1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package state provides functionality related to saving and loading object
// graphs. For most types, it provides a set of default saving / loading logic
// that will be invoked automatically if custom logic is not defined.
//
// Kind Support
// ---- -------
// Bool default
// Int default
// Int8 default
// Int16 default
// Int32 default
// Int64 default
// Uint default
// Uint8 default
// Uint16 default
// Uint32 default
// Uint64 default
// Float32 default
// Float64 default
// Complex64 default
// Complex128 default
// Array default
// Chan custom
// Func custom
// Interface default
// Map default
// Ptr default
// Slice default
// String default
// Struct custom (*) Unless zero-sized.
// UnsafePointer custom
//
// See README.md for an overview of how encoding and decoding works.
package state
import (
"context"
"fmt"
"reflect"
"runtime"
"gvisor.dev/gvisor/pkg/state/wire"
)
// objectID is a unique identifier assigned to each object to be serialized.
// Each instance of an object is considered separately, i.e. if there are two
// objects of the same type in the object graph being serialized, they'll be
// assigned unique objectIDs.
type objectID uint32
// typeID is the identifier for a type. Types are serialized and tracked
// alongside objects in order to avoid the overhead of encoding field names in
// all objects.
type typeID uint32
// ErrState is returned when an error is encountered during encode/decode.
type ErrState struct {
// err is the underlying error.
err error
// trace is the stack trace.
trace string
}
// Error returns a sensible description of the state error.
func (e *ErrState) Error() string {
return fmt.Sprintf("%v:\n%s", e.err, e.trace)
}
// Unwrap implements standard unwrapping.
func (e *ErrState) Unwrap() error {
return e.err
}
// Save saves the given object state.
func Save(ctx context.Context, w wire.Writer, rootPtr interface{}) (Stats, error) {
// Create the encoding state.
es := encodeState{
ctx: ctx,
w: w,
types: makeTypeEncodeDatabase(),
zeroValues: make(map[reflect.Type]*objectEncodeState),
pending: make(map[objectID]*objectEncodeState),
encodedStructs: make(map[reflect.Value]*wire.Struct),
}
// Perform the encoding.
err := safely(func() {
es.Save(reflect.ValueOf(rootPtr).Elem())
})
return es.stats, err
}
// Load loads a checkpoint.
func Load(ctx context.Context, r wire.Reader, rootPtr interface{}) (Stats, error) {
// Create the decoding state.
ds := decodeState{
ctx: ctx,
r: r,
types: makeTypeDecodeDatabase(),
deferred: make(map[objectID]wire.Object),
}
// Attempt our decode.
err := safely(func() {
ds.Load(reflect.ValueOf(rootPtr).Elem())
})
return ds.stats, err
}
// Sink is used for Type.StateSave.
type Sink struct {
internal objectEncoder
}
// Save adds the given object to the map.
//
// You should pass always pointers to the object you are saving. For example:
//
// type X struct {
// A int
// B *int
// }
//
// func (x *X) StateTypeInfo(m Sink) state.TypeInfo {
// return state.TypeInfo{
// Name: "pkg.X",
// Fields: []string{
// "A",
// "B",
// },
// }
// }
//
// func (x *X) StateSave(m Sink) {
// m.Save(0, &x.A) // Field is A.
// m.Save(1, &x.B) // Field is B.
// }
//
// func (x *X) StateLoad(m Source) {
// m.Load(0, &x.A) // Field is A.
// m.Load(1, &x.B) // Field is B.
// }
func (s Sink) Save(slot int, objPtr interface{}) {
s.internal.save(slot, reflect.ValueOf(objPtr).Elem())
}
// SaveValue adds the given object value to the map.
//
// This should be used for values where pointers are not available, or casts
// are required during Save/Load.
//
// For example, if we want to cast external package type P.Foo to int64:
//
// func (x *X) StateSave(m Sink) {
// m.SaveValue(0, "A", int64(x.A))
// }
//
// func (x *X) StateLoad(m Source) {
// m.LoadValue(0, new(int64), func(x interface{}) {
// x.A = P.Foo(x.(int64))
// })
// }
func (s Sink) SaveValue(slot int, obj interface{}) {
s.internal.save(slot, reflect.ValueOf(obj))
}
// Context returns the context object provided at save time.
func (s Sink) Context() context.Context {
return s.internal.es.ctx
}
// Type is an interface that must be implemented by Struct objects. This allows
// these objects to be serialized while minimizing runtime reflection required.
//
// All these methods can be automatically generated by the go_statify tool.
type Type interface {
// StateTypeName returns the type's name.
//
// This is used for matching type information during encoding and
// decoding, as well as dynamic interface dispatch. This should be
// globally unique.
StateTypeName() string
// StateFields returns information about the type.
//
// Fields is the set of fields for the object. Calls to Sink.Save and
// Source.Load must be made in-order with respect to these fields.
//
// This will be called at most once per serialization.
StateFields() []string
}
// SaverLoader must be implemented by struct types.
type SaverLoader interface {
// StateSave saves the state of the object to the given Map.
StateSave(Sink)
// StateLoad loads the state of the object.
StateLoad(Source)
}
// Source is used for Type.StateLoad.
type Source struct {
internal objectDecoder
}
// Load loads the given object passed as a pointer..
//
// See Sink.Save for an example.
func (s Source) Load(slot int, objPtr interface{}) {
s.internal.load(slot, reflect.ValueOf(objPtr), false, nil)
}
// LoadWait loads the given objects from the map, and marks it as requiring all
// AfterLoad executions to complete prior to running this object's AfterLoad.
//
// See Sink.Save for an example.
func (s Source) LoadWait(slot int, objPtr interface{}) {
s.internal.load(slot, reflect.ValueOf(objPtr), true, nil)
}
// LoadValue loads the given object value from the map.
//
// See Sink.SaveValue for an example.
func (s Source) LoadValue(slot int, objPtr interface{}, fn func(interface{})) {
o := reflect.ValueOf(objPtr)
s.internal.load(slot, o, true, func() { fn(o.Elem().Interface()) })
}
// AfterLoad schedules a function execution when all objects have been
// allocated and their automated loading and customized load logic have been
// executed. fn will not be executed until all of current object's
// dependencies' AfterLoad() logic, if exist, have been executed.
func (s Source) AfterLoad(fn func()) {
s.internal.afterLoad(fn)
}
// Context returns the context object provided at load time.
func (s Source) Context() context.Context {
return s.internal.ds.ctx
}
// IsZeroValue checks if the given value is the zero value.
//
// This function is used by the stateify tool.
func IsZeroValue(val interface{}) bool {
return val == nil || reflect.ValueOf(val).Elem().IsZero()
}
// Failf is a wrapper around panic that should be used to generate errors that
// can be caught during saving and loading.
func Failf(fmtStr string, v ...interface{}) {
panic(fmt.Errorf(fmtStr, v...))
}
// safely executes the given function, catching a panic and unpacking as an
// error.
//
// The error flow through the state package uses panic and recover. There are
// two important reasons for this:
//
// 1) Many of the reflection methods will already panic with invalid data or
// violated assumptions. We would want to recover anyways here.
//
// 2) It allows us to eliminate boilerplate within Save() and Load() functions.
// In nearly all cases, when the low-level serialization functions fail, you
// will want the checkpoint to fail anyways. Plumbing errors through every
// method doesn't add a lot of value. If there are specific error conditions
// that you'd like to handle, you should add appropriate functionality to
// objects themselves prior to calling Save() and Load().
func safely(fn func()) (err error) {
defer func() {
if r := recover(); r != nil {
if es, ok := r.(*ErrState); ok {
err = es // Propagate.
return
}
// Build a new state error.
es := new(ErrState)
if e, ok := r.(error); ok {
es.err = e
} else {
es.err = fmt.Errorf("%v", r)
}
// Make a stack. We don't know how big it will be ahead
// of time, but want to make sure we get the whole
// thing. So we just do a stupid brute force approach.
var stack []byte
for sz := 1024; ; sz *= 2 {
stack = make([]byte, sz)
n := runtime.Stack(stack, false)
if n < sz {
es.trace = string(stack[:n])
break
}
}
// Set the error.
err = es
}
}()
// Execute the function.
fn()
return nil
}
|