1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package pretty is a pretty-printer for state streams.
package pretty
import (
"fmt"
"io"
"io/ioutil"
"reflect"
"strings"
"gvisor.dev/gvisor/pkg/state"
"gvisor.dev/gvisor/pkg/state/wire"
)
type printer struct {
html bool
typeSpecs map[string]*wire.Type
}
func (p *printer) formatRef(x *wire.Ref, graph uint64) string {
baseRef := fmt.Sprintf("g%dr%d", graph, x.Root)
fullRef := baseRef
if len(x.Dots) > 0 {
// See wire.Ref; Type valid if Dots non-zero.
typ, _ := p.formatType(x.Type, graph)
var buf strings.Builder
buf.WriteString("(*")
buf.WriteString(typ)
buf.WriteString(")(")
buf.WriteString(baseRef)
for _, component := range x.Dots {
switch v := component.(type) {
case *wire.FieldName:
buf.WriteString(".")
buf.WriteString(string(*v))
case wire.Index:
buf.WriteString(fmt.Sprintf("[%d]", v))
default:
panic(fmt.Sprintf("unreachable: switch should be exhaustive, unhandled case %v", reflect.TypeOf(component)))
}
}
buf.WriteString(")")
fullRef = buf.String()
}
if p.html {
return fmt.Sprintf("<a href=\"#%s\">%s</a>", baseRef, fullRef)
}
return fullRef
}
func (p *printer) formatType(t wire.TypeSpec, graph uint64) (string, bool) {
switch x := t.(type) {
case wire.TypeID:
tag := fmt.Sprintf("g%dt%d", graph, x)
desc := tag
if spec, ok := p.typeSpecs[tag]; ok {
desc += fmt.Sprintf("=%s", spec.Name)
} else {
desc += "!missing-type-spec"
}
if p.html {
return fmt.Sprintf("<a href=\"#%s\">%s</a>", tag, desc), true
}
return desc, true
case wire.TypeSpecNil:
return "", false // Only nil type.
case *wire.TypeSpecPointer:
element, _ := p.formatType(x.Type, graph)
return fmt.Sprintf("(*%s)", element), true
case *wire.TypeSpecArray:
element, _ := p.formatType(x.Type, graph)
return fmt.Sprintf("[%d](%s)", x.Count, element), true
case *wire.TypeSpecSlice:
element, _ := p.formatType(x.Type, graph)
return fmt.Sprintf("([]%s)", element), true
case *wire.TypeSpecMap:
key, _ := p.formatType(x.Key, graph)
value, _ := p.formatType(x.Value, graph)
return fmt.Sprintf("(map[%s]%s)", key, value), true
default:
panic(fmt.Sprintf("unreachable: unknown type %T", t))
}
}
// format formats a single object, for pretty-printing. It also returns whether
// the value is a non-zero value.
func (p *printer) format(graph uint64, depth int, encoded wire.Object) (string, bool) {
switch x := encoded.(type) {
case wire.Nil:
return "nil", false
case *wire.String:
return fmt.Sprintf("%q", *x), *x != ""
case *wire.Complex64:
return fmt.Sprintf("%f+%fi", real(*x), imag(*x)), *x != 0.0
case *wire.Complex128:
return fmt.Sprintf("%f+%fi", real(*x), imag(*x)), *x != 0.0
case *wire.Ref:
return p.formatRef(x, graph), x.Root != 0
case *wire.Type:
tabs := "\n" + strings.Repeat("\t", depth)
items := make([]string, 0, len(x.Fields)+2)
items = append(items, fmt.Sprintf("type %s {", x.Name))
for i := 0; i < len(x.Fields); i++ {
items = append(items, fmt.Sprintf("\t%d: %s,", i, x.Fields[i]))
}
items = append(items, "}")
return strings.Join(items, tabs), true // No zero value.
case *wire.Slice:
return fmt.Sprintf("%s{len:%d,cap:%d}", p.formatRef(&x.Ref, graph), x.Length, x.Capacity), x.Capacity != 0
case *wire.Array:
if len(x.Contents) == 0 {
return "[]", false
}
items := make([]string, 0, len(x.Contents)+2)
zeros := make([]string, 0) // used to eliminate zero entries.
items = append(items, "[")
tabs := "\n" + strings.Repeat("\t", depth)
for i := 0; i < len(x.Contents); i++ {
item, ok := p.format(graph, depth+1, x.Contents[i])
if !ok {
zeros = append(zeros, fmt.Sprintf("\t%s,", item))
continue
}
if len(zeros) > 0 {
items = append(items, zeros...)
zeros = nil
}
items = append(items, fmt.Sprintf("\t%s,", item))
}
if len(zeros) > 0 {
items = append(items, fmt.Sprintf("\t... (%d zeros),", len(zeros)))
}
items = append(items, "]")
return strings.Join(items, tabs), len(zeros) < len(x.Contents)
case *wire.Struct:
tag := fmt.Sprintf("g%dt%d", graph, x.TypeID)
spec, _ := p.typeSpecs[tag]
typ, _ := p.formatType(x.TypeID, graph)
if x.Fields() == 0 {
return fmt.Sprintf("struct[%s]{}", typ), false
}
items := make([]string, 0, 2)
items = append(items, fmt.Sprintf("struct[%s]{", typ))
tabs := "\n" + strings.Repeat("\t", depth)
allZero := true
for i := 0; i < x.Fields(); i++ {
var name string
if spec != nil && i < len(spec.Fields) {
name = spec.Fields[i]
} else {
name = fmt.Sprintf("%d", i)
}
element, ok := p.format(graph, depth+1, *x.Field(i))
allZero = allZero && !ok
items = append(items, fmt.Sprintf("\t%s: %s,", name, element))
}
items = append(items, "}")
return strings.Join(items, tabs), !allZero
case *wire.Map:
if len(x.Keys) == 0 {
return "map{}", false
}
items := make([]string, 0, len(x.Keys)+2)
items = append(items, "map{")
tabs := "\n" + strings.Repeat("\t", depth)
for i := 0; i < len(x.Keys); i++ {
key, _ := p.format(graph, depth+1, x.Keys[i])
value, _ := p.format(graph, depth+1, x.Values[i])
items = append(items, fmt.Sprintf("\t%s: %s,", key, value))
}
items = append(items, "}")
return strings.Join(items, tabs), true
case *wire.Interface:
typ, typOk := p.formatType(x.Type, graph)
element, elementOk := p.format(graph, depth+1, x.Value)
return fmt.Sprintf("interface[%s]{%s}", typ, element), typOk || elementOk
default:
// Must be a primitive; use reflection.
return fmt.Sprintf("%v", encoded), true
}
}
// printStream is the basic print implementation.
func (p *printer) printStream(w io.Writer, r wire.Reader) (err error) {
// current graph ID.
var graph uint64
if p.html {
fmt.Fprintf(w, "<pre>")
defer fmt.Fprintf(w, "</pre>")
}
defer func() {
if r := recover(); r != nil {
if rErr, ok := r.(error); ok {
err = rErr // Override return.
return
}
panic(r) // Propagate.
}
}()
p.typeSpecs = make(map[string]*wire.Type)
for {
// Find the first object to begin generation.
length, object, err := state.ReadHeader(r)
if err == io.EOF {
// Nothing else to do.
break
} else if err != nil {
return err
}
if !object {
graph++ // Increment the graph.
if length > 0 {
fmt.Fprintf(w, "(%d bytes non-object data)\n", length)
io.Copy(ioutil.Discard, &io.LimitedReader{
R: r,
N: int64(length),
})
}
continue
}
// Read & unmarshal the object.
//
// Note that this loop must match the general structure of the
// loop in decode.go. But we don't register type information,
// etc. and just print the raw structures.
var (
tid uint64 = 1
objects []wire.Object
)
for oid := uint64(1); oid <= length; {
// Unmarshal the object.
encoded := wire.Load(r)
// Is this a type?
if typ, ok := encoded.(*wire.Type); ok {
str, _ := p.format(graph, 0, encoded)
tag := fmt.Sprintf("g%dt%d", graph, tid)
p.typeSpecs[tag] = typ
if p.html {
// See below.
tag = fmt.Sprintf("<a name=\"%s\">%s</a><a href=\"#%s\">⚓</a>", tag, tag, tag)
}
if _, err := fmt.Fprintf(w, "%s = %s\n", tag, str); err != nil {
return err
}
tid++
continue
}
// Otherwise, it is a node.
objects = append(objects, encoded)
oid++
}
for i, encoded := range objects {
// oid starts at 1.
oid := i + 1
// Format the node.
str, _ := p.format(graph, 0, encoded)
tag := fmt.Sprintf("g%dr%d", graph, oid)
if p.html {
// Create a little tag with an anchor next to it for linking.
tag = fmt.Sprintf("<a name=\"%s\">%s</a><a href=\"#%s\">⚓</a>", tag, tag, tag)
}
if _, err := fmt.Fprintf(w, "%s = %s\n", tag, str); err != nil {
return err
}
}
}
return nil
}
// PrintText reads the stream from r and prints text to w.
func PrintText(w io.Writer, r wire.Reader) error {
return (&printer{}).printStream(w, r)
}
// PrintHTML reads the stream from r and prints html to w.
func PrintHTML(w io.Writer, r wire.Reader) error {
return (&printer{html: true}).printStream(w, r)
}
|