advance(d time.Duration) {
	// We spawn goroutines for timers that were scheduled to fire at the time of
	// being reset. Wait for those goroutines to complete before proceeding so
	// that timer callbacks are called in the right order.
	mc.runningTimers.wait()

	mc.mu.Lock()
	defer mc.mu.Unlock()

	until := mc.mu.now.Add(d)
	for mc.mu.times.Len() > 0 {
		t := heap.Pop(&mc.mu.times).(time.Time)
		if t.After(until) {
			// No work to do
			heap.Push(&mc.mu.times, t)
			break
		}

		timers := mc.mu.timers[t]
		delete(mc.mu.timers, t)

		mc.mu.now = t

		// Mark the timers as inactive since they will be fired.
		//
		// This needs to be done while holding mc's lock because we remove the entry
		// in the map of timers for the current time. If an attempt to stop a
		// timer is made after mc's lock was dropped but before the timer is
		// marked inactive, we would panic since no entry exists for the time when
		// the timer was expected to fire.
		for mt := range timers {
			mt.mu.Lock()
			mt.mu.firesAt = time.Time{}
			mt.mu.Unlock()
		}

		// Release the lock before calling the timer's callback fn since the
		// callback fn might try to schedule a timer which requires obtaining
		// mc's lock.
		mc.mu.Unlock()

		for mt := range timers {
			mt.f()
		}

		// The timer callbacks may have scheduled a timer to fire immediately.
		// We spawn goroutines for these timers and need to wait for them to
		// finish before proceeding so that timer callbacks are called in the
		// right order.
		mc.runningTimers.wait()
		mc.mu.Lock()
	}

	mc.mu.now = until
}

func (mc *ManualClock) resetTimer(mt *manualTimer, d time.Duration) {
	mc.mu.Lock()
	defer mc.mu.Unlock()

	mt.mu.Lock()
	defer mt.mu.Unlock()

	if !mt.mu.firesAt.IsZero() {
		mc.stopTimerLocked(mt)
	}

	mc.resetTimerLocked(mt, d)
}

func (mc *ManualClock) stopTimer(mt *manualTimer) bool {
	mc.mu.Lock()
	defer mc.mu.Unlock()

	mt.mu.Lock()
	defer mt.mu.Unlock()

	if mt.mu.firesAt.IsZero() {
		return false
	}

	mc.stopTimerLocked(mt)
	return true
}

type manualTimer struct {
	clock *ManualClock
	f     func()

	mu struct {
		sync.Mutex

		// firesAt is the time when the timer will fire.
		//
		// Zero only when the timer is not active.
		firesAt time.Time
	}
}

var _ tcpip.Timer = (*manualTimer)(nil)

// Reset implements tcpip.Timer.Reset.
func (mt *manualTimer) Reset(d time.Duration) {
	mt.clock.resetTimer(mt, d)
}

// Stop implements tcpip.Timer.Stop.
func (mt *manualTimer) Stop() bool {
	return mt.clock.stopTimer(mt)
}

type timeHeap []time.Time

var _ heap.Interface = (*timeHeap)(nil)

func (h timeHeap) Len() int {
	return len(h)
}

func (h timeHeap) Less(i, j int) bool {
	return h[i].Before(h[j])
}

func (h timeHeap) Swap(i, j int) {
	h[i], h[j] = h[j], h[i]
}

func (h *timeHeap) Push(x interface{}) {
	*h = append(*h, x.(time.Time))
}

func (h *timeHeap) Pop() interface{} {
	last := (*h)[len(*h)-1]
	*h = (*h)[:len(*h)-1]
	return last
}