1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
|
// Copyright 2020 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package faketime provides a fake clock that implements tcpip.Clock interface.
package faketime
import (
"container/heap"
"sync"
"time"
"github.com/dpjacques/clockwork"
"gvisor.dev/gvisor/pkg/tcpip"
)
// NullClock implements a clock that never advances.
type NullClock struct{}
var _ tcpip.Clock = (*NullClock)(nil)
// NowNanoseconds implements tcpip.Clock.NowNanoseconds.
func (*NullClock) NowNanoseconds() int64 {
return 0
}
// NowMonotonic implements tcpip.Clock.NowMonotonic.
func (*NullClock) NowMonotonic() int64 {
return 0
}
// AfterFunc implements tcpip.Clock.AfterFunc.
func (*NullClock) AfterFunc(time.Duration, func()) tcpip.Timer {
return nil
}
// ManualClock implements tcpip.Clock and only advances manually with Advance
// method.
type ManualClock struct {
clock clockwork.FakeClock
// mu protects the fields below.
mu sync.RWMutex
// times is min-heap of times. A heap is used for quick retrieval of the next
// upcoming time of scheduled work.
times *timeHeap
// waitGroups stores one WaitGroup for all work scheduled to execute at the
// same time via AfterFunc. This allows parallel execution of all functions
// passed to AfterFunc scheduled for the same time.
waitGroups map[time.Time]*sync.WaitGroup
}
// NewManualClock creates a new ManualClock instance.
func NewManualClock() *ManualClock {
return &ManualClock{
clock: clockwork.NewFakeClock(),
times: &timeHeap{},
waitGroups: make(map[time.Time]*sync.WaitGroup),
}
}
var _ tcpip.Clock = (*ManualClock)(nil)
// NowNanoseconds implements tcpip.Clock.NowNanoseconds.
func (mc *ManualClock) NowNanoseconds() int64 {
return mc.clock.Now().UnixNano()
}
// NowMonotonic implements tcpip.Clock.NowMonotonic.
func (mc *ManualClock) NowMonotonic() int64 {
return mc.NowNanoseconds()
}
// AfterFunc implements tcpip.Clock.AfterFunc.
func (mc *ManualClock) AfterFunc(d time.Duration, f func()) tcpip.Timer {
until := mc.clock.Now().Add(d)
wg := mc.addWait(until)
return &manualTimer{
clock: mc,
until: until,
timer: mc.clock.AfterFunc(d, func() {
defer wg.Done()
f()
}),
}
}
// addWait adds an additional wait to the WaitGroup for parallel execution of
// all work scheduled for t. Returns a reference to the WaitGroup modified.
func (mc *ManualClock) addWait(t time.Time) *sync.WaitGroup {
mc.mu.RLock()
wg, ok := mc.waitGroups[t]
mc.mu.RUnlock()
if ok {
wg.Add(1)
return wg
}
mc.mu.Lock()
heap.Push(mc.times, t)
mc.mu.Unlock()
wg = &sync.WaitGroup{}
wg.Add(1)
mc.mu.Lock()
mc.waitGroups[t] = wg
mc.mu.Unlock()
return wg
}
// removeWait removes a wait from the WaitGroup for parallel execution of all
// work scheduled for t.
func (mc *ManualClock) removeWait(t time.Time) {
mc.mu.RLock()
defer mc.mu.RUnlock()
wg := mc.waitGroups[t]
wg.Done()
}
// Advance executes all work that have been scheduled to execute within d from
// the current time. Blocks until all work has completed execution.
func (mc *ManualClock) Advance(d time.Duration) {
// Block until all the work is done
until := mc.clock.Now().Add(d)
for {
mc.mu.Lock()
if mc.times.Len() == 0 {
mc.mu.Unlock()
break
}
t := heap.Pop(mc.times).(time.Time)
if t.After(until) {
// No work to do
heap.Push(mc.times, t)
mc.mu.Unlock()
break
}
mc.mu.Unlock()
diff := t.Sub(mc.clock.Now())
mc.clock.Advance(diff)
mc.mu.RLock()
wg := mc.waitGroups[t]
mc.mu.RUnlock()
wg.Wait()
mc.mu.Lock()
delete(mc.waitGroups, t)
mc.mu.Unlock()
}
if now := mc.clock.Now(); until.After(now) {
mc.clock.Advance(until.Sub(now))
}
}
type manualTimer struct {
clock *ManualClock
timer clockwork.Timer
mu sync.RWMutex
until time.Time
}
var _ tcpip.Timer = (*manualTimer)(nil)
// Reset implements tcpip.Timer.Reset.
func (t *manualTimer) Reset(d time.Duration) {
if !t.timer.Reset(d) {
return
}
t.mu.Lock()
defer t.mu.Unlock()
t.clock.removeWait(t.until)
t.until = t.clock.clock.Now().Add(d)
t.clock.addWait(t.until)
}
// Stop implements tcpip.Timer.Stop.
func (t *manualTimer) Stop() bool {
if !t.timer.Stop() {
return false
}
t.mu.RLock()
defer t.mu.RUnlock()
t.clock.removeWait(t.until)
return true
}
type timeHeap []time.Time
var _ heap.Interface = (*timeHeap)(nil)
func (h timeHeap) Len() int {
return len(h)
}
func (h timeHeap) Less(i, j int) bool {
return h[i].Before(h[j])
}
func (h timeHeap) Swap(i, j int) {
h[i], h[j] = h[j], h[i]
}
func (h *timeHeap) Push(x interface{}) {
*h = append(*h, x.(time.Time))
}
func (h *timeHeap) Pop() interface{} {
last := (*h)[len(*h)-1]
*h = (*h)[:len(*h)-1]
return last
}
|